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TEXT S1 Description of Bayesian Optimization

1. What is Bayesian Optimization?

Bayesian Optimization is a sequential optimization strategy used to find the best parameters of a model by 

building a probabilistic model, typically a Gaussian Process, of the objective function. Instead of evaluating 

all possible combinations of parameters, Bayesian optimization selects parameter values based on a balance 

between exploring unknown regions of the parameter space and exploiting regions known to have high 

performance. By iteratively refining the model based on prior evaluations, it efficiently finds the optimal 

configuration of hyperparameters, reducing computational cost compared to grid or random search methods.

2. Parameter Search Space in Bayesian Optimization

In my models, we used different parameter ranges for Bayesian optimization across various machine 

learning algorithms to fine-tune their performance:

RF: The number of estimators (n_estimators) was searched between 100 and 500, maximum tree depth 

(max_depth) between 10 and 50, and minimum samples required to split a node (min_samples_split) from 2 

to 10.

XGB: The search space included n_estimators from 50 to 300, learning rate (learning_rate) from 0.01 to 

0.3, and maximum depth (max_depth) between 3 and 9.

SVM: The regularization parameter C was searched between 0.1 and 100 on a logarithmic scale, with 

gamma tested for both "scale" and "auto" values, and kernel functions tested between 'linear' and 'rbf'.

KNN: The number of neighbors (n_neighbors) was varied from 3 to 9, with weighting schemes (weights) 

between 'uniform' and 'distance'.

DTree: The max_depth was explored between 10 and 90, and min_samples_split from 2 to 10.

ANN: The hidden layer sizes (hidden_layer_sizes) were tested with combinations of (50,), (100,), (50, 50), 

and (100, 50), activation functions (activation) between 'relu' and 'tanh', solvers (solver) between 'adam' and 

'lbfgs', and learning rates (learning_rate) between 'constant' and 'adaptive'.

EBM: The max_bins was set between 64 and 256, max_leaves between 3 and 7, and learning_rate from 

0.01 to 0.1.

These ranges were designed to explore diverse settings and ensure the optimal configuration of each 
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algorithm is efficiently found through Bayesian optimization.
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TEXT S2 Description of SHAP

SHAP (Shapley Additive Explanations) is grounded in game theory and leverages Shapley values to 

explain the contribution of each feature in a model's predictions. The core idea is to distribute the prediction 

among the input features fairly, based on their contribution to the final output. Below are some key equations 

and concepts that underlie SHAP:

1. Shapley Value Formula

For a feature i, the Shapley value is calculated as:∅𝑖

∅𝑖= ∑
𝑆 ⊆ 𝑁 ∖ {𝑖}

|𝑆|!(|𝑁|−|𝑆|−1)!
|𝑁|!

[𝑓(𝑆 ∪ {𝑖})−𝑓(𝑆)]

Where: N is the set of all features;S is a subset of N that does not contain feature i; f(S) represents the 

prediction of the model using only the features in subset S; f(S∪{i})−f(S) calculates the marginal 

contribution of feature i to the subset S.

This equation ensures that each feature’s contribution is fairly attributed by considering all possible 

combinations of feature subsets.

2. Additive Feature Attribution

SHAP falls under additive feature attribution methods, where the explanation model is assumed to be 

linear with respect to the contributions of the features. The additive nature can be expressed as:

𝑓(𝑥)= ∅0 +
𝑀

∑
𝑖= 1

∅𝑖

Where: f(x) is the output of the machine learning model for input x;  is the base value (i.e., the mean ∅0

prediction across all samples);  represents the Shapley value of feature iii, which indicates the contribution ∅

of feature i to the model prediction for the specific input x.

3. Efficiency, Symmetry, and Additivity

The Shapley values satisfy several important properties, which make them suitable for explaining machine 
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learning models:

Efficiency: The sum of all feature contributions ϕi\phi_iϕi equals the difference between the prediction 

and the base value.

Symmetry: If two features contribute equally to a model, their Shapley values will be identical.

Additivity: The Shapley values for multiple models can be combined to represent the ensemble.

4. Approximation for Large Models

For complex machine learning models, exact computation of Shapley values using the above formula can 

be computationally expensive. Therefore, approximate methods like KernelSHAP and TreeSHAP have been 

developed to compute Shapley values more efficiently.

KernelSHAP: A model-agnostic approach that approximates the Shapley values using weighted linear 

regression.

TreeSHAP: A specialized algorithm for decision trees, which allows for the efficient computation of exact 

Shapley values in tree-based models like random forests and gradient-boosting machines.

In summary, SHAP provides a robust, mathematically grounded approach for interpreting model 

predictions, ensuring transparency in machine learning through a fair distribution of feature contributions 

based on Shapley values. These formulas and principles make SHAP a powerful tool for model 

interpretability.
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TEXT S3 Derivations and Assumptions of Convective and Diffusive Factors

1. Derivation and Assumptions for Convective Factor (Equation 3)
Equation (3) represents the change in pollutant concentration due to the convective process. Convection 
describes the transport of pollutants driven by fluid movement, and the change in concentration over time 
can be approximated by the time derivative of concentration:

𝐶𝑆=
∂𝐶
∂𝑡

Where: Cs is the convective factor, representing the rate of change in pollutant concentration over time; C is 
the pollutant concentration; T is time.
Assumptions:
Assumption 1: The convective process is steady, with pollutant transport dominated by the macroscopic 
movement of groundwater, and microscopic diffusion effects are neglected.
Assumption 2: The pollutant concentration changes over time can be approximated as a steady process, 
ignoring short-term fluctuations.
This assumption simplifies the description of the convective process, allowing it to capture the time-related 
changes in pollutant transport with fewer parameters.

2. Derivation and Assumptions for Diffusive Factor (Equation 4)
Equation (4) describes how the vertical concentration gradient of pollutants is calculated during the diffusion 
process. Based on Fick’s law of diffusion, the rate of diffusion can be expressed as the gradient of 
concentration with respect to depth:

𝐷𝑠=
∂𝐶𝑛
∂𝑧

=
𝐶𝑛−𝐶𝑛−1
𝑍𝑛−𝑍𝑛−1

Where: Ds is the diffusive factor, representing the vertical change in concentration; Cn and Cn−1 represent the 
pollutant concentrations in the n-th and n−1-th soil layers, respectively; Zn represent the depths of the n-th 
and n−1-th layers.

Assumptions:
Assumption 1: The diffusion process occurs predominantly in the vertical direction, with lateral diffusion 
effects neglected.
Assumption 2: The change in pollutant concentration can be approximated by discrete soil layers, with 
uniform concentration assumed within each layer.
This method simplifies the complex three-dimensional diffusion process by focusing solely on the vertical 
concentration changes, enabling effective modeling of diffusion under limited data conditions.
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Table S1 Comparison of the advantages and disadvantages of machine learning algorithms used in this study.
Name Description Advantages Disadvantages

Artificial 
Neural 

Network 
(ANN)

ANNs consist of interconnected "neurons" 
or nodes in multiple layers, including 
input, hidden, and output layers. Deep 
learning models, a subset of ANNs, 
involve stacking many layers to model 
highly complex tasks.

①Can model highly non-linear and 
complex relationships.

②Effective for large datasets and 
tasks like image recognition,speech 

processing.

①Requires large amounts of data 
and computational resources for 

training.
②Difficult to interpret due to its 

black-box nature.

Decision 
Tree 

(DTree)

Decision trees split the dataset into 
smaller subsets by creating decision nodes 
based on feature values, leading to 
predictions at the tree's leaves.

①Easy to interpret and understand, 
even for non-experts.

②Handles both numerical and 
categorical data.

①Prone to overfitting, especially 
with deep trees.

②Sensitive to small variations in 
data, leading to instability.

Explaina
ble 

Boosting 
Machine 
(EBM)

EBM is a type of Generalized Additive 
Model (GAM) that remains interpretable 
while capturing both linear and non-linear 
relationships. It’s particularly designed for 
transparency.

①Highly interpretable, suitable for 
scenarios requiring explainability.
②Handles complex relationships 

while providing a clear understanding 
of each feature’s impact.

①Training can be slower compared 
to other ensemble models

②May not be as powerful as less 
interpretable methods like XGBoost 

in terms of predictive accuracy

K-nearest 
Neighbor
s (KNN)

KNN is a non-parametric algorithm that 
predicts the value of a target variable by 
averaging the values of the K-nearest data 
points in the feature space.

①Simple and intuitive to understand 
and implement.

②No need for a training phase—
predictions are made directly from 

the dataset.

①Computationally expensive during 
prediction, especially with large 

datasets.
②Sensitive to the choice of K and 

scaling of features.

Linear 
Regressio

n (LR)

Linear regression models the relationship 
between the dependent variable and one 
or more independent variables using a 
straight line (linear function).

①Simple to implement and interpret.
②Computationally efficient and 

well-suited for small datasets.

①Assumes linearity, which may not 
always be accurate.

②Vulnerable to multicollinearity 
(correlated features) and outliers.

Random 
Forest 
(RF)

Random Forest builds multiple decision 
trees (each using a random subset of 
features) and averages their predictions to 
improve accuracy and reduce overfitting.

①High accuracy and robustness to 
overfitting.

②Can handle missing data and 
feature importance can be derived.

①Difficult to interpret individual 
trees within the forest.

②Can be computationally intensive 
and slow on very large datasets.

Support 
Vector 

Machine 
(SVM)

SVMs find the hyperplane that best 
separates data points from different 
classes. For regression tasks, SVM can 
also fit data with a margin of tolerance.

①Effective in high-dimensional 
spaces and non-linear problems.
②Versatile with the use of different 
kernel functions (linear, polynomial, 

radial basis function).

①Slow for large datasets and 
challenging to tune the 

hyperparameters (like the choice of 
kernel).

②Memory-intensive, as it requires 
storing the entire training set for 

predictions.

XGBoost 
(XGB)

XGBoost is an efficient implementation 
of gradient-boosting algorithms, focusing 
on improving prediction accuracy by 
iteratively adding decision trees.

①Highly efficient and scalable, 
suitable for large datasets.

②Handles missing data automatically 
and includes regularization 

techniques to reduce overfitting.

①Complex to tune and requires 
careful optimization of 

hyperparameters.
②Can be slow to train for very large 

datasets if not optimized properly.

Table S2 Basic statistical parameters of TPH and heavy metal concentrations in soil and groundwater at the 
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study site.
TPH As Co Ni Pb

Min ND 5.110 2.582 5.337 2.880
Max 30000.000 51.227 280.953 714.864 1114.107
Mean 502.397 14.352 15.289 31.839 38.383
SD 1997.717 8.316 13.538 46.308 55.208

DR% 97.17 100 100 100 100

0 - 0.5 
m（n=459）

CV 3.976 0.579 0.885 1.454 1.438
Min ND 1.165 3.866 12.146 9.849
Max 26412.000 95.890 65.525 207.718 836.996
Mean 654.204 14.218 14.273 27.957 34.464
SD 1634.338 7.765 7.760 14.864 40.483

DR% 93.36 100 100 100 100

0.5 - 1.5 m
（n=527）

CV 2.498 0.546 0.544 0.532 1.175
Min 6.000 2.049 4.164 11.087 11.705
Max 39715.027 52.037 51.979 125.782 190.574
Mean 821.069 13.650 14.089 27.547 30.798
SD 2427.848 7.371 9.423 20.130 18.624

DR% 100 100 100 100 100

1.5 - 2.5 m
（n=478）

CV 2.957 0.540 0.669 0.731 0.605
Min ND 1.615 4.964 10.272 13.102
Max 8421.575 52.319 54.347 107.521 1204.567
Mean 244.352 14.361 14.503 28.639 34.197
SD 851.084 7.541 6.412 11.682 70.566

DR% 90.16 100 100 100 100

Statistics 
based on depth

2.5 - 4.0 m
（n=366）

CV 3.483 0.525 0.442 0.408 2.064

Soil
(mg/kg)

Soil reference value*1 826 40 40 150 400
Min 40.000 0.300 0.780 0.710 1.450
Max 44500.000 63.400 2778.000 2367.000 249.000
Mean 4887.347 5.555 63.167 54.980 28.535
SD 9020.447 12.247 391.899 333.803 42.375
CV 1.846 2.205 6.204 6.071 1.485

Perched water
（n=46)

OSR
%

95.65 4.348 2.174 2.174 6.522

Min 30.000 0.300 0.153 0.924 0.621
Max 4140.000 18.500 93.225 282 358.593
Mean 556.429 3.572 11.730 16.110 26.484
SD 962.932 3.561 18.427 35.471 50.682
CV 1.731 0.997 1.571 2.202 1.914

Pore water
(n=69)

OSR
%

17.391 5.797 0 2.899 4.348

Groundwater
(μg/L)

Groundwater reference value*2 500 10 100 100 100
*1: Risk intervention values (GB36600-2018)[1];*2: Risk intervention values (GB-T14848-2018[2]；GB3838-
2002[3])；ND: Not detected; SD: Standard Deviation; DR: Detection rate; CV: Coefficient of Variation; 
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OSR: Over-standard rate.
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Table S3 The model fitting results
Pre-training Validation Test

R2 RMSE R2 RMSE R2 RMSE
TPH 0.951 0.354 0.883 0.568 0.830 0.614
As 0.929 0.103 0.728 0.197 0.800 0.170
Co 0.948 0.082 0.695 0.174 0.697 0.173
Ni 0.975 0.050 0.861 0.102 0.883 0.100

RF

Pb 0.994 0.030 0.978 0.067 0.964 0.072
TPH 0.916 0.463 0.875 0.588 0.825 0.622
As 0.883 0.133 0.717 0.201 0.783 0.177
Co 0.870 0.130 0.704 0.171 0.693 0.174
Ni 0.984 0.041 0.880 0.095 0.870 0.105

XGB

Pb 1.000 0.001 0.918 0.130 0.962 0.074
TPH 0.818 0.682 0.730 0.863 0.693 0.825
As 0.792 0.177 0.739 0.193 0.780 0.179
Co 0.792 0.164 0.698 0.173 0.682 0.177
Ni 0.934 0.082 0.860 0.103 0.810 0.127

SVM

Pb 0.970 0.065 0.741 0.231 0.796 0.170
TPH 1.000 0.000 0.548 1.116 0.458 1.096
As 1.000 0.000 0.671 0.217 0.739 0.195
Co 1.000 0.000 0.511 0.220 0.553 0.210
Ni 1.000 0.000 0.605 0.172 0.670 0.168

KNN

Pb 1.000 0.000 0.634 0.275 0.561 0.249
TPH 0.842 0.635 0.868 0.602 0.810 0.649
As 0.781 0.182 0.684 0.212 0.812 0.165
Co 0.852 0.138 0.599 0.199 0.672 0.180
Ni 0.937 0.080 0.857 0.104 0.834 0.119

ANN

Pb 0.995 0.027 0.991 0.042 0.983 0.049
TPH 0.942 0.385 0.779 0.781 0.690 0.829
As 0.911 0.116 0.622 0.232 0.600 0.241
Co 0.928 0.096 0.497 0.223 0.525 0.217
Ni 0.962 0.062 0.804 0.121 0.817 0.125

DTree

Pb 0.998 0.015 0.988 0.049 0.960 0.075
TPH 0.911 0.476 0.897 0.512 0.812 0.645
As 0.840 0.156 0.724 0.198 0.791 0.174
Co 0.858 0.136 0.708 0.170 0.692 0.175
Ni 0.933 0.083 0.884 0.093 0.884 0.099

EBM

Pb 0.987 0.043 0.956 0.095 0.981 0.051
TPH 0.376 1.263 0.375 1.312 0.387 1.166
As 0.670 0.224 0.706 0.205 0.709 0.206
Co 0.529 0.247 0.516 0.219 0.495 0.224
Ni 0.712 0.171 0.639 0.165 0.544 0.197

LR

Pb 0.522 0.260 0.626 0.278 0.558 0.250
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Table S4 The Hyperparameter results of different models 
Hyperparameter TPH As Co Ni Pb

Max_depth 13 10 10 10 10
Min_samples_split 10 6 2 2 4RF

n_estimators 132 237 322 127 500
Learning_rate 0.059 0.048 0.169 0.126 0.3

Max_depth 4 3 3 4 8XGB
n_estimators 104 217 50 150 104

C 8.030 1.023 1.251 3.341 9.493
gamma scale scale scale scale scaleSVM
kernel rbf rbf rbf rbf rbf

n_neighbors 9 9 8 6 7
KNN

weigths distance distance distance distance distance
Max_depth 10 10 10 10 10

DTree
Min_samples_split 9 9 10 9 6

activation tanh tanh tanh tanh tanh
Hidden_layer_sizes (100.50) (100.50) (50,) (50,) (50,50)

Learning_rate constant constant constant constant constant
ANN

solver adam adam lbfgs lbfgs lbfgs
Learning_rate 0.066 0.010 0.010 0.010 0.010

Max_bins 223 177 254 222 202EBM
Max_leaves 4 3 3 3 3
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Table S5 Linear Regression Results
TPH As Co Ni Pb

Beta 0.365 0.056 0.142 0.796 0.188
Convection

p 0.049* 0.836 0.531 0.071 0.528
Beta 0.888 0.363 0.193 0.193 0.114

Perched 
water

Diffusion
p 0.000*** 0.190 0.399 0.649 0.701

Beta 0.239 0.229 0.110 0.006 0.333
Convection

p 0.298 0.464 0.715 0.989 0.202
Beta -0.012 0.414 0.359 -0.240 -0.192

Pore water
Diffusion

p 0.959 0.191 0.242 0.587 0.457
*:p<0.05; ***:p<0.001
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Fig. S1. Functional Zoning of the Study Site
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Fig. S2 Groundwater level contour map of the abandoned refinery
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Fig. S3. Sampling Locations in the Abandoned Refinery's Soil
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Fig. S4. Groundwater Sampling Locations at the Abandoned Refiner
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Fig. S5. Model data segmentation diagram



17

Fig. S6. Spatial Distribution of TPH and HMs in Groundwater. Panels (a) to (e) display the distribution of 
TPH, As, Co, Ni, and Pb in the perched water. Panels (f) to (j) illustrate the distribution of TPH, As, Co, Ni, 
and Pb in pore water. The Risk intervention values (GB-T14848-2018[2]；GB3838-2002[3]) for pollutants are 
as follows: TPH is set at 0.5 mg/kg, As at 10 μg/kg, Co at 100 μg/kg, Ni at 100 μg/kg, and Pb at 100 
μg/kg. The orange or red areas indicate that the pollutant levels in these regions exceed the standard values.
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Fig. S7. Relationship between soil depth and concentrations of TPH and HMs. (a) Based on importance 
indices from Random Forest; (b) based on SHAP value.
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Fig. S8. Bootstrapped confidence intervals. (a) TPH, (b) As, (c) Co, (d) Ni, (e)Pb.
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Fig. S9. Importance Indices of the Random Forest Model for TPH and HMs in perched water. TDS: Total 
dissolved solids; TH: Total hardness; D(.): Diffusion of TPH, As, Co, Ni, Pb; C(.): Convection of TPH, As, 
Co, Ni, Pb.
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Fig. S10. SHAP value for TPH and HMs in perched water. TDS: Total dissolved solids; TH: Total hardness; 
D(.): Diffusion of TPH, As, Co, Ni, Pb; C(.): Convection of TPH, As, Co, Ni, Pb.
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Fig. S11. Importance Indices of the Random Forest Model for TPH and HMs in pore water. 
TDS: Total dissolved solids; TH: Total hardness. D(.): Diffusion of TPH, As, Co, Ni, Pb; C(.): 
Convection of TPH, As, Co, Ni, Pb.
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Fig. S12. SHAP value for TPH and HMs in pore water. TDS: Total dissolved solids; TH: 
Total hardness. D(.): Diffusion of TPH, As, Co, Ni, Pb; C(.): Convection of TPH, As, Co, Ni, 
Pb.
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Fig. S13. The dependency plots between contaminant concentrations in perched water and 
convection/diffusion. (a)–(g) represent the dependency plots of TPH, As, Co, Ni and Pb on 
convection; (h)–(m) represent the dependency plots of TPH, As, Co, Ni and Pb on diffusion.
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Fig. S14. The dependency plots between contaminant concentrations in pore water and 
convection/diffusion. (a)–(f) represent the dependency plots of TPH, As, Co, Ni and Pb on 
convection; (g)–(k) represent the dependency plots of TPH, As, Co, Ni and Pb on diffusion.
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