Supplementary Information

Enhancing Capacity in Mn-rich Cathode by Kinetics Control for Lithium-ion Batteries

Jue Wu^{1*}, Weiping Gao¹, Qiling Wen¹, Zhipeng Zhuang¹, Liangkui Zhu²

¹ School of Life Sciences, Zhuhai College of Science and Technology, Zhuhai

519041, China

²State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, Jilin University, Changchun 130012, China

E-mail: jwu@zcst.edu.cn

Figure S1 XRD patterns of LMO material. Histogram: PDF patterns for Li₂MnO₃ (PDF84-1634). Insert: SEM image of LMO material.

Figure S2 XRD patterns of LMO series materials.

Figure S3 (**a**, **b**) The charge-discharge curves, and (**c**, **d**) corresponding dQ/dV curves for LMO and LMLO electrodes at the 1st, 10th, 20th, 50th, and 100th cycle.

Figure S4 The normalized charge-discharge profiles for (a) LMO, and (b) LMLO materials.

Figure S5 The equivalent circuit for EIS data.

Figure S6 The variable temperature EIS data for (a) LMO, and (b) LMLO.

Material	Atomic ratio of Mn : La
La0.01	99.02 : 1.01
La0.03	97.01 : 3.02
La0.05	95.02 : 5.02
LMLO	196.95 : 3.03

Table S1 SEM-EDS quantity analysis table weight fraction of La0.01, La0.03, La0.05and LMLO.

Table S2 Rietveld refined crystallographic parameters of LMO material by the XRD patterns.

Material	phase	a (Å)	b (Å)	c (Å)	α (°)	β (°)	γ (°)	$V(Å^3)$
LMO	Li ₂ MnO ₃	4.9276	8.5132	5.0132	90.000	108.812	90.000	199.069

 Table S3 Atoms occupancy of LMO material from Rietveld refinement by the XRD

 patterns.

Material	Phase	Atom	Site	X	У	Z	Occ.
LMO Li ₂ MnO ₃		Mn1	4g	0.00000	0.17346	0.00000	1.000
		Lil	2b	0.00000	0.50000	0.00000	1.000
	L: MrO	Li2	2c	0.00000	0.00000	0.50000	1.000
	L1 ₂ IVIIIO ₃	Li3	4h	0.00000	0.72850	0.50000	1.000
		01	4i	0.23990	0.00000	0.21169	1.000
		02	8j	0.25960	0.33724	0.23159	1.000

Sample	Temperature (°C)	$R_{ct}(\Omega)$	
	30.0	2.842×10 ⁵	
LMO	35.0	9.624×10 ⁴	
	40.0	5.317×10 ⁴	
	45.0	3.583×10 ⁴	
	50.0	2.524×10 ⁴	
	55.0	1.888×10^{4}	
	60.0	7.232×10 ³	
LMLO	30.0	138.2	
	35.0	120.0	
	40.0	84.31	
	45.0	68.45	
	50.0	39.26	
	55.0	32.11	
	60.0	26.50	

Table S4 Fitting results of EIS at varied temperatures for LMO and LMLO electrodes.

Note S1 The calculation formula for E_a value from varied temperature EIS data.

$$\log \frac{1}{R_{ct}} = -\frac{E_a}{2.303RT} + z$$