Migration of Total Petroleum Hydrocarbons and heavy metals Contaminants in the Soil-Groundwater Interface of Petrochemical Site using machine learning: Impacts of Convection and Diffusion

Yingdong $Wu^{1,2}$, Jiang $Yu^{1,2,3,*}$, Zhi Huang^{1,2}, Yinying Jiang^{1,2}, Zixin Zeng^{1,2}, Lei Han^{1,2}, Siwei Deng^{1,4}, Jie $Yu^{1,2}$

¹Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China

² Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu, 610065, PR China

³ Yibin Institute of Industrial Technology, Sichuan University, Yibin 644000, PR China

⁴Soil and Groundwater Pollution Prevention Research Institute, Sichuan Academy of EcoEnvironmental Sciences, 610046, Chengdu, P.R. China

* Corresponding author

E-mail address: yuj@scu.edu.cn(J.Yu).

The supplementary material (total of 27 pages including coversheet) contains 3 texts (Text S1-S3), 5 tables (Table S1-S5), and 14 figures (Fig. S1-S14).

TEXT S1 Description of Bayesian Optimization

1. What is Bayesian Optimization?

Bayesian Optimization is a sequential optimization strategy used to find the best parameters of a model by building a probabilistic model, typically a Gaussian Process, of the objective function. Instead of evaluating all possible combinations of parameters, Bayesian optimization selects parameter values based on a balance between exploring unknown regions of the parameter space and exploiting regions known to have high performance. By iteratively refining the model based on prior evaluations, it efficiently finds the optimal configuration of hyperparameters, reducing computational cost compared to grid or random search methods.

2. Parameter Search Space in Bayesian Optimization

In my models, we used different parameter ranges for Bayesian optimization across various machine learning algorithms to fine-tune their performance:

RF: The number of estimators (n_estimators) was searched between 100 and 500, maximum tree depth (max_depth) between 10 and 50, and minimum samples required to split a node (min_samples_split) from 2 to 10.

XGB: The search space included n_estimators from 50 to 300, learning rate (learning_rate) from 0.01 to 0.3, and maximum depth (max_depth) between 3 and 9.

SVM: The regularization parameter C was searched between 0.1 and 100 on a logarithmic scale, with gamma tested for both "scale" and "auto" values, and kernel functions tested between 'linear' and 'rbf'.

KNN: The number of neighbors (n_neighbors) was varied from 3 to 9, with weighting schemes (weights) between 'uniform' and 'distance'.

DTree: The max_depth was explored between 10 and 90, and min_samples_split from 2 to 10.

ANN: The hidden layer sizes (hidden_layer_sizes) were tested with combinations of (50,), (100,), (50, 50), and (100, 50), activation functions (activation) between 'relu' and 'tanh', solvers (solver) between 'adam' and 'lbfgs', and learning rates (learning_rate) between 'constant' and 'adaptive'.

EBM: The max_bins was set between 64 and 256, max_leaves between 3 and 7, and learning_rate from 0.01 to 0.1.

These ranges were designed to explore diverse settings and ensure the optimal configuration of each

algorithm is efficiently found through Bayesian optimization.

TEXT S2 Description of SHAP

SHAP (Shapley Additive Explanations) is grounded in game theory and leverages Shapley values to explain the contribution of each feature in a model's predictions. The core idea is to distribute the prediction among the input features fairly, based on their contribution to the final output. Below are some key equations and concepts that underlie SHAP:

1. Shapley Value Formula

For a feature i, the Shapley value \emptyset_i is calculated as:

$$\phi_i = \sum_{S \subseteq N \setminus \{i\}} \frac{|S|!(|N| - |S| - 1)!}{|N|!} [f(S \cup \{i\}) - f(S)]$$

Where: N is the set of all features; S is a subset of N that does not contain feature i; f(S) represents the prediction of the model using only the features in subset S; $f(S \cup \{i\}) - f(S)$ calculates the marginal contribution of feature i to the subset S.

This equation ensures that each feature's contribution is fairly attributed by considering all possible combinations of feature subsets.

2. Additive Feature Attribution

SHAP falls under additive feature attribution methods, where the explanation model is assumed to be linear with respect to the contributions of the features. The additive nature can be expressed as:

$$f(x) = \emptyset_0 + \sum_{i=1}^{M} \emptyset_i$$

Where: f(x) is the output of the machine learning model for input x; ϕ_0 is the base value (i.e., the mean prediction across all samples); ϕ represents the Shapley value of feature iii, which indicates the contribution of feature i to the model prediction for the specific input x.

3. Efficiency, Symmetry, and Additivity

The Shapley values satisfy several important properties, which make them suitable for explaining machine

learning models:

Efficiency: The sum of all feature contributions φί\phi iφi equals the difference between the prediction

and the base value.

Symmetry: If two features contribute equally to a model, their Shapley values will be identical.

Additivity: The Shapley values for multiple models can be combined to represent the ensemble.

4. Approximation for Large Models

For complex machine learning models, exact computation of Shapley values using the above formula can

be computationally expensive. Therefore, approximate methods like KernelSHAP and TreeSHAP have been

developed to compute Shapley values more efficiently.

KernelSHAP: A model-agnostic approach that approximates the Shapley values using weighted linear

regression.

TreeSHAP: A specialized algorithm for decision trees, which allows for the efficient computation of exact

Shapley values in tree-based models like random forests and gradient-boosting machines.

In summary, SHAP provides a robust, mathematically grounded approach for interpreting model

predictions, ensuring transparency in machine learning through a fair distribution of feature contributions

based on Shapley values. These formulas and principles make SHAP a powerful tool for model

interpretability.

4

TEXT S3 Derivations and Assumptions of Convective and Diffusive Factors

1. Derivation and Assumptions for Convective Factor (Equation 3)

Equation (3) represents the change in pollutant concentration due to the convective process. Convection describes the transport of pollutants driven by fluid movement, and the change in concentration over time can be approximated by the time derivative of concentration:

$$C_{S} = \frac{\partial C}{\partial t}$$

Where: C_s is the convective factor, representing the rate of change in pollutant concentration over time; C is the pollutant concentration; T is time.

Assumptions:

Assumption 1: The convective process is steady, with pollutant transport dominated by the macroscopic movement of groundwater, and microscopic diffusion effects are neglected.

Assumption 2: The pollutant concentration changes over time can be approximated as a steady process, ignoring short-term fluctuations.

This assumption simplifies the description of the convective process, allowing it to capture the time-related changes in pollutant transport with fewer parameters.

2. Derivation and Assumptions for Diffusive Factor (Equation 4)

Equation (4) describes how the vertical concentration gradient of pollutants is calculated during the diffusion process. Based on Fick's law of diffusion, the rate of diffusion can be expressed as the gradient of concentration with respect to depth:

$$D_{s} = \frac{\partial C_{n}}{\partial z} = \frac{C_{n} - C_{n-1}}{Z_{n} - Z_{n-1}}$$

Where: D_s is the diffusive factor, representing the vertical change in concentration; C_n and C_{n-1} represent the pollutant concentrations in the n-th and n-1-th soil layers, respectively; Z_n represent the depths of the n-th and n-1-th layers.

Assumptions:

Assumption 1: The diffusion process occurs predominantly in the vertical direction, with lateral diffusion effects neglected.

Assumption 2: The change in pollutant concentration can be approximated by discrete soil layers, with uniform concentration assumed within each layer.

This method simplifies the complex three-dimensional diffusion process by focusing solely on the vertical concentration changes, enabling effective modeling of diffusion under limited data conditions.

Table S1 Comparison of the advantages and disadvantages of machine learning algorithms used in this study.

Name	Description	Advantages	Disadvantages
	ANNs consist of interconnected "neurons"	①Can model highly non-linear and	①Requires large amounts of data
Artificial	or nodes in multiple layers, including	complex relationships.	and computational resources for
Neural	input, hidden, and output layers. Deep	②Effective for large datasets and	training.
Network	learning models, a subset of ANNs,	tasks like image recognition, speech	②Difficult to interpret due to its
(ANN)	involve stacking many layers to model	processing.	black-box nature.
	highly complex tasks.		
D	Decision trees split the dataset into	①Easy to interpret and understand,	①Prone to overfitting, especially
Decision	smaller subsets by creating decision nodes	even for non-experts.	with deep trees.
Tree	based on feature values, leading to	②Handles both numerical and	②Sensitive to small variations in
(DTree)	predictions at the tree's leaves.	categorical data.	data, leading to instability.
Explaina	EBM is a type of Generalized Additive	①Highly interpretable, suitable for	①Training can be slower compared
ble	Model (GAM) that remains interpretable	scenarios requiring explainability.	to other ensemble models
Boosting	while capturing both linear and non-linear	②Handles complex relationships	②May not be as powerful as less
Machine	relationships. It's particularly designed for	while providing a clear understanding	interpretable methods like XGBoost
(EBM)	transparency.	of each feature's impact.	in terms of predictive accuracy
	KNN is a non-parametric algorithm that	①Simple and intuitive to understand	①Computationally expensive during
K-nearest	predicts the value of a target variable by	and implement.	prediction, especially with large
Neighbor	averaging the values of the K-nearest data	②No need for a training phase—	datasets.
s (KNN)	points in the feature space.	predictions are made directly from	②Sensitive to the choice of K and
		the dataset.	scaling of features.
Linear	Linear regression models the relationship	①Simple to implement and interpret.	①Assumes linearity, which may not
Regressio	between the dependent variable and one	②Computationally efficient and	always be accurate.
n (LR)	or more independent variables using a	well-suited for small datasets.	②Vulnerable to multicollinearity
II (LK)	straight line (linear function).		(correlated features) and outliers.
Random	Random Forest builds multiple decision	①High accuracy and robustness to	①Difficult to interpret individual
Forest	trees (each using a random subset of	overfitting.	trees within the forest.
(RF)	features) and averages their predictions to	②Can handle missing data and	②Can be computationally intensive
(KI)	improve accuracy and reduce overfitting.	feature importance can be derived.	and slow on very large datasets.
	SVMs find the hyperplane that best	①Effective in high-dimensional	①Slow for large datasets and
Support Vector Machine (SVM)	separates data points from different	spaces and non-linear problems.	challenging to tune the
	classes. For regression tasks, SVM can	②Versatile with the use of different	hyperparameters (like the choice of
	also fit data with a margin of tolerance.	kernel functions (linear, polynomial,	kernel).
		radial basis function).	②Memory-intensive, as it requires
			storing the entire training set for
			predictions.
	XGBoost is an efficient implementation	①Highly efficient and scalable,	①Complex to tune and requires
XGBoost	of gradient-boosting algorithms, focusing	suitable for large datasets.	careful optimization of
(XGB)	on improving prediction accuracy by	②Handles missing data automatically	hyperparameters.
(2100)	iteratively adding decision trees.	and includes regularization	②Can be slow to train for very large
		techniques to reduce overfitting.	datasets if not optimized properly.

Table S2 Basic statistical parameters of TPH and heavy metal concentrations in soil and groundwater at the

study site.

				TPH	As	Со	Ni	Pb
			Min	ND	5.110	2.582	5.337	2.880
			Max	30000.000	51.227	280.953	714.864	1114.107
		Mean	502.397	14.352	15.289	31.839	38.383	
		m (n=459)	SD	1997.717	8.316	13.538	46.308	55.208
			DR%	97.17	100	100	100	100
			CV	3.976	0.579	0.885	1.454	1.438
			Min	ND	1.165	3.866	12.146	9.849
			Max	26412.000	95.890	65.525	207.718	836.996
		0.5 - 1.5 m	Mean	654.204	14.218	14.273	27.957	34.464
		(n=527)	SD	1634.338	7.765	7.760	14.864	40.483
			DR%	93.36	100	100	100	100
G :1	Statistics		CV	2.498	0.546	0.544	0.532	1.175
Soil	based on depth		Min	6.000	2.049	4.164	11.087	11.705
(mg/kg)			Max	39715.027	52.037	51.979	125.782	190.574
		1.5 - 2.5 m	Mean	821.069	13.650	14.089	27.547	30.798
		(n=478)	SD	2427.848	7.371	9.423	20.130	18.624
			DR%	100	100	100	100	100
			CV	2.957	0.540	0.669	0.731	0.605
			Min	ND	1.615	4.964	10.272	13.102
			Max	8421.575	52.319	54.347	107.521	1204.567
		2.5 - 4.0 m	Mean	244.352	14.361	14.503	28.639	34.197
		(n=366)	SD	851.084	7.541	6.412	11.682	70.566
			DR%	90.16	100	100	100	100
			CV	3.483	0.525	0.442	0.408	2.064
	Soil reference value*1			826	40	40	150	400
			Min	40.000	0.300	0.780	0.710	1.450
			Max	44500.000	63.400	2778.000	2367.000	249.000
	Perched water (n=46)		Mean	4887.347	5.555	63.167	54.980	28.535
			SD	9020.447	12.247	391.899	333.803	42.375
	(11-	-4 0)	CV	1.846	2.205	6.204	6.071	1.485
			OSR %	95.65	4.348	2.174	2.174	6.522
Groundwater			Min	30.000	0.300	0.153	0.924	0.621
$(\mu g/L)$			Max	4140.000	18.500	93.225	282	358.593
	Pore water (n=69)		Mean	556.429	3.572	11.730	16.110	26.484
			SD	962.932	3.561	18.427	35.471	50.682
			CV	1.731	0.997	1.571	2.202	1.914
			OSR %	17.391	5.797	0	2.899	4.348
	Groundwater reference value*2							

^{*1:} Risk intervention values (GB36600-2018)^[1];*2: Risk intervention values (GB-T14848-2018^[2]; GB3838-2002^[3]); ND: Not detected; SD: Standard Deviation; DR: Detection rate; CV: Coefficient of Variation;

OSR: Over-standard rate.

Table S3 The model fitting results

			Pre-training Valid		dation	tion Test		
		\mathbb{R}^2	RMSE	R ²	RMSE	R ²	RMSE	
	TPH	0.951	0.354	0.883	0.568	0.830	0.614	
	As	0.929	0.103	0.728	0.197	0.800	0.170	
RF	Co	0.948	0.082	0.695	0.174	0.697	0.173	
	Ni	0.975	0.050	0.861	0.102	0.883	0.100	
	Pb	0.994	0.030	0.978	0.067	0.964	0.072	
	TPH	0.916	0.463	0.875	0.588	0.825	0.622	
	As	0.883	0.133	0.717	0.201	0.783	0.177	
XGB	Co	0.870	0.130	0.704	0.171	0.693	0.174	
	Ni	0.984	0.041	0.880	0.095	0.870	0.105	
	Pb	1.000	0.001	0.918	0.130	0.962	0.074	
	TPH	0.818	0.682	0.730	0.863	0.693	0.825	
	As	0.792	0.177	0.739	0.193	0.780	0.179	
SVM	Co	0.792	0.164	0.698	0.173	0.682	0.177	
	Ni	0.934	0.082	0.860	0.103	0.810	0.127	
	Pb	0.970	0.065	0.741	0.231	0.796	0.170	
	TPH	1.000	0.000	0.548	1.116	0.458	1.096	
	As	1.000	0.000	0.671	0.217	0.739	0.195	
KNN	Co	1.000	0.000	0.511	0.220	0.553	0.210	
	Ni	1.000	0.000	0.605	0.172	0.670	0.168	
	Pb	1.000	0.000	0.634	0.275	0.561	0.249	
	TPH	0.842	0.635	0.868	0.602	0.810	0.649	
	As	0.781	0.182	0.684	0.212	0.812	0.165	
ANN	Co	0.852	0.138	0.599	0.199	0.672	0.180	
	Ni	0.937	0.080	0.857	0.104	0.834	0.119	
	Pb	0.995	0.027	0.991	0.042	0.983	0.049	
	TPH	0.942	0.385	0.779	0.781	0.690	0.829	
	As	0.911	0.116	0.622	0.232	0.600	0.241	
DTree	Co	0.928	0.096	0.497	0.223	0.525	0.217	
	Ni	0.962	0.062	0.804	0.121	0.817	0.125	
	Pb	0.998	0.015	0.988	0.049	0.960	0.075	
	TPH	0.911	0.476	0.897	0.512	0.812	0.645	
	As	0.840	0.156	0.724	0.198	0.791	0.174	
EBM	Co	0.858	0.136	0.708	0.170	0.692	0.175	
	Ni	0.933	0.083	0.884	0.093	0.884	0.099	
	Pb	0.987	0.043	0.956	0.095	0.981	0.051	
	TPH	0.376	1.263	0.375	1.312	0.387	1.166	
	As	0.670	0.224	0.706	0.205	0.709	0.206	
LR	Co	0.529	0.247	0.516	0.219	0.495	0.224	
	Ni	0.712	0.171	0.639	0.165	0.544	0.197	
	Pb	0.522	0.260	0.626	0.278	0.558	0.250	

 Table S4 The Hyperparameter results of different models

	Hyperparameter	TPH	As	Co	Ni	Pb
RF	Max_depth	13	10	10	10	10
	Min_samples_split	10	6	2	2	4
	n_estimators	132	237	322	127	500
	Learning_rate	0.059	0.048	0.169	0.126	0.3
XGB	Max_depth	4	3	3	4	8
	n_estimators	104	217	50	150	104
	C	8.030	1.023	1.251	3.341	9.493
SVM	gamma	scale	scale	scale	scale	scale
	kernel	rbf	rbf	rbf	rbf	rbf
IZNINI	n_neighbors	9	9	8	6	7
KNN	weigths	distance	distance	distance	distance	distance
DT	Max_depth	10	10	10	10	10
DTree	Min_samples_split	9	9	10	9	6
	activation	tanh	tanh	tanh	tanh	tanh
ANN	Hidden_layer_sizes	(100.50)	(100.50)	(50,)	(50,)	(50,50)
ANN	Learning_rate	constant	constant	constant	constant	constant
	solver	adam	adam	lbfgs	lbfgs	lbfgs
	Learning_rate	0.066	0.010	0.010	0.010	0.010
EBM	Max_bins	223	177	254	222	202
	Max_leaves	4	3	3	3	3

 Table S5 Linear Regression Results

			TPH	As	Co	Ni	Pb
	Convection	Beta	0.365	0.056	0.142	0.796	0.188
Perched		p	0.049*	0.836	0.531	0.071	0.528
water	Diffusion	Beta	0.888	0.363	0.193	0.193	0.114
		p	0.000***	0.190	0.399	0.649	0.701
	Convection	Beta	0.239	0.229	0.110	0.006	0.333
D		p	0.298	0.464	0.715	0.989	0.202
Pore water	Diffusion	Beta	-0.012	0.414	0.359	-0.240	-0.192
		p	0.959	0.191	0.242	0.587	0.457

^{*:}p<0.05; ***:p<0.001

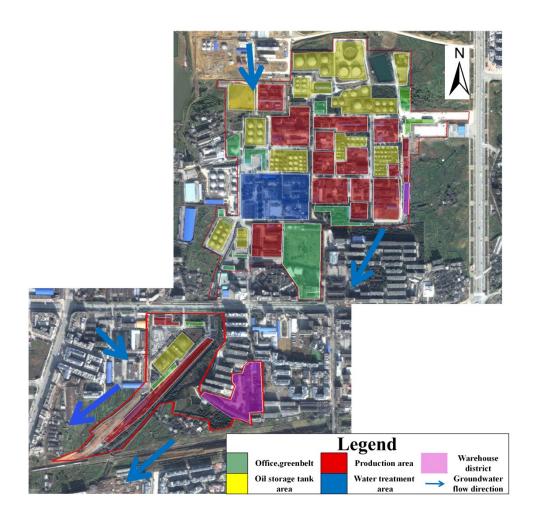


Fig. S1. Functional Zoning of the Study Site

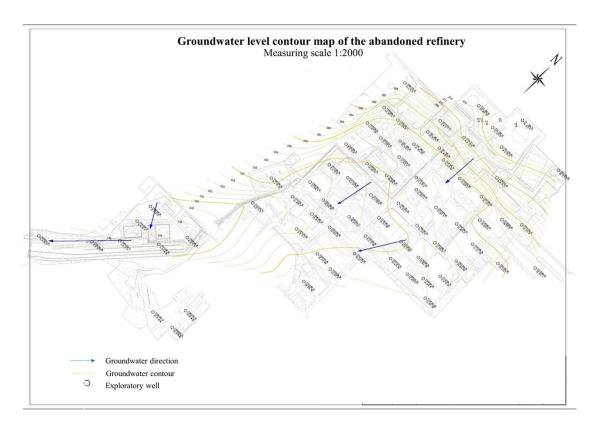


Fig. S2 Groundwater level contour map of the abandoned refinery

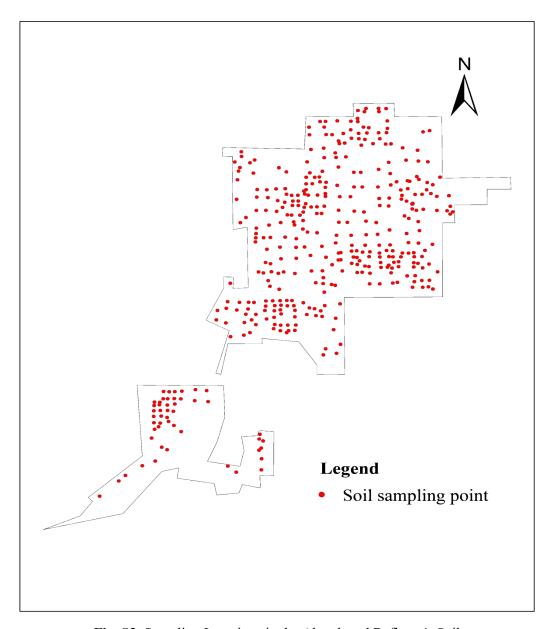


Fig. S3. Sampling Locations in the Abandoned Refinery's Soil

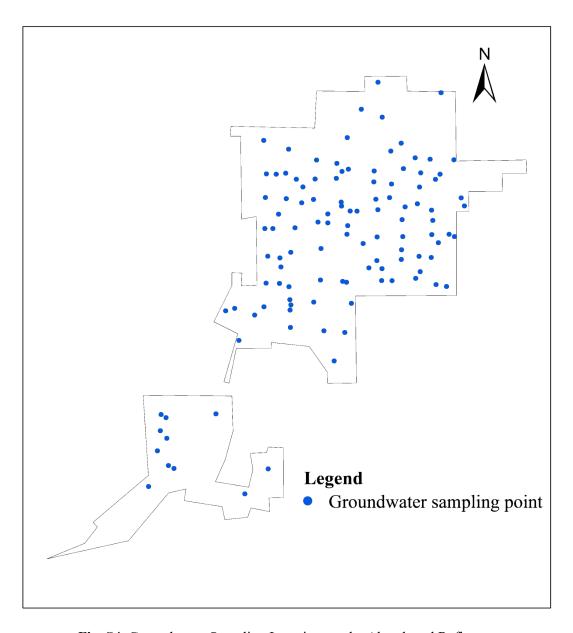


Fig. S4. Groundwater Sampling Locations at the Abandoned Refiner

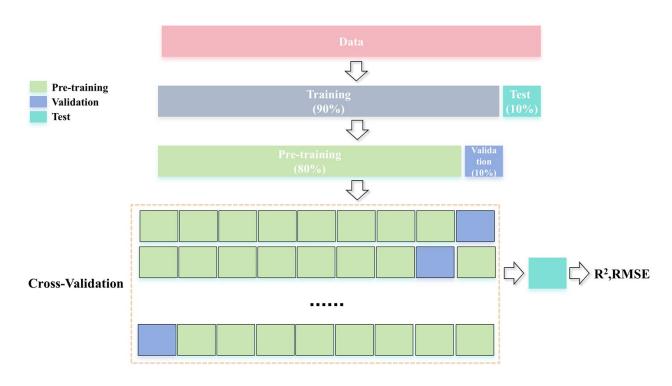


Fig. S5. Model data segmentation diagram

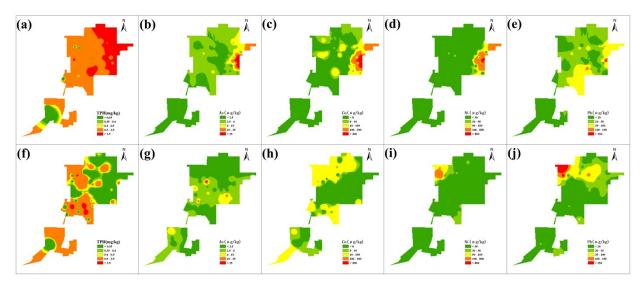


Fig. S6. Spatial Distribution of TPH and HMs in Groundwater. Panels (a) to (e) display the distribution of TPH, As, Co, Ni, and Pb in the perched water. Panels (f) to (j) illustrate the distribution of TPH, As, Co, Ni, and Pb in pore water. The Risk intervention values (GB-T14848-2018^[2]; GB3838-2002^[3]) for pollutants are as follows: TPH is set at 0.5 mg/kg, As at 10 μ g/kg, Co at 100 μ g/kg, Ni at 100 μ g/kg, and Pb at 100 μ g/kg. The orange or red areas indicate that the pollutant levels in these regions exceed the standard values.

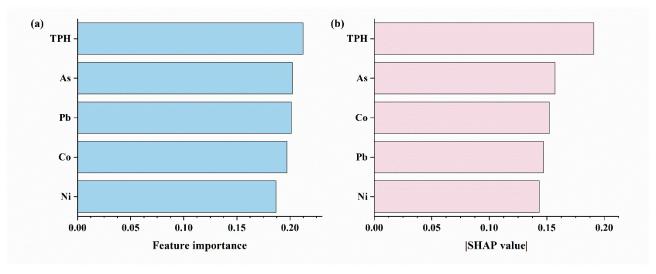


Fig. S7. Relationship between soil depth and concentrations of TPH and HMs. (a) Based on importance indices from Random Forest; (b) based on SHAP value.

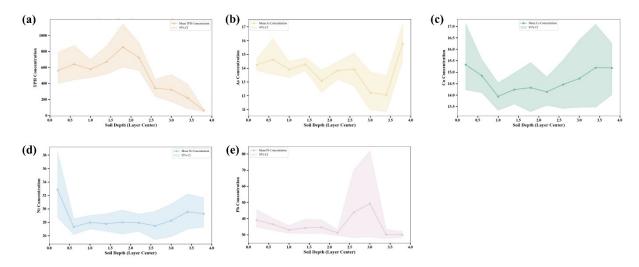


Fig. S8. Bootstrapped confidence intervals. (a) TPH, (b) As, (c) Co, (d) Ni, (e)Pb.

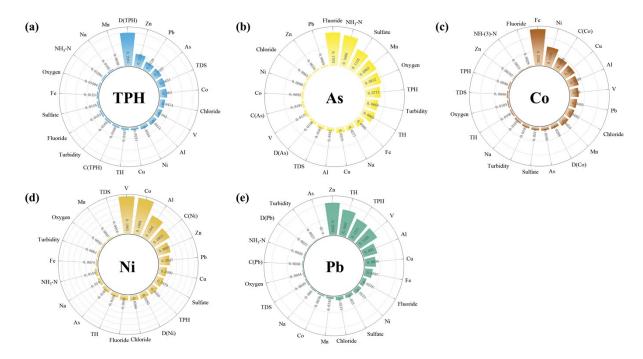


Fig. S9. Importance Indices of the Random Forest Model for TPH and HMs in perched water. TDS: Total dissolved solids; TH: Total hardness; D(.): Diffusion of TPH, As, Co, Ni, Pb; C(.): Convection of TPH, As, Co, Ni, Pb.

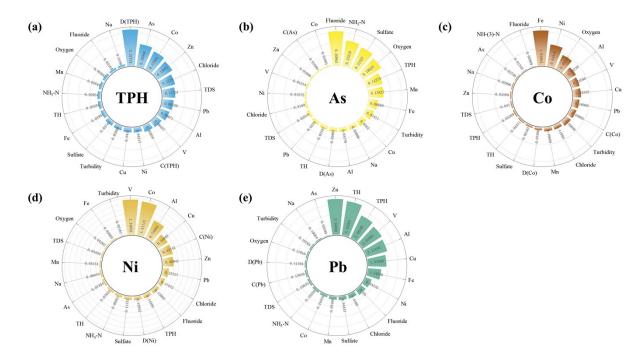


Fig. S10. SHAP value for TPH and HMs in perched water. TDS: Total dissolved solids; TH: Total hardness; D(.): Diffusion of TPH, As, Co, Ni, Pb; C(.): Convection of TPH, As, Co, Ni, Pb.

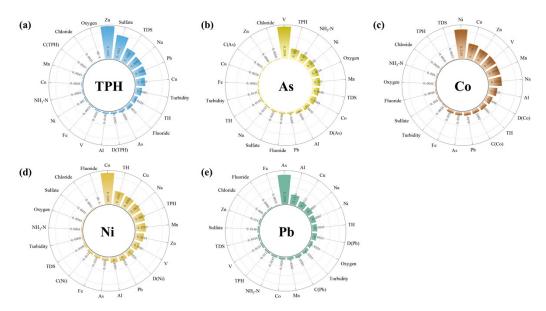


Fig. S11. Importance Indices of the Random Forest Model for TPH and HMs in pore water. TDS: Total dissolved solids; TH: Total hardness. D(.): Diffusion of TPH, As, Co, Ni, Pb; C(.): Convection of TPH, As, Co, Ni, Pb.

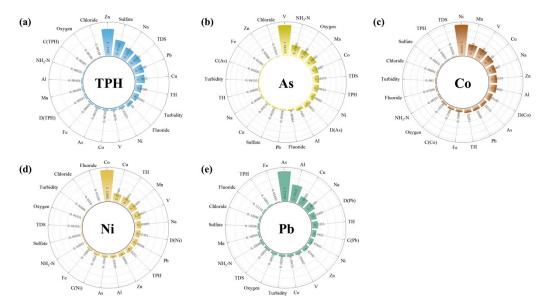


Fig. S12. SHAP value for TPH and HMs in pore water. TDS: Total dissolved solids; TH: Total hardness. D(.): Diffusion of TPH, As, Co, Ni, Pb; C(.): Convection of TPH, As, Co, Ni, Pb.

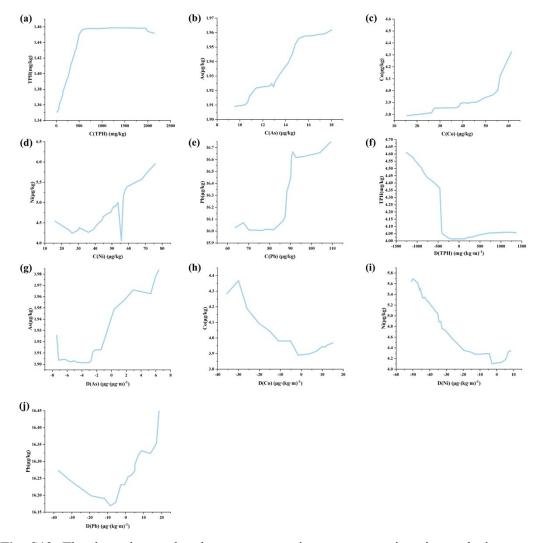


Fig. S13. The dependency plots between contaminant concentrations in perched water and convection/diffusion. (a) – (g) represent the dependency plots of TPH, As, Co, Ni and Pb on convection; (h) – (m) represent the dependency plots of TPH, As, Co, Ni and Pb on diffusion.

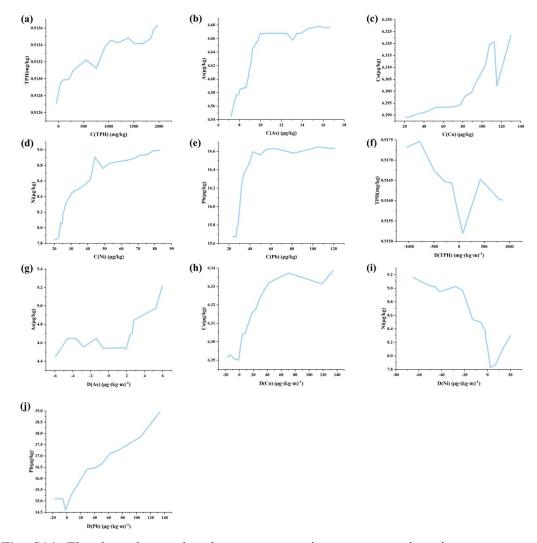


Fig. S14. The dependency plots between contaminant concentrations in pore water and convection/diffusion. (a) – (f) represent the dependency plots of TPH, As, Co, Ni and Pb on convection; (g) – (k) represent the dependency plots of TPH, As, Co, Ni and Pb on diffusion.

References

- [1] P.R.C. Ministry of Ecology and Environment Soil Environmental Quality Risk Control Standard for Soil Contamination of Development Land (2018). China Beijing (Ed.)
- [2] P.R.C. Ministry of Ecology and Environment. Quality Standard for Groundwater (2018). China Beijing (Ed.)
- [3] P.R.C. Ministry of Ecology and Environment. Environmental Quality Standards for Surface Water (2002). China Beijing (Ed.)