Supporting Info file

for

Synthesis and Characterization of Carbonyl Functionalized

Organotellurium(IV) Derivatives

Puspendra Singh,*a Mariya Khan,^b Andrew Duthie,^c Ray J. Butcher^d

^aDepartment of Chemistry, Dr. Shakuntala Misra National Rehabilitation University, Lucknow, 226017, India.

^bDepartment of Chemistry, University of Lucknow, Lucknow, 226007, India.

^cDepartment of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India

^dDepartment of Chemistry, Howard University, Washington DC20059, USA

*Corresponding Author, E-mail address: pushpendrasingh0612@gmail.com

INDEX

S.No.	Content	
		No.
	Index	S1-S3
1	Table S1. Crystal Data and Structure Refinement Details of 1, 4 and 5	S4
2	Table S2. Hydrogen bonds for 1, 4 and 5 (Å and °).	S5
3	Fig. S1 Crystal lattices of compound 1 showing helical structure through	S6
	C-HCl (green) hydrogen bonding interactions.	
4	Fig. S2 Crystal lattices of compound 1 showing O-HO (red), C-HCl	S7
	and (green) hydrogen bonding interactions and TeO (blue) & TeCl	
	(black) secondary bonding interaction.	
5	Fig. S3 Crystal lattices of compound 1 showing π π (brown)	S7
	interaction.	
6	Fig. S4. Centrosymmetric dimeric unit in the crystal lattices of compound	S8
	1 through C-HCl (green) hydrogen bonding interactions.	
7	Fig. S5. Centrosymmetric dimeric unit in the crystal lattices of compound	S8
	4 through O-HO (purple) hydrogen bonding interactions, TeO (blue)	
	secondary bonding interaction.	
8	Fig. S6. Supramolecular architecture along c axis of compound 4.	S9

9	Fig. S7. Supramolecular architecture along c axis of compound 4 .	S9
10	Fig. S8-S10 Supramolecular architectures in the crystal lattices of	S10-
10	compound 5.	S11
11	Fig. S11 ¹ H NMR spectrum of compound	<u>S12</u>
	$Ph[PhC(OH)CHC(O)CH_2]TeCl_2 (1) in CDCl_2$	
12	Fig S12 Expanded aryl region of ¹ H NMR spectrum of compound	S13
12	Ph[PhC(OH)CHC(O)CH_]TeCl_ (1) in CDCl_	515
13	Fig. S13 ¹³ C NMR spectrum of compound	S14
15	Ph[PhC(OH)CHC(O)CH_]TeCl_ (1) in CDCl_	514
1/	Fig. S14 Expanded and region of ¹³ C NMR spectrum of compound	\$15
17	Ph[PhC(OH)CHC(O)CH_]TeCl_ (1) in CDCl_	515
15	Fig. S15 ¹²⁵ Ta NMP spectrum of compound	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>
15	PhiPhC (OH)CHC(O)CH $IT_{2}Cl_{1}(1)$ in CDCl	510
16	Fig. S16 ULNMD supertrum of compound n	\$17
10	Fig. 510 ^c H NMK spectrum of compound <i>p</i> -	517
17	$[101[PIIC(OH)CHC(O)CH_2] [10CI_2(2) III CDCI_3.]$	610
1/	Fig. S1 / Expanded aryl region of 'H NMR spectrum of compound <i>p</i> -	518
10	$\frac{10[PnC(OH)CHC(O)CH_2]1eCl_2(2) \text{ in } CDCl_3.}{1}$	
18	Fig. S18 ¹³ C NMR spectrum of compound p -	819
10	$Tol[PhC(OH)CHC(O)CH_2] TeCl_2 (2) in CDCl_3.$	
19	Fig. S19 Expanded aryl region of 13 C NMR spectrum of compound <i>p</i> -	S20
	$Tol[PhC(OH)CHC(O)CH_2]TeCl_2 (2) \text{ in } CDCl_3.$	
20	Fig. S20 ¹²⁵ Te NMR spectrum of compound <i>p</i> -	S21
	$Tol[PhC(OH)CHC(O)CH_2]TeCl_2 (2) in CDCl_3.$	
21	Fig. S21 ¹ H NMR spectrum of compound <i>1</i> -	S22
	$Nap[PhC(OH)CHC(O)CH_2]TeCl_2 (3) in CDCl_3.$	
22	Fig. S22 Expanded aryl region of ¹ H NMR spectrum of compound <i>1</i> -	S23
	$Nap[PhC(OH)CHC(O)CH_2]TeCl_2 (3) in CDCl_3.$	
23	Fig. S23 ¹³ C NMR spectrum of compound <i>1</i> -	S24
	$Nap[PhC(OH)CHC(O)CH_2]TeCl_2 (3) in CDCl_3.$	
24	Fig. S24 Expanded aryl region of ¹³ C NMR spectrum of compound <i>1</i> -	S25
	$Nap[PhC(OH)CHC(O)CH_2]TeCl_2$ (3) in CDCl ₃ .	
25	Fig. S25 ¹²⁵ Te NMR spectrum of compound <i>1</i> -	S26
	Nap[PhC(OH)CHC(O)CH ₂]TeCl ₂ (3) in CDCl ₃ .	
26	Fig. S26 ¹ H NMR spectrum of compound	S27
	$Mes[PhC(OH)CHC(O)CH_2]TeCl_2 (4).$	
27	Fig. S27 Expanded aryl region of ¹ H NMR spectrum of compound	S28
	$Mes[PhC(OH)CHC(O)CH_2]TeCl_2$ (4).	
28	Fig. S28 ¹³ C NMR spectrum of compound	S29
	$Mes[PhC(OH)CHC(O)CH_2]TeCl_2$ (4) in CDCl ₃ .	
29	Fig. S29 Expanded aryl region of ¹³ C NMR spectrum of compound	S30
	$Mes[PhC(OH)CHC(O)CH_2]TeCl_2$ (4) in CDCl ₃ .	
30	Fig. S30 ¹²⁵ Te NMR spectrum of compound	S31
	$Mes[PhC(OH)CHC(O)CH_2]TeCl_2$ (4) in CDCl ₃ .	
31	Fig. S31 ¹ H NMR spectrum of compound	S32
	$Mes[CH_3(OH)CHC(O)CH_2]TeCl_2$ (5).	
32	Fig. S32 Expanded aryl region of ¹ H NMR spectrum of compound	S33
	Mes[CH ₃ (OH)CHC(O)CH ₂]TeCl ₂ (5).	
33	Fig. S33 ¹³ C NMR spectrum of compound	S34
	$Mes[CH_3(OH)CHC(O)CH_2]TeCl_2 (5) in CDCl_3.$	
		1

34	Fig. S34 Expanded alkyl region of ¹³ C NMR spectrum of compound	S35
	$Mes[CH_3(OH)CHC(O)CH_2]TeCl_2$ (5) in CDCl ₃ .	
35	Fig. S35 ¹ H NMR spectrum of compound	S36
	$Mes[CH_3(OH)CHC(O)CH_2]TeBr_2$ (6).	
36	Fig. S36 Expanded aryl region of ¹ H NMR spectrum of compound	S37
	$Mes[CH_3(OH)CHC(O)CH_2]TeBr_2$ (6).	
37	Fig. S37 Expanded aryl region of ¹³ C NMR spectrum of compound	S38
	$Mes[CH_3(OH)CHC(O)CH_2]TeBr_2$ (6) in CDCl ₃ .	
38	Fig. S38 ¹²⁵ Te NMR spectrum of compound	S39
	$Mes[CH_3(OH)CHC(O)CH_2]TeBr_2$ (6) in CDCl ₃ .	

	1	4	5
empirical formula	C ₁₆ H ₁₄ Cl ₂ O ₂ Te	$C_{19}H_{20}Cl_2O_2Te$	$C_{14}H_{18}Cl_2O_2Te$
formula mass (g mol ⁻¹)	436.77	478.85	416.78
Temp (K)	100(2)	123(2)	100(2)
Wavelength, λ (Å)	0.710 73	0.710 73	0.710 73
cryst syst	monoclinic	monoclinic	monoclinic
cryst size (mm ³)	0.55 x 0.10 x 0.09	0.77 x 0.55 x 0.35	0.44 x 0.27 x 0.23
space group	$P2_{1}/c$	$P2_{1}/c$	$P2_1$
<i>a</i> (Å)	13.395(3)	8.7845(4)	8.389(5)
<i>b</i> (Å)	13.251(3)	19.5434(8)	12.312(5)
<i>c</i> (Å)	9.036(2)	11.0751(5)	8.461(5)
α (deg)	90	90	90.000(5)
β (deg)	98.213(4)	97.679(4)	116.320(5)
γ (deg)	90	90	90.000(5)
Volume (Å ³)	1587.5(7)	1884.3(1)	783.3(7)
Z	4	4	2
ρ_{calcd} (Mg m ³)	1.827	1.688	1.767
abs coeff (mm ⁻¹)	2.211	1.871	2.235
F(000)	848	944	408
θ range (deg)	2.17-32.17	3.13-40.86	2.69-41.13
index ranges	$-19 \le h \le 18$,	$-15 \le h \le 16$,	$-14 \le h \le 15$,
-	$-18 \le k \le 19$,	$-35 \le k \le 27$,	$-22 \le k \le 22$,
	$-13 \le 1 \le 12$	$-20 \le 1 \le 19$	- 15 ≤ 1 ≤ 11
no. of rflns collected	12748	24302	11130
no. of indep rflns	5046	11990	7370
	(R(int) = 0.0344)	(R(int) = 0.0256)	(R(int) = 0.0295)
completeness to θ max (%)	99.4	99.8	99.5
abs cor	semiempirical	analytical	analytical
	from equivalents		
max. min. transmission	0.7464, 0.4720	0.593, 0.434	0.733, 0.564
refinement method	full-matrix least	full-matrix least	full-matrix least
	squares on F ²	squares on F ²	squares on F ²
No. of data/restraints/	5046/0/194	11990/0/224	7370/1/179
parameters			
goodness of fit on F^2	1.040	1.088	1.019
final R indices $[I > 2, \sigma(I))$	R1 = 0.0224.	R1 = 0.0345.	R1 = 0.0292.
	wR2 = 0.0570	wR2 = 0.0652	wR2 = 0.0569
R indices (all data)	R1 = 0.0255.	R1 = 0.0515,	R1 = 0.0344.
	wR2 = 0.0586	wR2 = 0.0707	wR2 = 0.0601
largest diff peak/hole (e Å ⁻	1.013/-0.549	0.687/-1.097	1.285/-0.985
3)			
<i>R</i> indices (all data) largest diff peak/hole (e Å ⁻ ³)	R1 = 0.0255, wR2 = 0.0586 1.013/-0.549	R1 = 0.0515, wR2 = 0.0707 0.687/-1.097	R1 = 0.0344, wR2 = 0.0601 1.285/-0.985

Table S1. Crystal Data and Structure Refinement Details of 1, 4 and 5

	D-H···A	d(D-H)	d(H···A)	d(D····A)	∠(DHA)	Symmetry
1	O(2)-H(2)···O(1)	0.80(3)	1.824(3)	2.559(2)	154(3)	
	C(9)-H(9A)···Cl(1)	0.95	2.667(1)	3.541(2)	153.1	x,-y+1/2,z-1/2
	C(6)-H(5A)···Cl(1)	0.95	2.785(1)	3.261(2)	111.9	-1+x, 0.5-y, -1.5+z
	C(9)-H(9A)···Cl(1)	0.95	2.667(1)	3.541(2)	153.1	1-x, 0.5+y, 0.5-z
	C(15)-H(15A)···Cl(2)	0.95	2.861(1)	3.783(2)	163.7	-1-x, y, -1+z
	C(2)-H(2A)····Cl(2)	0.95	2.853(1)	3.302(2)	110.1	1-x, 1-y, 1+z
	C(13)-H(13A)···O(1)	0.95	2.427(1)	3.339(2)	160.9	1-x, 1-y, 1-z
4	O(2)-H(2)···O(1)	0.75(2)	1.854(2)	2.541(1)	151(3)	
	O(2)-H(2)···O(1)	0.75(2)	2.419(2)	2.884(2)	121(2)	-x+1,-y+1,-z+1
	C(9)-H(9B)···Cl(2)	0.98	2.881(0)	3.629(2)	133.8	1 -x, 1-y. 1-z
	C(7)-H(7B)···Cl(1)	0.98	2.956(0)	3.741(2)	137.9	1 -x, 1-y. 1-z
	C(17)-H(17A)-Cl(1)	0.95	2.902(0)	3.717(2)	144.6	1 -x, 1-y. 1-z
5	O(2)-H(2)···O(1)	0.84	1.744(3)	2.498(3)	148.4	
	C(12)-H(12)····Cl(2)	0.95	2.911(1)	3.704(3)	141.8	1 -x+1,y-1/2,-z+1
	C(7)-H(7B)····Cl(2)	0.95	2.695(1)	3.531(3)	143.6	1-x, -0.5+y, 2-z
	C(14)-H(14A)···O(1)	0.98	2.522(2)	3.501(4)	176.4	-x+1,y-1/2,-z
	C(14)-H(14B)···Cl(1)	0.98	2.843(1)	3.803(4)	166.8	-x+2,y-1/2,-z+1
	C(9)-H(9A)···Cl(1)	0.98	2.872(1)	3.749(3)	149.6	-x+2,y-1/2,-z+1
	C(9)-H(9C)···Cl(1)	0.98	2.778(1)	3.462(3)	127.5	-x+2,y-1/2,-z+1

Table S2. Hydrogen bonds for 1, 4 and 5 (Å and °).

Fig. S1 Crystal lattices of compound **1** showing helical structure through C-H---Cl (green) hydrogen bonding interactions.

Fig. S2 Crystal lattices of compound **1** showing O-H---O (red), C-H---Cl and (green) hydrogen bonding interactions and Te---O (blue) & Te---Cl (black) secondary bonding interaction.

Fig. S3 Crystal lattices of compound 1 showing π --- π (brown) interaction.

Fig. S4. Centrosymmetric dimeric unit in the crystal lattices of compound **1** through C-H---Cl (green) hydrogen bonding interactions.

Fig. S5. Centrosymmetric dimeric unit in the crystal lattices of compound **4** through O-H---O (purple) hydrogen bonding interactions, Te---O (blue) secondary bonding interaction.

Fig. S6. Centrosymmetric dimeric unit in the crystal lattices of compound **4** through C-H---Cl (green) hydrogen bonding interactions.

Fig. S7. Supramolecular architecture along c axis of compound 4.

Fig. S8. Supramolecular architectures in the crystal lattices of compound **5** through O-H---O (purple) and C-H---Cl (green) hydrogen bonding interactions and Te---O (blue) secondary bonding interaction.

Fig. S9. Supramolecular architectures in the crystal lattices of compound **5** through O-H---O (purple) and C-H---Cl (green) hydrogen bonding interactions.

Fig. S10. Supramolecular architectures in the crystal lattices of compound **5** through O-H---O (purple) and C-H---Cl (green) hydrogen bonding interactions.

Fig. S11. ¹H NMR spectrum of compound Ph[PhC(OH)CHC(O)CH₂]TeCl₂ (1) in CDCl₃.

Fig. S12. Expanded aryl region of ¹H NMR spectrum of compound Ph[PhC(OH)CHC(O)CH₂]TeCl₂ (1) in CDCl₃.

Fig. S13. ¹³C NMR spectrum of compound Ph[PhC(OH)CHC(O)CH₂]TeCl₂ (1) in CDCl₃.

Fig. S14. Expanded aryl region of ¹³C NMR spectrum of compound Ph[PhC(OH)CHC(O)CH₂]TeCl₂ (1) in CDCl₃.

Fig. S15. ¹²⁵Te NMR spectrum of compound Ph[PhC(OH)CHC(O)CH₂]TeCl₂ (1) in CDCl₃.

Fig. S16. ¹H NMR spectrum of compound *p*-Tol[PhC(OH)CHC(O)CH₂]TeCl₂ (2) in CDCl₃.

Fig. S17. Expanded aryl region of ¹H NMR spectrum of compound *p*-Tol[PhC(OH)CHC(O)CH₂]TeCl₂ (**2**) in CDCl₃.

Fig. S18. ¹³C NMR spectrum of compound *p*-Tol[PhC(OH)CHC(O)CH₂]TeCl₂ (2) in CDCl₃.

Fig. S19. Expanded aryl region of ¹³C NMR spectrum of compound *p*-Tol[PhC(OH)CHC(O)CH₂]TeCl₂ (**2**) in CDCl₃.

Fig. S20. ¹²⁵Te NMR spectrum of compound p-Tol[PhC(OH)CHC(O)CH₂]TeCl₂ (**2**) in CDCl₃.

Fig. S21. ¹H NMR spectrum of compound *1*-Nap[PhC(OH)CHC(O)CH₂]TeCl₂ (3) in CDCl₃.

Fig. S22. Expanded aryl region of ¹H NMR spectrum of compound *1*-Nap[PhC(OH)CHC(O)CH₂]TeCl₂ (**3**) in CDCl₃.

Fig. S23. ¹³C NMR spectrum of compound *1*-Nap[PhC(OH)CHC(O)CH₂]TeCl₂ (**3**) in CDCl₃.

Fig. S24. Expanded aryl region of ¹³C NMR spectrum of compound *1*-Nap[PhC(OH)CHC(O)CH₂]TeCl₂ (**3**) in CDCl₃.

Fig. S25. ¹²⁵Te NMR spectrum of compound *1*-Nap[PhC(OH)CHC(O)CH₂]TeCl₂ (**3**) in CDCl₃.

Fig. S26. ¹H NMR spectrum of compound Mes[PhC(OH)CHC(O)CH₂]TeCl₂ (4).

Fig. S27. Expanded aryl region of ¹H NMR spectrum of compound Mes[PhC(OH)CHC(O)CH₂]TeCl₂ (**4**).

Fig. S28. ¹³C NMR spectrum of compound Mes[PhC(OH)CHC(O)CH₂]TeCl₂ (4) in CDCl₃.

Fig. S29. Expanded aryl region of ¹³C NMR spectrum of compound Mes[PhC(OH)CHC(O)CH₂]TeCl₂ (**4**) in CDCl₃.

Fig. S30. ¹²⁵Te NMR spectrum of compound Mes[PhC(OH)CHC(O)CH₂]TeCl₂ (4) in CDCl₃.

Fig. S31. ¹H NMR spectrum of compound Mes[CH₃(OH)CHC(O)CH₂]TeCl₂ (**5**).

Fig. S32. Expanded aryl region of ¹H NMR spectrum of compound Mes[CH₃(OH)CHC(O)CH₂]TeCl₂ (**5**).

Fig. S33. ¹³C NMR spectrum of compound Mes[CH₃(OH)CHC(O)CH₂]TeCl₂ (5) in CDCl₃.

Fig. S34. Expanded alkyl region of ¹³C NMR spectrum of compound Mes[CH₃(OH)CHC(O)CH₂]TeCl₂ (**5**) in CDCl₃.

Fig. S35. ¹H NMR spectrum of compound Mes[CH₃(OH)CHC(O)CH₂]TeBr₂ (6).

Fig. S36. ¹H NMR spectrum of compound Mes[CH₃(OH)CHC(O)CH₂]TeBr₂ (6).

Fig. S37. Expanded aryl region of ¹³C NMR spectrum of compound Mes[CH₃(OH)CHC(O)CH₂]TeBr₂ (**6**) in CDCl₃.

Fig. S38. ¹²⁵Te NMR spectrum of compound Mes[CH₃(OH)CHC(O)CH₂]TeBr₂ (**6**) in CDCl₃.