Electronic Supplementary Material

Nanostructured $MnO_x/g-C_3N_4$ for photodegradation of Sulfamethoxazole under visible light irradiation

Oanh T. K. Nguyen^a, Vinh Huu Nguyen^a, Nong Xuan Linh^a, Minh Que Doan^a, Lan-Anh T.

Hoang^b, Taeyoon Lee^{b,*}, Trinh Duy Nguyen^{a,*}

aInstitute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University,

Ho Chi Minh City, Viet Nam

^bDepartment of Environmental Engineering, College of Environmental and Marine, Pukyong

National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea

Corresponding author: ndtrinh@ntt.edu.vn (T.D. Nguyen); badger74w@pknu.ac.kr (T. Lee)

Figure S1. Schematic diagram of the synthesis of Mn modified on the CN.

Figure S2. XRD pattern of the 1MnCN sample and simulated samples (from the Crystallography Open Database) of MnO, MnO_2 , and Mn_2O_3 .

Figure S3. XRD pattern of the 3MnCN sample and simulated samples (from the Crystallography Open Database) of MnO, MnO₂, and Mn₂O₃.

Figure S4. XRD pattern of the 5MnCN sample and simulated samples (from the Crystallography Open Database) of MnO, MnO_2 , and Mn_2O_3 .

Figure S5. Raman spectroscopy of CN and 3MnCN samples.

Figure S6. EDX analysis of the synthesized 3MnCN.

Figure S7. Survey XPS of CN and 3MnCN.

Figure S8. Bandgap energy of CN (A) and 3MnCN (B)

Figure S9. Mott-Schottky plots of the CN (A) and 3MnCN (B) samples.

Figure S10. HPLC results of SMX photodegradation catalyzed by the 3MnCN after 180 minutes of irradiation.

Figure S11. Zeta potential at different pH of the as-synthesized 3MnCN.

Figure S12. LC-MS spectra of the (A) initial SMX solution and (B) - (D) degradation intermediate products by the 3MnCN photocatalyst at different photodegradation time points.

VIET NAM NATIONAL UNIVERSITY OF HO CHI MINH CITY INSTITUTE FOR ENVIRONMENT AND RESOURCES ENVIRONMENTAL LABORATORY (VIMCERTS 138) Add: 142 Tò Hiến Thành, P14, Q10, Tp.HCM Tel: (028) 38651132, 38637044 - Fax: (08) 38655670 E-mail: <u>ptnclmt.ier@gmail.com</u> Website: <u>http://www.hcmier.edu.vn</u>

Số/Code: IER-N2409.0446/1

BẢNG KẾT QUẢ PHÂN TÍCH ANALYSIS RESULTS

NGUYỄN THỊ KIM OANH Tên khách hàng : Customer's name NGUYEN THI KIM OANH 3MnCN - Before Tên mẫu Name of sample 3MnCN - Before Mô tả mẫu Mẫu được chứa trong ống nhựa Sample is contained in centrifuge tube Described sample Đơn vị lấy mẫu : Khách hàng gửi mẫu Sampling Agency Sampled by Customer

Ngày lấy mẫu : 19.09.2024 Sampling date: Ngày gửi mẫu : 19.09.2024 Date of receipting:

TT No.	THÔNG SỐ PHÂN TÍCH <i>parameters</i>	ĐƠN VỊ <i>UNITS</i>	KÉT QUẢ <i>results</i>	GIỚI HẠN PHÁT HIỆN <i>LOD</i>	TIÊU CHUÂN SO SÁNH <i>standard values</i> ^(a)	PHƯƠNG PHÁP THỦ <i>Analyse Methods</i>
1.	Mangan (Mn) Manganese (as Mn)	g/kg	1,131	-	-	SMEWW 3111B:2017

Ghi chú/ Notes:

- Giấy chứng nhận dù diều kiện hoạt động dịch vụ quan trắc môi trường số hiệu: VIMCERTS 138 (GCN số 04/GCN-BTNMT)/The Certificate of eligible for service activities in environmental monitoring, code: VIMCERTS 138.
- 2. Các kết quả phân tích chỉ có giá trị trên mẫu thử /The results are valid only on the tested sample.
- Thông tin tên khách hàng và tên mẫu thử được ghi trên phiếu kết quả này theo yêu cầu của khách hàng/ Customer's name and sample information are provided by customer.
- 4. KPH: Không phát hiện/ KPH: Non-detectable, LOD: Giới hạn phát hiện/LOD: Limit of detection.
- 5. Dấu (-): Không chứa giá trị, thông tin/Items with remark (-): Not available or No information.
- 6. (a) Khách hàng không yêu cầu quy chuẩn so sánh/ Customers do not require standards.

Đại diện nhóm phân tích Representative of Test Group Phụ trách PTN. CLMT The lab's administrator

Nguyễn Văn Sang

ThS. Nguyễn Thành Trung

Ho Chi Minh City, 27/09/2024 GIA Vien Trưởng Director VIÊN MÔI TRƯỜNG ٧À NGUY GS.TS Thanh Hải

LFW 20.01

Lần ban hành: 03.20

Trang: 1/1

Figure S13. Result of ICP-MS analysis of 3MnCN before.

VIET NAM NATIONAL UNIVERSITY OF HO CHI MINH CITY INSTITUTE FOR ENVIRONMENT AND RESOURCES ENVIRONMENTAL LABORATORY (VIMCERTS 138) Add: 142 Tô Hiến Thành, P14, Q10, Tp.HCM Tel: (028) 38651132, 38637044 - Fax: (08) 38655670 E-mail: ptnclmt.ier@gmail.com Website: http://www.hcmier.edu.vn

Số/Code: IER-N2409.0446/2

BẢNG KẾT QUẢ PHÂN TÍCH ANALYSIS RESULTS

Tên Custa Tên Mô t Desc Đơn Samp	khách hàng omer's name mẫu ne of sample tả mẫu ribed sample vị lấy mẫu oling Agency	 NGUYĚ NGUYĚ, 3MnCN 3MnCN Mẫu đượ Sample i: Khách hạ Sampled 	N THỊ K - After - After ye chứa tr s containe àng gửi m by Custo	IM OANH IM OANH ong ống nhựa ed in centrifuge tube iẫu mer		Ngày lấy mẫu : 19.09.2024 Sampling date: Ngày gửi mẫu : 19.09.2024 Date of receipting:			
TT No.	THÔNG SÓ PHÂN TÍCH <i>Parameters</i>		ĐƠN VỊ <i>UNITS</i>	KÉT QUẢ <i>results</i>	GIỚI HẠN PHÁT HIỆN <i>LOD</i>	TIÊU CHUÂN SO SÁNH <i>standard values</i> ^(a)	PHƯỜNG PHÁP THỬ Analyse methods		

Ghi chú/ Note:

1.

Mangan (Mn)

Manganese (as Mn)

 Giáy chứng nhận đủ diều kiện hoạt động dịch vụ quan trắc môi trường số hiệu: VIMCERTS 138 (GCN số 04/GCN-BTNMT)/The Certificate of eligible for service activities in environmental monitoring, code: VIMCERTS 138.

1,128

2. Các kết quả phân tích chỉ có giá trị trên mẫu thử /The results are valid only on the tested sample.

g/kg

3. Thông tin tên khách hàng và tên mẫu thử được ghi trên phiếu kết quả này theo yêu cầu của khách hàng/ Customer's name and sample information are provided by customer.

4. KPH: Không phát hiện/ KPH: Non-detectable, LOD: Giới hạn phát hiện/LOD: Limit of detection.

Dấu (-): Không chứa giá trị, thông tin/*Items with remark (-): Not available or No information.*

6. ^(a) Khách hàng không yêu cầu quy chuẩn so sánh/ Customers do not require standards.

Đại diện nhóm phân tích Representative of Test Group

Nguyễn Văn Sang

Phu trách PTN. CLMT

The lab's administrator

ThS. Nguyễn Thành Trung

Ho Chi Minh City, 27/09/2024 Viên Trưởng VIÊN Director MÔI TRƯỜNG ٧À TÀI NGUYÊ GS.TS Thanh Hải

SMEWW 3111B:2017

LFW 20.01

Lần ban hành: 03.20

Trang: 1/1

Figure S14. Result of ICP-MS analysis of 3MnCN after.

Table S1. SEM-EDS mapping and surface elemental composition (XPS) of 3MnCN; BET surface areas, pore volume, and average pore of CN and 3MnCN; Band gap energy (Eg) and reaction rate constant (k) of CN, 1MnCN, 3MnCN, and 5MnCN.

	% wt. Mn		Pore		Average		k		
Samplag			- S _{BET}	volume	pore	Eg		(10-3	D 2
Samples	EDS	XPS	(m^{2}/g)	(x 10 ⁻³	width	(eV)		min ⁻	K ²
				$cm^{3}/g)$	(nm)			1)	
CN	-	-	44	79	7.1	2.42	-0.29/2.13	0.5	0.9361
1MnCN	-	-	-	-	-	2.45	-	2.6	0.9979
3MnCN	0.1	0.1	8	17	8.3	2.39	-0.06/2.33	3.5	0.9961
5MnCN	-	-	-	-	-	2.49	-	2.1	0.9984

Table S2. Surface elemental compositions of the catalysts.

Catalyst (Sample)	Mn ²⁺ (%)	Mn ³⁺ (%)	Mn ⁴⁺ (%)
3MnCN	26.4	35.8	37.8

Table S3. Raw data for control experiments assessing the degradation of the SMX antibiotic using other MnO_x modified g-C₃N₄ samples. Experimental conditions: $[SMX]_0 = 15 \text{ mg } L^{-1}$, $[catalyst]_0 = 20 \text{ mg}$, pH = 5, V = 100 mL, light source: 40 W white LED lamp. C and C₀ (mol L⁻¹) represent the concentrations of SMX at the current time (t min) and the initial time (0 min), respectively. The standard deviation (σ) was calculated based on data from three samples

Sample	Time (min)	$C/C_0 \pm \sigma$	$-\ln(C/C_0)$
	-60	1 ± 0	
	0	1.04123 ± 0.01324	0
CN	60	1.07134 ± 0.0121	-0.02853
CN	120	1.03451 ± 0.00745	0.00642
	180	1.06063 ± 0.02022	-0.01836
	240	1.04053 ± 0.02317	8.39682E-4
	-60	1 ± 0	
	0	1.04395 ± 0.0764	0
1MnCN	60	0.8274 ± 0.03946	0.24359
TIVILICIN	120	0.59861 ± 0.02933	0.56733
	180	0.37225 ± 0.02065	1.04268
	240	0.24986 ± 0.01619	1.4419
	-60	1 ± 0	
	0	1.03292 ± 0.03091	0
2MnCN	60	0.47588 ± 0.04655	0.77938
SIVILICIN	120	0.23014 ± 0.02011	1.50486
	180	0.17858 ± 0.01916	1.76016
	240	0.15418 ± 0.00759	1.9028
	-60	1 ± 0	
	0	1.13153 ± 0.03498	0
5MnCN	60	0.97626 ± 0.03137	0.14762
JIVIIICIN	120	0.81096 ± 0.02225	0.33301
	180	0.63663 ± 0.04697	0.57747
	240	0.48044 ± 0.05854	0.86393

Table S4. Raw data for control experiments assessing the degradation of the SMX antibiotic at other pH conditions using 3MnCN catalyst. Experimental conditions: $[SMX]_0 = 15 \text{ mg } \text{L}^{-1}$, $[\text{catalyst}]_0 = 20 \text{ mg}$, V = 100 mL, light source: 40 W white LED lamp. C and C₀ (mol L⁻¹) represent the concentrations of SMX at the current time (t min) and the initial time (0 min), respectively. The standard deviation (σ) was calculated based on data from three samples.

Sample	Time (min)	$C/C_0 \pm \sigma$	$-\ln(C/C_0)$
	-60	1 ± 0	
	0	$\begin{array}{llllllllllllllllllllllllllllllllllll$	0
$\mu \Pi = 0$	60	0.858807 ± 0.055803	0.139946
рп – 9	120	0.798238 ± 0.067208	0.214467
	180	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.288979
	240	0.701295 ± 0.049817	0.343025
	-60	$\begin{array}{c c} C/C_0 \pm \sigma & -\ln(\\ 1 \pm 0 \\ 0.988051 \pm 0.06767 \\ 0.858807 \pm 0.055803 & 0.11 \\ 0.798238 \pm 0.067208 & 0.2 \\ 0.739968 \pm 0.049053 & 0.23 \\ 0.701295 \pm 0.049817 & 0.34 \\ 1 \pm 0 \\ 1.007844 \pm 0.05461 \\ 0.907956 \pm 0.043681 & 0.10 \\ 0.820211 \pm 0.018275 & 0.2 \\ 0.72055 \pm 0.020963 & 0.33 \\ 0.632697 \pm 0.066846 & 0.44 \\ 1 \pm 0 \\ 1.032923 \pm 0.030906 \\ 0.475878 \pm 0.04655 & 0.77 \\ 0.230144 \pm 0.020108 & 1.54 \\ 0.178582 \pm 0.019163 & 1.76 \\ 0.154178 \pm 0.007591 & 1.96 \\ 1 \pm 0 \\ 1.086844 \pm 0.077185 \\ 0.725153 \pm 0.029288 & 0.44 \\ 0.411477 \pm 0.043006 & 0.97 \\ 0.308843 \pm 0.034709 & 1.26 \\ 0.270841 \pm 0.015516 & 1.35 \\ \end{array}$	
	0	1.007844 ± 0.05461	0
pU = 7	60	0.907956 ± 0.043681	0.104092
рп – 7	120	0.820211 ± 0.018275	0.20479
	180	$C/C_0 \pm \sigma$ $-\ln(C/C_0)$ 1 ± 0 0.988051 ± 0.06767 0 0.858807 ± 0.055803 0.139946 0.798238 ± 0.067208 0.214467 0.739968 ± 0.049053 0.288979 0.701295 ± 0.049817 0.343025 1 ± 0 1.007844 ± 0.05461 0 0.907956 ± 0.043681 0.104092 0.820211 ± 0.018275 0.20479 0.72055 ± 0.020963 0.334513 0.632697 ± 0.066846 0.469528 1 ± 0 1.032923 ± 0.030906 0 0.475878 ± 0.04655 0.779377 0.230144 ± 0.020108 1.504856 0.178582 ± 0.019163 1.760155 0.154178 ± 0.007591 1.902802 1 ± 0 1.086844 ± 0.077185 0 0.725153 ± 0.029288 0.402997 0.411477 ± 0.043006 0.974404 0.308843 ± 0.034709 1.261838 0.270841 ± 0.015516 1.388666	0.334513
	240	0.632697 ± 0.066846	0.469528
	-60	1 ± 0	
	0	1.032923 ± 0.030906	0
DU - 5	60	0.475878 ± 0.04655	0.779377
$\Gamma\Pi = J$	120	0.230144 ± 0.020108	1.504856
	180	$e(min)$ $C/C_0 \pm 6$ $-in(C/C_0)$ 60 1 ± 0 0 0.988051 ± 0.06767 060 0.858807 ± 0.055803 0.139946 20 0.798238 ± 0.067208 0.214467 80 0.739968 ± 0.049053 0.288979 240 0.701295 ± 0.049817 0.343025 60 1 ± 0 0 1.007844 ± 0.05461 060 0.907956 ± 0.043681 0.104092 20 0.820211 ± 0.018275 0.20479 80 0.72055 ± 0.020963 0.334513 240 0.632697 ± 0.066846 0.469528 60 1 ± 0 0 1.032923 ± 0.030906 060 0.475878 ± 0.04655 0.779377 20 0.230144 ± 0.020108 1.504856 80 0.178582 ± 0.019163 1.760155 240 0.154178 ± 0.007591 1.902802 60 1 ± 0 0 1.086844 ± 0.077185 0 60 0.725153 ± 0.029288 0.402997 20 0.411477 ± 0.043006 0.974404 80 0.308843 ± 0.034709 1.261838 240 0.270841 ± 0.015516 1.388666	1.760155
	240		1.902802
	-60	1 ± 0	
	0	1.086844 ± 0.077185	0
nU - 2	60	0.725153 ± 0.029288	0.402997
рп – 3	120	0.411477 ± 0.043006	0.974404
	180	0.308843 ± 0.034709	1.261838
	240	0.270841 ± 0.015516	1.388666

Table S5. Raw data for control experiments assessing the degradation of the SMX antibiotic with other photocatalytic doses using 3MnCN sample. Experimental conditions: $[SMX]_0 = 15 \text{ mg } \text{L}^{-1}$, V = 100 mL, light source: 40 W white LED lamp. C and C₀ (mol L⁻¹) represent the concentrations of SMX at the current time (t min) and the initial time (0 min), respectively. The standard deviation (σ) was calculated based on data from three samples

Sample	Time (min)	$C/C_0 \pm \sigma$	$-\ln(C/C_0)$
	-60	1 ± 0	
	0	0.979092 ± 0.026516	0
No cotolyst	60	1.0002 ± 0.006777	-0.02168
ino catalyst	120	0.985879 ± 0.000769	-0.00728
	180	$C/C_0 \pm \sigma$ $-\ln(C/C_0)$ 1 ± 0 0.979092 ± 0.026516 0 1.0002 ± 0.006777 -0.02168 0.985879 ± 0.000769 -0.00728 0.985879 ± 0.015453 -0.00549 0.985099 ± 0.017033 -0.00634 1 ± 0 1.06178 ± 0.03047 0 0.88256 ± 0.02483 0.18486 0.72431 ± 0.03797 0.38345 0.58521 ± 0.05225 0.59925 0.45554 ± 0.05394 0.85272 1 ± 0 1.03292 ± 0.03091 0 0.47588 ± 0.04655 0.77938 0.23014 ± 0.02011 1.50486 0.17858 ± 0.01916 1.76016 0.15418 ± 0.00759 1.9028 1 ± 0 1.01288 ± 0.02224 0 0.80374 ± 0.02187 0.2314 0.54174 ± 0.03266 0.6274 0.37104 ± 0.0676 1.02067 0.28552 ± 0.04315 1.27679	
	240	0.985099 ± 0.017033	-0.00634
	-60	$\begin{array}{r llllllllllllllllllllllllllllllllllll$	
	0	1.06178 ± 0.03047	0
10	60	0.88256 ± 0.02483	0.18486
10 mg	120	0.72431 ± 0.03797	0.38345
	180	0.58521 ± 0.05225	0.59925
	240	0.45554 ± 0.05394	0.85272
	-60	1 ± 0	
	0	$\begin{array}{c c} C/C_0\pm\sigma & -\ln(C/C_0)\\ 1\pm0 &\\ 0.979092\pm0.026516 & 0\\ 1.0002\pm0.006777 & -0.0216\\ 0.985879\pm0.000769 & -0.0072\\ 0.98424\pm0.015453 & -0.0054\\ 0.985099\pm0.017033 & -0.0063\\ 1\pm0 &\\ 1.06178\pm0.03047 & 0\\ 0.88256\pm0.02483 & 0.18486\\ 0.72431\pm0.03797 & 0.38345\\ 0.58521\pm0.05225 & 0.59925\\ 0.45554\pm0.05394 & 0.85272\\ 1\pm0 &\\ 1.03292\pm0.03091 & 0\\ 0.47588\pm0.04655 & 0.77938\\ 0.23014\pm0.02011 & 1.50486\\ 0.17858\pm0.01916 & 1.76016\\ 0.15418\pm0.00759 & 1.9028\\ 1\pm0 &\\ 1.01288\pm0.02224 & 0\\ 0.80374\pm0.02187 & 0.2314\\ 0.54174\pm0.03266 & 0.6274\\ 0.37104\pm0.0676 & 1.02067\\ 0.28552\pm0.04315 & 1.27679\end{array}$	0
20	60	0.47588 ± 0.04655	0.77938
20 mg	120	0.23014 ± 0.02011	1.50486
	180	Time (min) $C/C_0 \pm \sigma$ $-\ln(C/C_0)$ -60 1 ± 0 0 0.979092 ± 0.026516 060 1.0002 ± 0.006777 -0.02168 120 0.985879 ± 0.000769 -0.00728 180 0.98424 ± 0.015453 -0.00634 -60 1 ± 0 0 1.06178 ± 0.03047 060 0.88256 ± 0.02483 0.18486 120 0.72431 ± 0.03797 0.38345 180 0.58521 ± 0.05225 0.59925 240 0.45554 ± 0.05394 0.85272 -60 1 ± 0 0 1.03292 ± 0.03091 060 0.47588 ± 0.04655 0.77938 120 0.23014 ± 0.02011 1.50486 180 0.17858 ± 0.01916 1.76016 240 0.15418 ± 0.02224 060 1 ± 0 0 1.01288 ± 0.02224 060 0.80374 ± 0.02187 0.2314 120 0.54174 ± 0.03266 0.6274 180 0.37104 ± 0.0676 1.02067 240 0.28552 ± 0.04315 1.27679	1.76016
	240		1.9028
	-60	1 ± 0	
	0	1.01288 ± 0.02224	0
20	60	0.80374 ± 0.02187	0.2314
50 mg	120	0.54174 ± 0.03266	0.6274
	180	0.37104 ± 0.0676	1.02067
	240	0.28552 ± 0.04315	1.27679

Table S6. Raw data for scavenger trapping experiments assessing the degradation of the SMX antibiotic using 3MnCN sample. Experimental conditions: $[SMX]_0 = 15 \text{ mg } L^{-1}$, $[catalyst]_0 = 20 \text{ mg}$, pH = 5, V = 100 mL, light source: 40 W white LED lamp. C and C₀ (mol L⁻¹) represent the concentrations of SMX at the current time (t min) and the initial time (0 min), respectively. The standard deviation (σ) was calculated based on data from three samples

Scavenger	Time (min)	$C/C_0 \pm \sigma$	Scavenger	Time (min)	$C/C_0 \pm \sigma$
	-60	1 ± 0		-60	1
	0	0.979227 ± 0.041439		0	1.0427 0.017849
V Cr O	60	0.901536 ± 0.032514		60	0.63046 0.05273
$\mathbf{K}_2\mathbf{C}\mathbf{I}_2\mathbf{O}_7$	120	0.908846 ± 0.034115	IDA	120	0.337111 0.054284
	180	0.871698 ± 0.035059		180	$\begin{array}{c c} \min) & C/C_0 \pm \sigma \\ & 1 \\ 1.0427 \ 0.017849 \\ 0.63046 \ 0.05273 \\ 0.337111 \ 0.054284 \\ 0.262858 \ 0.032863 \\ 0.234774 \ 0.03058 \\ \hline 1 \\ 0.995192 \ 0.036679 \\ 1.104673 \ 0.052611 \\ 1.097346 \ 0.071742 \\ 1.122792 \ 0.099219 \\ 1.142558 \ 0.104452 \\ \end{array}$
	240	0.810111 ± 0.046817		240	
	-60	1 ± 0		-60	1
	0	1.083876 ± 0.012506		0	0.995192 0.036679
$N_{\rm e} \subset O$	60	0.627045 ± 0.004858	PO	60	1.104673 0.052611
$\operatorname{Na}_2\operatorname{C}_2\operatorname{O}_4$	120	0.34797 ± 0.023054	БŲ	120	1.097346 0.071742
	180	0.247658 ± 0.019485		180	1.122792 0.099219
	240	0.215765 ± 0.026142		240	1.142558 0.104452

		Acute to	. L ⁻¹)	L^{-1}) Chronic toxicity (mg. L^{-1})			Hazard	
Compo	m/z		Daphnid	Green	Fish	Daphni	Green	categor
unds		Fish (LC_{50})	(LC_{50})	Algea	(ChV)	d (ChV)	Algea	y
			(,	(EC_{50})			(ChV)	_
SMX	253	893.69	2.10	9.24	1.10	0.13	13.96	Toxic
P1	288	8446.54	2.21	20.22	4.87	0.333	26.68	Toxic
								Not
P2	190	5822.62	14.96	262.29	1473.69	5.08	229.05	Harmfu
								1
D2	00	112 12	0.74	2.64	2 50	0.05	5 28	Harmfu
Γ3	77	443.43	0.74	5.04	2.39	0.05	5.58	1
P4	156	18 21	179.06	_	10.93	69 33	0.62	Harmfu
17	150	10.21	177.00		10.75	07.55	0.02	1
P5	109	4.81	0.55	94.01	0.62	0.07	25.66	Toxic
D6	56							Harmfu
10	50	-	-	-	-	-	-	1
P7	12	67.23	37.06	24.41	634	3 33	5 98	Harmfu
1 /	72	07.23	37.00	24.41	0.54	5.55	5.90	1
								Not
P8	74	255.91	2252.58	1591.09	147.85	172.85	272.59	Harmfu
								1

Table S7. Toxicity of SMX and its intermediates using the ECOSAR program^a.

^aThe predicted toxicity values are classified according to the system established by the Globally Harmonized System of Classification and Labelling of Chemicals (GHS) (United Nations, 2011). Not harmful: $LC_{50}/EC_{50}/ChV$ greater than 100 mg. L^{-1} ; harmful: 10 mg. $L^{-1} < LC_{50}/EC_{50}/ChV < 100$ mg. L^{-1} ; toxic: 1 mg. $L^{-1} < LC_{50}/EC_{50}/ChV < 10$ mg. L^{-1} ; very toxic: $LC_{50}/EC_{50}/ChV < 1$ 1 mg. L^{-1} . The lowest acute toxicity values between and within the different trophic levels (fish, daphnid, and green algae) were used to define the appropriate hazard category of the compounds.

Sample	Amount	Pollutants	Concentratio n and Usage	Power source	Time	Efficienc y	Ref.
MnOx/g- C ₃ N ₄	20 mg	Sulfametho xazole	15 mg L ⁻¹ , 100 mL	White light LED lamp, 40W	240 min	85%	This wor k
2D-2D g- C ₃ N ₄ /Mn O ₂	50 mg	Rhodamine (RhB)	10 mg L ⁻¹ , 50 mL	Xenon lamp, 300 W	60 min	91.3%	1
Mn- adsorbed g-C ₃ N ₄	200 mg	Rhodamine (RhB)	4 mg L ⁻¹ , 100 mL	Xe-lamp, 300 W	160 min	99%	2
g-C ₃ N ₄ - Mn-H	50 mg	Rhodamine (RhB)	10 mg L ⁻¹ , 100 mL	Xe arc lamp, 300W	60 min	88.9%	3
doped g- C_3N_4 nanoribb	50 mg	Methylene Blue (MB)	10 mg L ⁻¹ , 200 mL	Xe-lamp, 300 W	180 min	96%	4
Mn/O co-doped g-C ₃ N ₄	20 mg	Malachite green (MG)	20 mg L ⁻¹ , 50 mL	Xenon lamp, 350 W	30 min	91.7%	5
C_3N_4/dia tomite/M nO_2	30 mg	Rhodamine (RhB)	10 mg L ⁻¹ , 100 mL	Xe lamp, 300 W	50 min	94%	6
$MnO_x/g-C_3N_4$	20 mg	Methyl orange (MO)	20 mg L ⁻¹ , 50 mL	Xenon lamp, 300 W	20 min	94%	7
$MnO_2/g-C_3N_4$	50 mg	Rhodamine (RhB)	20 mg L ⁻¹ , 50 mL	Xenon lamp, 300 W	100 min	99%	8
$MnO_2/g-C_3N_4$	50 mg	Methylene Blue (MB)	20 mg L ⁻¹ , 100 mL	Xe lamp, 500 W	150 min	94%	9

Table S8. Summary of the photocatalytic properties of other $MnO_x/g-C_3N_4$ nanostructures towardsdegradation of pollutants.

References

- 1 P. Xia, B. Zhu, B. Cheng, J. Yu and J. Xu, ACS Sustain. Chem. Eng., 2018, 6, 965–973.
- 2 W. Zhang, Z. Zhang, S. Kwon, F. Zhang, B. Stephen, K. K. Kim, R. Jung, S. Kwon, K.-B. Chung and W. Yang, *Appl. Catal. B Environ.*, 2017, **206**, 271–281.
- 3 J.-C. Wang, C.-X. Cui, Y. Li, L. Liu, Y.-P. Zhang and W. Shi, *J. Hazard. Mater.*, 2017, **339**, 43–53.
- 4 J.-C. Wang, C.-X. Cui, Q.-Q. Kong, C.-Y. Ren, Z. Li, L. Qu, Y. Zhang and K. Jiang, *ACS Sustain. Chem. Eng.*, 2018, **6**, 8754–8761.
- 5 X. Xu, S. Wang, T. Hu, X. Yu, J. Wang and C. Jia, *Dye. Pigment.*, 2020, **175**, 108107.
- 6 R.-R. Chen, Q.-F. Ren, Y.-X. Liu, Y. Ding, H.-T. Zhu, C.-Y. Xiong, Z. Jin and W.-C. Oh, *J. Korean Ceram. Soc.*, 2021, **58**, 548–558.
- 7 W. Gong, Q. Wu, L. Ma, W. Zhang, X. Li, A. Xu and S. Zhao, *Colloids Surfaces A Physicochem*. *Eng. Asp.*, 2023, **659**, 130812.
- 8 K. Ahmad, A. Chaudhary, W. Raza, A. Alsulmi and H. Kim, *Opt. Mater. (Amst).*, 2023, **140**, 113857.
- 9 M. Abdullah, S. D. Alahmari, F. F. Alharbi, S. R. Ejaz, M. S. Waheed, S. Aman, A. G. Al-Sehemi, A. M. A. Henaish, Z. Ahmad and H. M. T. Farid, *J. Mater. Sci. Mater. Electron.*, 2024, **35**, 517.