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TEXT S1 Description of Bayesian Optimization 

 

 

1. What is Bayesian Optimization? 

Bayesian Optimization is a sequential optimization strategy used to find the best parameters of a model by 

building a probabilistic model, typically a Gaussian Process, of the objective function. Instead of evaluating 

all possible combinations of parameters, Bayesian optimization selects parameter values based on a balance 

between exploring unknown regions of the parameter space and exploiting regions known to have high 

performance. By iteratively refining the model based on prior evaluations, it efficiently finds the optimal 

configuration of hyperparameters, reducing computational cost compared to grid or random search methods. 

2. Parameter Search Space in Bayesian Optimization 

In my models, we used different parameter ranges for Bayesian optimization across various machine 

learning algorithms to fine-tune their performance: 

RF: The number of estimators (n_estimators) was searched between 100 and 500, maximum tree depth 

(max_depth) between 10 and 50, and minimum samples required to split a node (min_samples_split) from 2 

to 10. 

XGB: The search space included n_estimators from 50 to 300, learning rate (learning_rate) from 0.01 to 

0.3, and maximum depth (max_depth) between 3 and 9. 

SVM: The regularization parameter C was searched between 0.1 and 100 on a logarithmic scale, with 

gamma tested for both "scale" and "auto" values, and kernel functions tested between 'linear' and 'rbf'. 

KNN: The number of neighbors (n_neighbors) was varied from 3 to 9, with weighting schemes (weights) 

between 'uniform' and 'distance'. 

DTree: The max_depth was explored between 10 and 90, and min_samples_split from 2 to 10. 

ANN: The hidden layer sizes (hidden_layer_sizes) were tested with combinations of (50,), (100,), (50, 50), 

and (100, 50), activation functions (activation) between 'relu' and 'tanh', solvers (solver) between 'adam' and 

'lbfgs', and learning rates (learning_rate) between 'constant' and 'adaptive'. 

EBM: The max_bins was set between 64 and 256, max_leaves between 3 and 7, and learning_rate from 

0.01 to 0.1. 

These ranges were designed to explore diverse settings and ensure the optimal configuration of each 
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algorithm is efficiently found through Bayesian optimization. 
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TEXT S2 Description of SHAP 

 

SHAP (Shapley Additive Explanations) is grounded in game theory and leverages Shapley values to 

explain the contribution of each feature in a model's predictions. The core idea is to distribute the prediction 

among the input features fairly, based on their contribution to the final output. Below are some key equations 

and concepts that underlie SHAP: 

1. Shapley Value Formula 

For a feature i, the Shapley value ∅𝑖is calculated as: 

∅𝑖 = ∑
|𝑆|!(|𝑁|−|𝑆|−1)!

|𝑁|!
[𝑓(𝑆 ∪ {𝑖}) − 𝑓(𝑆)]𝑆⊆𝑁∖{𝑖}  

Where: N is the set of all features;S is a subset of N that does not contain feature i; f(S) represents the 

prediction of the model using only the features in subset S; f(S∪{i})−f(S) calculates the marginal 

contribution of feature i to the subset S. 

This equation ensures that each feature’s contribution is fairly attributed by considering all possible 

combinations of feature subsets. 

2. Additive Feature Attribution 

SHAP falls under additive feature attribution methods, where the explanation model is assumed to be 

linear with respect to the contributions of the features. The additive nature can be expressed as: 

f(x) = ∅0 +∑ ∅i
M
i=1  

Where: f(x) is the output of the machine learning model for input x; ∅0 is the base value (i.e., the mean 

prediction across all samples); ∅ represents the Shapley value of feature iii, which indicates the contribution 

of feature i to the model prediction for the specific input x. 

3. Efficiency, Symmetry, and Additivity 

The Shapley values satisfy several important properties, which make them suitable for explaining machine 
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learning models: 

Efficiency: The sum of all feature contributions ϕi\phi_iϕi equals the difference between the prediction 

and the base value. 

Symmetry: If two features contribute equally to a model, their Shapley values will be identical. 

Additivity: The Shapley values for multiple models can be combined to represent the ensemble. 

4. Approximation for Large Models 

For complex machine learning models, exact computation of Shapley values using the above formula can 

be computationally expensive. Therefore, approximate methods like KernelSHAP and TreeSHAP have been 

developed to compute Shapley values more efficiently. 

KernelSHAP: A model-agnostic approach that approximates the Shapley values using weighted linear 

regression. 

TreeSHAP: A specialized algorithm for decision trees, which allows for the efficient computation of exact 

Shapley values in tree-based models like random forests and gradient-boosting machines. 

In summary, SHAP provides a robust, mathematically grounded approach for interpreting model 

predictions, ensuring transparency in machine learning through a fair distribution of feature contributions 

based on Shapley values. These formulas and principles make SHAP a powerful tool for model 

interpretability. 
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TEXT S3 Derivations and Assumptions of Convective and Diffusive Factors 

 

1. Derivation and Assumptions for Convective Factor (Equation 3) 

Equation (3) represents the change in pollutant concentration due to the convective process. Convection 

describes the transport of pollutants driven by fluid movement, and the change in concentration over time 

can be approximated by the time derivative of concentration: 

CS =
𝜕𝐶

𝜕𝑡
 

Where: Cs is the convective factor, representing the rate of change in pollutant concentration over time; C is 

the pollutant concentration; T is time. 

Assumptions: 

Assumption 1: The convective process is steady, with pollutant transport dominated by the macroscopic 

movement of groundwater, and microscopic diffusion effects are neglected. 

Assumption 2: The pollutant concentration changes over time can be approximated as a steady process, 

ignoring short-term fluctuations. 

This assumption simplifies the description of the convective process, allowing it to capture the time-related 

changes in pollutant transport with fewer parameters. 

 

2. Derivation and Assumptions for Diffusive Factor (Equation 4) 

Equation (4) describes how the vertical concentration gradient of pollutants is calculated during the diffusion 

process. Based on Fick’s law of diffusion, the rate of diffusion can be expressed as the gradient of 

concentration with respect to depth: 

Ds =
𝜕𝐶𝑛
𝜕𝑧

=
𝐶𝑛 − 𝐶𝑛−1
𝑍𝑛 − 𝑍𝑛−1

 

Where: Ds is the diffusive factor, representing the vertical change in concentration; Cn and Cn−1 represent the 

pollutant concentrations in the n-th and n−1-th soil layers, respectively; Zn represent the depths of the n-th 

and n−1-th layers. 

 

Assumptions: 

Assumption 1: The diffusion process occurs predominantly in the vertical direction, with lateral diffusion 

effects neglected. 

Assumption 2: The change in pollutant concentration can be approximated by discrete soil layers, with 

uniform concentration assumed within each layer. 

This method simplifies the complex three-dimensional diffusion process by focusing solely on the vertical 

concentration changes, enabling effective modeling of diffusion under limited data conditions. 
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Table S1 Comparison of the advantages and disadvantages of machine learning algorithms used in this 

study. 

Name Description Advantages Disadvantages 

Artificial 

Neural 

Network 

(ANN) 

ANNs consist of interconnected "neurons" 

or nodes in multiple layers, including 

input, hidden, and output layers. Deep 

learning models, a subset of ANNs, 

involve stacking many layers to model 

highly complex tasks. 

①Can model highly non-linear and 

complex relationships. 

②Effective for large datasets and 

tasks like image recognition,speech 

processing. 

①Requires large amounts of data 

and computational resources for 

training. 

②Difficult to interpret due to its 

black-box nature. 

Decision 

Tree 

(DTree) 

Decision trees split the dataset into 

smaller subsets by creating decision nodes 

based on feature values, leading to 

predictions at the tree's leaves. 

①Easy to interpret and understand, 

even for non-experts. 

②Handles both numerical and 

categorical data. 

①Prone to overfitting, especially 

with deep trees. 

②Sensitive to small variations in 

data, leading to instability. 

Explaina

ble 

Boosting 

Machine 

(EBM) 

EBM is a type of Generalized Additive 

Model (GAM) that remains interpretable 

while capturing both linear and non-linear 

relationships. It’s particularly designed for 

transparency. 

①Highly interpretable, suitable for 

scenarios requiring explainability. 

②Handles complex relationships 

while providing a clear understanding 

of each feature’s impact. 

①Training can be slower compared 

to other ensemble models 

②May not be as powerful as less 

interpretable methods like XGBoost 

in terms of predictive accuracy 

K-nearest 

Neighbor

s (KNN) 

KNN is a non-parametric algorithm that 

predicts the value of a target variable by 

averaging the values of the K-nearest data 

points in the feature space. 

①Simple and intuitive to understand 

and implement. 

②No need for a training 

phase—predictions are made directly 

from the dataset. 

①Computationally expensive during 

prediction, especially with large 

datasets. 

②Sensitive to the choice of K and 

scaling of features. 

Linear 

Regressio

n (LR) 

Linear regression models the relationship 

between the dependent variable and one 

or more independent variables using a 

straight line (linear function). 

①Simple to implement and interpret. 

②Computationally efficient and 

well-suited for small datasets. 

①Assumes linearity, which may not 

always be accurate. 

②Vulnerable to multicollinearity 

(correlated features) and outliers. 

Random 

Forest 

(RF) 

Random Forest builds multiple decision 

trees (each using a random subset of 

features) and averages their predictions to 

improve accuracy and reduce overfitting. 

①High accuracy and robustness to 

overfitting. 

②Can handle missing data and 

feature importance can be derived. 

①Difficult to interpret individual 

trees within the forest. 

②Can be computationally intensive 

and slow on very large datasets. 

Support 

Vector 

Machine 

(SVM) 

SVMs find the hyperplane that best 

separates data points from different 

classes. For regression tasks, SVM can 

also fit data with a margin of tolerance. 

①Effective in high-dimensional 

spaces and non-linear problems. 

②Versatile with the use of different 

kernel functions (linear, polynomial, 

radial basis function). 

①Slow for large datasets and 

challenging to tune the 

hyperparameters (like the choice of 

kernel). 

②Memory-intensive, as it requires 

storing the entire training set for 

predictions. 

XGBoost 

(XGB) 

XGBoost is an efficient implementation 

of gradient-boosting algorithms, focusing 

on improving prediction accuracy by 

iteratively adding decision trees. 

①Highly efficient and scalable, 

suitable for large datasets. 

②Handles missing data automatically 

and includes regularization 

techniques to reduce overfitting. 

①Complex to tune and requires 

careful optimization of 

hyperparameters. 

②Can be slow to train for very large 

datasets if not optimized properly. 
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Table S2 Basic statistical parameters of TPH and heavy metal concentrations in soil and groundwater at the 

study site. 

 TPH As Co Ni Pb 

Soil 

(mg/kg) 

Statistics 

based on depth 

0 - 0.5 m

（n=459） 

Min ND 5.110 2.582 5.337 2.880 

Max 30000.000 51.227 280.953 714.864 1114.107 

Mean 502.397 14.352 15.289 31.839 38.383 

SD 1997.717 8.316 13.538 46.308 55.208 

DR% 97.17 100 100 100 100 

CV 3.976 0.579 0.885 1.454 1.438 

0.5 - 1.5 m 

（n=527） 

Min ND 1.165 3.866 12.146 9.849 

Max 26412.000 95.890 65.525 207.718 836.996 

Mean 654.204 14.218 14.273 27.957 34.464 

SD 1634.338 7.765 7.760 14.864 40.483 

DR% 93.36 100 100 100 100 

CV 2.498 0.546 0.544 0.532 1.175 

1.5 - 2.5 m 

（n=478） 

Min 6.000 2.049 4.164 11.087 11.705 

Max 39715.027 52.037 51.979 125.782 190.574 

Mean 821.069 13.650 14.089 27.547 30.798 

SD 2427.848 7.371 9.423 20.130 18.624 

DR% 100 100 100 100 100 

CV 2.957 0.540 0.669 0.731 0.605 

2.5 - 4.0 m 

（n=366） 

Min ND 1.615 4.964 10.272 13.102 

Max 8421.575 52.319 54.347 107.521 1204.567 

Mean 244.352 14.361 14.503 28.639 34.197 

SD 851.084 7.541 6.412 11.682 70.566 

DR% 90.16 100 100 100 100 

CV 3.483 0.525 0.442 0.408 2.064 

Soil reference value*1  826 40 40 150 400 

Groundwater 

(μg/L) 

Perched water 

（n=46) 

Min 40.000 0.300 0.780 0.710 1.450 

Max 44500.000 63.400 2778.000 2367.000 249.000 

Mean 4887.347 5.555 63.167 54.980 28.535 

SD 9020.447 12.247 391.899 333.803 42.375 

CV 1.846 2.205 6.204 6.071 1.485 

OSR% 95.65 4.348 2.174 2.174 6.522 

Pore water 

(n=69) 

Min 30.000 0.300 0.153 0.924 0.621 

Max 4140.000 18.500 93.225 282 358.593 

Mean 556.429 3.572 11.730 16.110 26.484 

SD 962.932 3.561 18.427 35.471 50.682 

CV 1.731 0.997 1.571 2.202 1.914 

OSR% 17.391 5.797 0 2.899 4.348 

Groundwater reference value*2  500 10 100 100 100 

*1: Risk intervention values (GB36600-2018)[1];*2: Risk intervention values (GB-T14848-2018[2] ；

GB3838-2002[3])；ND: Not detected; SD: Standard Deviation; DR: Detection rate; CV: Coefficient of 

Variation; OSR: Over-standard rate. 
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Table S3 The model fitting results 

  
Pre-training Validation Test 

R2 RMSE R2 RMSE R2 RMSE 

RF 

TPH 0.951 0.354 0.883 0.568 0.830 0.614 

As 0.929 0.103 0.728 0.197 0.800 0.170 

Co 0.948 0.082 0.695 0.174 0.697 0.173 

Ni 0.975 0.050 0.861 0.102 0.883 0.100 

Pb 0.994 0.030 0.978 0.067 0.964 0.072 

XGB 

TPH 0.916 0.463 0.875 0.588 0.825 0.622 

As 0.883 0.133 0.717 0.201 0.783 0.177 

Co 0.870 0.130 0.704 0.171 0.693 0.174 

Ni 0.984 0.041 0.880 0.095 0.870 0.105 

Pb 1.000 0.001 0.918 0.130 0.962 0.074 

SVM 

TPH 0.818 0.682 0.730 0.863 0.693 0.825 

As 0.792 0.177 0.739 0.193 0.780 0.179 

Co 0.792 0.164 0.698 0.173 0.682 0.177 

Ni 0.934 0.082 0.860 0.103 0.810 0.127 

Pb 0.970 0.065 0.741 0.231 0.796 0.170 

KNN 

TPH 1.000 0.000 0.548 1.116 0.458 1.096 

As 1.000 0.000 0.671 0.217 0.739 0.195 

Co 1.000 0.000 0.511 0.220 0.553 0.210 

Ni 1.000 0.000 0.605 0.172 0.670 0.168 

Pb 1.000 0.000 0.634 0.275 0.561 0.249 

ANN 

TPH 0.842 0.635 0.868 0.602 0.810 0.649 

As 0.781 0.182 0.684 0.212 0.812 0.165 

Co 0.852 0.138 0.599 0.199 0.672 0.180 

Ni 0.937 0.080 0.857 0.104 0.834 0.119 

Pb 0.995 0.027 0.991 0.042 0.983 0.049 

DTree 

TPH 0.942 0.385 0.779 0.781 0.690 0.829 

As 0.911 0.116 0.622 0.232 0.600 0.241 

Co 0.928 0.096 0.497 0.223 0.525 0.217 

Ni 0.962 0.062 0.804 0.121 0.817 0.125 

Pb 0.998 0.015 0.988 0.049 0.960 0.075 

EBM 

TPH 0.911 0.476 0.897 0.512 0.812 0.645 

As 0.840 0.156 0.724 0.198 0.791 0.174 

Co 0.858 0.136 0.708 0.170 0.692 0.175 

Ni 0.933 0.083 0.884 0.093 0.884 0.099 

Pb 0.987 0.043 0.956 0.095 0.981 0.051 

LR 

TPH 0.376 1.263 0.375 1.312 0.387 1.166 

As 0.670 0.224 0.706 0.205 0.709 0.206 

Co 0.529 0.247 0.516 0.219 0.495 0.224 

Ni 0.712 0.171 0.639 0.165 0.544 0.197 

Pb 0.522 0.260 0.626 0.278 0.558 0.250 
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Table S4 The Hyperparameter results of different models  

 Hyperparameter TPH As Co Ni Pb 

RF 

Max_depth 13 10 10 10 10 

Min_samples_split 10 6 2 2 4 

n_estimators 132 237 322 127 500 

XGB 

Learning_rate 0.059 0.048 0.169 0.126 0.3 

Max_depth 4 3 3 4 8 

n_estimators 104 217 50 150 104 

SVM 

C 8.030 1.023 1.251 3.341 9.493 

gamma scale scale scale scale scale 

kernel rbf rbf rbf rbf rbf 

KNN 
n_neighbors 9 9 8 6 7 

weigths distance distance distance distance distance 

DTree 
Max_depth 10 10 10 10 10 

Min_samples_split 9 9 10 9 6 

ANN 

activation tanh tanh tanh tanh tanh 

Hidden_layer_sizes (100.50) (100.50) (50,) (50,) (50,50) 

Learning_rate constant constant constant constant constant 

solver adam adam lbfgs lbfgs lbfgs 

EBM 

Learning_rate 0.066 0.010 0.010 0.010 0.010 

Max_bins 223 177 254 222 202 

Max_leaves 4 3 3 3 3 
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Table S5 Linear Regression Results 

   TPH As Co Ni Pb 

Perched 

water 

Convection 
Beta 0.365 0.056 0.142 0.796 0.188 

p 0.049* 0.836 0.531 0.071 0.528 

Diffusion 
Beta 0.888 0.363 0.193 0.193 0.114 

p 0.000*** 0.190 0.399 0.649 0.701 

Pore water 

Convection 
Beta 0.239 0.229 0.110 0.006 0.333 

p 0.298 0.464 0.715 0.989 0.202 

Diffusion 
Beta -0.012 0.414 0.359 -0.240 -0.192 

p 0.959 0.191 0.242 0.587 0.457 

*:p<0.05; ***:p<0.001 
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Fig. S1. Functional Zoning of the Study Site
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Fig. S2 Groundwater level contour map of the abandoned refinery 
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Fig. S3. Sampling Locations in the Abandoned Refinery's Soil 
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Fig. S4. Groundwater Sampling Locations at the Abandoned Refiner 
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Fig. S5. Model data segmentation diagram
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Fig. S6. Spatial Distribution of TPH and HMs in Groundwater. Panels (a) to (e) display the distribution of 

TPH, As, Co, Ni, and Pb in the perched water. Panels (f) to (j) illustrate the distribution of TPH, As, Co, Ni, 

and Pb in pore water. The Risk intervention values (GB-T14848-2018[2]；GB3838-2002[3]) for pollutants are 

as follows: TPH is set at 0.5 mg/kg, As at 10 μg/kg, Co at 100 μg/kg, Ni at 100 μg/kg, and Pb at 100 μ

g/kg. The orange or red areas indicate that the pollutant levels in these regions exceed the standard values. 
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Fig. S7. Relationship between soil depth and concentrations of TPH and HMs. (a) Based on importance 

indices from Random Forest; (b) based on SHAP value.  
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Fig. S8. Bootstrapped confidence intervals. (a) TPH, (b) As, (c) Co, (d) Ni, (e)Pb. 
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Fig. S9. Importance Indices of the Random Forest Model for TPH and HMs in perched water. TDS: Total 

dissolved solids; TH: Total hardness; D(.): Diffusion of TPH, As, Co, Ni, Pb; C(.): Convection of TPH, As, 

Co, Ni, Pb. 
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Fig. S10. SHAP value for TPH and HMs in perched water. TDS: Total dissolved solids; TH: Total hardness; 

D(.): Diffusion of TPH, As, Co, Ni, Pb; C(.): Convection of TPH, As, Co, Ni, Pb. 
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Fig. S11. Importance Indices of the Random Forest Model for TPH and HMs in pore water. 

TDS: Total dissolved solids; TH: Total hardness. D(.): Diffusion of TPH, As, Co, Ni, Pb; C(.): 

Convection of TPH, As, Co, Ni, Pb. 
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Fig. S12. SHAP value for TPH and HMs in pore water. TDS: Total dissolved solids; TH: 

Total hardness. D(.): Diffusion of TPH, As, Co, Ni, Pb; C(.): Convection of TPH, As, Co, Ni, 

Pb. 
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Fig. S13. The dependency plots between contaminant concentrations in perched water and 

convection/diffusion. (a)–(g) represent the dependency plots of TPH, As, Co, Ni and Pb on 

convection; (h)–(m) represent the dependency plots of TPH, As, Co, Ni and Pb on diffusion. 
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Fig. S14. The dependency plots between contaminant concentrations in pore water and 

convection/diffusion. (a)–(f) represent the dependency plots of TPH, As, Co, Ni and Pb on 

convection; (g)–(k) represent the dependency plots of TPH, As, Co, Ni and Pb on diffusion. 

  



 26 

References 

[1] P.R.C. Ministry of Ecology and Environment Soil Environmental Quality Risk Control 

Standard for Soil Contamination of Development Land (2018). China Beijing (Ed.) 

[2] P.R.C. Ministry of Ecology and Environment. Quality Standard for Groundwater (2018). 

China Beijing (Ed.) 

[3] P.R.C. Ministry of Ecology and Environment. Environmental Quality Standards for Surface 

Water (2002). China Beijing (Ed.) 

 


