Migration of Total Petroleum Hydrocarbons and heavy metals Contaminants in the Soil-Groundwater Interface of Petrochemical Site using machine learning: Impacts of Convection and Diffusion

Yingdong Wu^{1,2}, Jiang Yu^{1,2,3,*}, Zhi Huang^{1,2}, Yinying Jiang^{1,2}, Zixin Zeng^{1,2}, Lei Han^{1,2}, Siwei Deng^{1,4}, Jie

 $Yu^{1,2}$

¹Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China

² Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu, 610065,

PR China

³ Yibin Institute of Industrial Technology, Sichuan University, Yibin 644000, PR China ⁴Soil and Groundwater Pollution Prevention Research Institute, Sichuan Academy of

Eco-Environmental Sciences, 610046, Chengdu, P.R. China

* Corresponding author

E-mail address: yuj@scu.edu.cn(J.Yu).

The supplementary material (total of 27 pages including coversheet) contains 3 texts (Text S1-S3), 5 tables (Table S1-S5), and 14 figures (Fig. S1-S14).

TEXT S1 Description of Bayesian Optimization

1. What is Bayesian Optimization?

Bayesian Optimization is a sequential optimization strategy used to find the best parameters of a model by building a probabilistic model, typically a Gaussian Process, of the objective function. Instead of evaluating all possible combinations of parameters, Bayesian optimization selects parameter values based on a balance between exploring unknown regions of the parameter space and exploiting regions known to have high performance. By iteratively refining the model based on prior evaluations, it efficiently finds the optimal configuration of hyperparameters, reducing computational cost compared to grid or random search methods.

2. Parameter Search Space in Bayesian Optimization

In my models, we used different parameter ranges for Bayesian optimization across various machine learning algorithms to fine-tune their performance:

RF: The number of estimators (n_estimators) was searched between 100 and 500, maximum tree depth (max_depth) between 10 and 50, and minimum samples required to split a node (min_samples_split) from 2 to 10.

XGB: The search space included n_estimators from 50 to 300, learning rate (learning_rate) from 0.01 to 0.3, and maximum depth (max_depth) between 3 and 9.

SVM: The regularization parameter C was searched between 0.1 and 100 on a logarithmic scale, with gamma tested for both "scale" and "auto" values, and kernel functions tested between 'linear' and 'rbf'.

KNN: The number of neighbors (n_neighbors) was varied from 3 to 9, with weighting schemes (weights) between 'uniform' and 'distance'.

DTree: The max_depth was explored between 10 and 90, and min_samples_split from 2 to 10.

ANN: The hidden layer sizes (hidden_layer_sizes) were tested with combinations of (50,), (100,), (50, 50), and (100, 50), activation functions (activation) between 'relu' and 'tanh', solvers (solver) between 'adam' and 'lbfgs', and learning rates (learning_rate) between 'constant' and 'adaptive'.

EBM: The max_bins was set between 64 and 256, max_leaves between 3 and 7, and learning_rate from 0.01 to 0.1.

These ranges were designed to explore diverse settings and ensure the optimal configuration of each

algorithm is efficiently found through Bayesian optimization.

SHAP (Shapley Additive Explanations) is grounded in game theory and leverages Shapley values to explain the contribution of each feature in a model's predictions. The core idea is to distribute the prediction among the input features fairly, based on their contribution to the final output. Below are some key equations and concepts that underlie SHAP:

1. Shapley Value Formula

For a feature i, the Shapley value ϕ_i is calculated as:

$$\phi_i = \sum_{S \subseteq N \setminus \{i\}} \frac{|S|!(|N| - |S| - 1)!}{|N|!} [f(S \cup \{i\}) - f(S)]$$

Where: N is the set of all features; S is a subset of N that does not contain feature i; f(S) represents the prediction of the model using only the features in subset S; $f(S \cup \{i\}) - f(S)$ calculates the marginal contribution of feature i to the subset S.

This equation ensures that each feature's contribution is fairly attributed by considering all possible combinations of feature subsets.

2. Additive Feature Attribution

SHAP falls under additive feature attribution methods, where the explanation model is assumed to be linear with respect to the contributions of the features. The additive nature can be expressed as:

$$f(\mathbf{x}) = \boldsymbol{\emptyset}_0 + \sum_{i=1}^{M} \boldsymbol{\emptyset}_i$$

Where: f(x) is the output of the machine learning model for input x; ϕ_0 is the base value (i.e., the mean prediction across all samples); ϕ represents the Shapley value of feature iii, which indicates the contribution of feature i to the model prediction for the specific input x.

3. Efficiency, Symmetry, and Additivity

The Shapley values satisfy several important properties, which make them suitable for explaining machine

learning models:

Efficiency: The sum of all feature contributions ϕ_i phi_i ϕ_i equals the difference between the prediction and the base value.

Symmetry: If two features contribute equally to a model, their Shapley values will be identical.

Additivity: The Shapley values for multiple models can be combined to represent the ensemble.

4. Approximation for Large Models

For complex machine learning models, exact computation of Shapley values using the above formula can be computationally expensive. Therefore, approximate methods like KernelSHAP and TreeSHAP have been developed to compute Shapley values more efficiently.

KernelSHAP: A model-agnostic approach that approximates the Shapley values using weighted linear regression.

TreeSHAP: A specialized algorithm for decision trees, which allows for the efficient computation of exact Shapley values in tree-based models like random forests and gradient-boosting machines.

In summary, SHAP provides a robust, mathematically grounded approach for interpreting model predictions, ensuring transparency in machine learning through a fair distribution of feature contributions based on Shapley values. These formulas and principles make SHAP a powerful tool for model interpretability.

TEXT S3 Derivations and Assumptions of Convective and Diffusive Factors

1. Derivation and Assumptions for Convective Factor (Equation 3)

Equation (3) represents the change in pollutant concentration due to the convective process. Convection describes the transport of pollutants driven by fluid movement, and the change in concentration over time can be approximated by the time derivative of concentration:

$$C_{S} = \frac{\partial C}{\partial t}$$

Where: C_s is the convective factor, representing the rate of change in pollutant concentration over time; C is the pollutant concentration; T is time.

Assumptions:

Assumption 1: The convective process is steady, with pollutant transport dominated by the macroscopic movement of groundwater, and microscopic diffusion effects are neglected.

Assumption 2: The pollutant concentration changes over time can be approximated as a steady process, ignoring short-term fluctuations.

This assumption simplifies the description of the convective process, allowing it to capture the time-related changes in pollutant transport with fewer parameters.

2. Derivation and Assumptions for Diffusive Factor (Equation 4)

Equation (4) describes how the vertical concentration gradient of pollutants is calculated during the diffusion process. Based on Fick's law of diffusion, the rate of diffusion can be expressed as the gradient of concentration with respect to depth:

$$D_{s} = \frac{\partial C_{n}}{\partial z} = \frac{C_{n} - C_{n-1}}{Z_{n} - Z_{n-1}}$$

Where: D_s is the diffusive factor, representing the vertical change in concentration; C_n and C_{n-1} represent the pollutant concentrations in the n-th and n-1-th soil layers, respectively; Z_n represent the depths of the n-th and n-1-th layers.

Assumptions:

Assumption 1: The diffusion process occurs predominantly in the vertical direction, with lateral diffusion effects neglected.

Assumption 2: The change in pollutant concentration can be approximated by discrete soil layers, with uniform concentration assumed within each layer.

This method simplifies the complex three-dimensional diffusion process by focusing solely on the vertical concentration changes, enabling effective modeling of diffusion under limited data conditions.

ANNs consist of interconnected "neurons"()Can model highly non-linear and complex relationships.()Requires large amounts of data and computational resources for training.Networkinput, hidden, and output layers. Deep learning models, a subset of ANNs, involve stacking many layers to model highly complex tasks.()Effective for large datasets and tasks like image recognition, speech processing.()Prone to overfitting, especially with deep trees.Decision Tree (DTree)Decision trees split the dataset into smaller subsets by creating decision nodes based on feature values, leading to predictions at the tree's leaves.()Easy to interpret and understand, even for non-experts.()Prone to overfitting, especially with deep trees.Boosting (BEM)Model (GAM) that remains interpretable ble()Highly interpretable, suitable for scenarios requiring explainability.()Training can be slower compared to other ensemble modelsMachine (EBM)relationships. It's particularly designed for transparency.()Simple and intuitive to understanding of each feature's impact.()Computational resources for training.K-nearest s (KNN)prodict and traget variable by averaging the values of the K-nearest data s (KNN)()Dismple and intuitive to understand of each feature's impact.()Computationally expensive during prediction, especially with large datasets.K-nearest s (KNN)predictis the value of a target variable by averaging the values of the K-nearest data s (KNN)()Simple and intuitive to understand of each feature's impact.()Computationally expensive during prediction, especially with large datasets.K-nea
Artificial Neural input, hidden, and output layers, Deep input, hidden, and output layers. Deep learning models, a subset of ANNs, involve stacking many layers to model highly complex tasks.complex relationships. (2)Effective for large datasets and tasks like image recognition, speech processing.and computational resources for training.Decision Tree (DTree)Decision trees split the dataset into smaller subsets by creating decision nodes based on feature values, leading to predictions at the tree's leaves.①Easy to interpret and understand, even for non-experts.①Prone to overfitting, especially with deep trees.Explaina Ble Model (GAM) that remains interpretable ble Machine (EBM)EBM is a type of Generalized Additive transparency.①Highly interpretable, suitable for scenarios requiring explainability.①Training can be slower compared to other ensemble modelsK-nearest ble Modeli (SAN) (EBM)transparency.①Simple and intuitive to understand even for a training predictions are made directly in terms of predictive accuracy①Computationall resources for training.K-nearest ble Neighbor s (KNN)particularly designed for averaging the values of the K-nearest data predicts the value of a target variable by averaging the values of the K-nearest data s (KNN)OComputationally expensive during prediction, aspecially with large and implement.Linear regression models blobON need for a training phase—predictions are made directly from the dataset.②Computationally expensive are training.Linear regression models blobON need for a training phase—predictions are made directly from the datase
Neural Networkinput, hidden, and output layers. Deep learning models, a subset of ANNs, involve stacking many layers to model highly complex tasks.②Effective for large datasets and tasks like image recognition, speech processing. Decision Tree Decision Tree (DTree)Tree to interpret ads.③Derision trees split the dataset into smaller subsets by creating decision nodes based on feature values, leading to predictions at the tree's leaves.①Easy to interpret and understand, even for non-experts. ②Handles both numerical and categorical data.①Prone to overfitting, especially with deep trees.Explaina bleBBM is a type of Generalized Additive ble①Highly interpretable, suitable for scenarios requiring explainability.①Highly interpretable, suitable for scenarios requiring explainability.①Training can be slower compared to other ensemble modelsMachine relationships. It's particularly designed for weighbor s (KNN)Training can be slower compared tast as interpretable of each feature's impact.③Intermetationality.K-nearest s (KNN)predictive a target variable by averaging the values of the K-nearest data s (KNN)①Isimple and intuitive to understand and implement.①Computationally expensive during predictions are made directly from the dataset.②Sensitive to features.Linear repression models the relationship.①Ascume dimetry witch even or thick even or③Ascume dimetry the dataset.
Networklearning models, a subset of ANNs, involve stacking many layers to model highly complex tasks.tasks like image recognition, speech processing.②Difficult to interpret due to its black-box nature.Decision Tree (DTree)Decision trees split the dataset into smaller subsets by creating decision nodes based on feature values, leading to predictions at the tree's leaves.①Easy to interpret and understand, even for non-experts.①Prone to overfitting, especially with deep trees.Explaina Boosting Machine (EBM)EBM is a type of Generalized Additive while capturing both linear and non-linear relationships. It's particularly designed for transparency.①Highly interpretable, suitable for scenarios requiring explainability.①Training can be slower compared to other ensemble modelsK-nearest Neighbor s (KNN)predicts the value of a target variable by averaging the values of the K-nearest data s (KNN)①Simple and intuitive to understand and implement.①Computationally expensive during predictions are made directly from the dataset.①Sensitive to interpret and and implement.②Sensitive to the choice of K and scaling of features.
(ANN)involve stacking many layers to model highly complex tasks.processing.black-box nature.DecisionDecision trees split the dataset into smaller subsets by creating decision nodes based on feature values, leading to predictions at the tree's leaves.①Easy to interpret and understand, even for non-experts.①Prone to overfitting, especially with deep trees.ExplainaEBM is a type of Generalized Additive ble①Highly interpretable, suitable for scenarios requiring explainability.①Training can be slower compared to other ensemble modelsBoosting (EBM)while capturing both linear and non-linear predictis she value of a target variable by redicts the value of a target variable by s (KNN)②Isimple and intuitive to understand and implement.①Computationally expensive during predictions are made directly from the dataset.K-nearest s (KNN)predicts the values of the K-nearest data s (KNN)①Isimple to insplament and and implement.①Computationally expensive during gatasets.Linear regression models the relationship.①Simple to insplament and intervert from the dataset.①Acumes linearity which meru and
highly complex tasks.Decision Tree (DTree)Decision trees split the dataset into smaller subsets by creating decision nodes based on feature values, leading to predictions at the tree's leaves.①Easy to interpret and understand, even for non-experts.①Prone to overfitting, especially with deep trees.ExplainaEBM is a type of Generalized Additive ble①Highly interpretable, suitable for scenarios requiring explainability.①Training can be slower compared to other ensemble modelsBoosting (EBM)while capturing both linear and non-linear relationships. It's particularly designed for transparency.①Highly interpretable, suitable for scenarios requiring explainability.①May not be as powerful as less interpretable modelsK-nearest s (KNN)predicts the value of a target variable by averaging the values of the K-nearest s (KNN)①Simple and intuitive to understand and implement.①Computationally expensive during predictions are made directly from the dataset.②Censitive to the choice of K and scaling of features.
Decision Tree (DTree)Decision trees split the dataset into smaller subsets by creating decision nodes based on feature values, leading to predictions at the tree's leaves.①Easy to interpret and understand, even for non-experts.①Prone to overfitting, especially with deep trees.ExplainaEBM is a type of Generalized Additive ble①Highly interpretable, suitable for scenarios requiring explainability.①Training can be slower compared to other ensemble modelsBoosting While capturing both linear and non-linear (EBM)while capturing both linear and non-linear relationships. It's particularly designed for transparency.②Handles complex relationships while providing a clear understanding of each feature's impact.③May not be as powerful as less interpretable methods like XGBoost in terms of predictive accuracyK-nearest s (KNN)predicts the value of a target variable by neighbor③Simple and intuitive to understand and implement.①Computationally expensive during predictions are made directly from the dataset.③Sensitive to the choice of K and scaling of features.
Decisionsmaller subsets by creating decision nodes based on feature values, leading to predictions at the tree's leaves.even for non-experts.with deep trees.(DTree)predictions at the tree's leaves.(2Handles both numerical and categorical data.(2Sensitive to small variations in data, leading to instability.ExplainaEBM is a type of Generalized Additive ble(1Highly interpretable, suitable for scenarios requiring explainability.(1Training can be slower compared to other ensemble modelsBoosting while capturing both linear and non-linear (EBM)relationships. It's particularly designed for transparency.(2Handles complex relationships of each feature's impact.(1Training can be slower compared to other ensemble modelsK-nearest predicts the value of a target variable by Neighbor a (KNN)(1Simple and intuitive to understand and implement.(1Computationally expensive during predictions are made directly from the dataset.(1Computationally expensive during datasets.Linear regression models the relationship(1)Simple to implement and interpret from the dataset.(2)Asumes linearity, which mey pertice
Interbased on feature values, leading to predictions at the tree's leaves.(2) Handles both numerical and categorical data.(2) Sensitive to small variations in data, leading to instability.ExplainaEBM is a type of Generalized Additive ble(1) Highly interpretable, suitable for scenarios requiring explainability.(1) Training can be slower compared to other ensemble modelsBoosting Machine (EBM)while capturing both linear and non-linear relationships. It's particularly designed for krnearest(2) Handles complex relationships(2) May not be as powerful as less interpretable modelsKNN is a non-parametric algorithm that S (KNN)(1) Simple and intuitive to understand and implement.(1) Computationally expensive during predictions are made directly from the dataset.(1) Computationally expensive during genetiction, especially with large (2) Sensitive to the choice of K and scaling of features.
(Differ)predictions at the tree's leaves.categorical data.data, leading to instability.ExplainaEBM is a type of Generalized Additive ble①Highly interpretable, suitable for scenarios requiring explainability.①Training can be slower compared to other ensemble modelsBoosting Machinewhile capturing both linear and non-linear relationships. It's particularly designed for (EBM)②Handles complex relationships while providing a clear understanding of each feature's impact.③May not be as powerful as less interpretable methods like XGBoost in terms of predictive accuracyK-nearest predicts the value of a target variable by neighborOf each feature's impact.①Computationally expensive during prediction, especially with large (2No need for a training phase—predictions are made directly from the dataset.③Censitive to the choice of K and scaling of features.Linear regression models the relationship.①Simple to implement and interpret (1)Simple to implement and interpret (1)Simple to implement and interpret①Accuracy
ExplainaEBM is a type of Generalized Additive ble①Highly interpretable, suitable for scenarios requiring explainability.①Training can be slower compared to other ensemble modelsBoosting Machine (EBM)while capturing both linear and non-linear relationships. It's particularly designed for transparency.②Handles complex relationships②May not be as powerful as less interpretable methods like XGBoost in terms of predictive accuracyKNN is a non-parametric algorithm that NeighborNeighbor averaging the values of the K-nearest data s (KNN)③No need for a training phase—predictions are made directly from the dataset.③Censuitive to the choice of K and scaling of features.Linear regression models the relationship①Simple to implement and interpret①Accuracy
bleModel (GAM) that remains interpretablescenarios requiring explainability.to other ensemble modelsBoostingwhile capturing both linear and non-linear②Handles complex relationships②May not be as powerful as lessMachinerelationships. It's particularly designed for (EBM)while providing a clear understanding of each feature's impact.interpretable methods like XGBoost(EBM)transparency.of each feature's impact.in terms of predictive accuracyK-nearestpredicts the value of a target variable by Neighboraveraging the values of the K-nearest data s (KNN)②No need for a training phase—predictions are made directly from the dataset.②Sensitive to the choice of K and scaling of features.L inear regression models the relationship①Simple to implement and interpret①Assumes linearity, which meru not
Boostingwhile capturing both linear and non-linear②Handles complex relationships②May not be as powerful as lessMachinerelationships. It's particularly designed for transparency.while providing a clear understanding of each feature's impact.interpretable methods like XGBoost in terms of predictive accuracy(EBM)transparency.of each feature's impact.in terms of predictive accuracyKNN is a non-parametric algorithm that predicts the value of a target variable by averaging the values of the K-nearest data s (KNN)①Simple and intuitive to understand and implement.①Computationally expensive during prediction, especially with large datasets.s (KNN)points in the feature space.phase—predictions are made directly from the dataset.②Sensitive to the choice of K and scaling of features.Linear regression models the relationship①Simple to implement and interpret①Assumes linearity, which may not
Machinerelationships. It's particularly designed for transparency.while providing a clear understanding of each feature's impact.interpretable methods like XGBoost in terms of predictive accuracy(EBM)transparency.of each feature's impact.in terms of predictive accuracyKNN is a non-parametric algorithm that(1)Simple and intuitive to understand and implement.(1)Computationally expensive during prediction, especially with large datasets.Neighboraveraging the values of the K-nearest data s (KNN)(2)No need for a training phase—predictions are made directly from the dataset.(2)Sensitive to the choice of K and scaling of features.Linear regression models the relationship(1)Simple to implement and interpret(1)A sequence linearity, which may not
(EBM)transparency.of each feature's impact.in terms of predictive accuracyKNN is a non-parametric algorithm that①Simple and intuitive to understand①Computationally expensive duringK-nearestpredicts the value of a target variable byand implement.①Computationally expensive duringNeighboraveraging the values of the K-nearest data②No need for a trainingdatasets.s (KNN)points in the feature space.phase—predictions are made directly③Sensitive to the choice of K andL inear regression models the relationship①Simple to implement and interpret①A sequence linearity, which may not
KNN is a non-parametric algorithm that①Simple and intuitive to understand①Computationally expensive duringK-nearestpredicts the value of a target variable byand implement.prediction, especially with largeNeighboraveraging the values of the K-nearest data②No need for a trainingdatasets.s (KNN)points in the feature space.phase—predictions are made directly③Sensitive to the choice of K andL inear regression models the relationship①Simple to implement and interpret①A sumes linearity, which may not
K-nearest predicts the value of a target variable by and implement. prediction, especially with large Neighbor averaging the values of the K-nearest data ②No need for a training datasets. s (KNN) points in the feature space. phase—predictions are made directly ③Sensitive to the choice of K and from the dataset. scaling of features. L inear regression models the relationship ①Simple to implement and interpret ①A sumes linearity, which may not
Neighbor averaging the values of the K-nearest data ②No need for a training datasets. s (KNN) points in the feature space. phase—predictions are made directly ②Sensitive to the choice of K and from the dataset. Linear regression models the relationship ①Simple to implement and interpret ①A sumes linearity, which may not
s (KNN) points in the feature space. phase—predictions are made directly ②Sensitive to the choice of K and from the dataset. Linear regression models the relationship ①Simple to implement and interpret ①A sumes linearity, which may not
from the dataset. scaling of features.
Linear regression models the relationship (1) Simple to implement and interpret (1) Assumes linearity, which may not
Linear Tegression models die relationship (Johnpie to implement and interpret. (JAssumes intearity, which may not
Regressio between the dependent variable and one (2)Computationally efficient and always be accurate.
n (LR) or more independent variables using a well-suited for small datasets. (2)Vulnerable to multicollinearity
straight line (linear function). (correlated features) and outliers.
Random Forest builds multiple decision (1) High accuracy and robustness to (1) Difficult to interpret individual
Forest Forest a random subset of overfitting. trees within the forest.
(RF) features) and averages their predictions to (2)Can handle missing data and (2)Can be computationally intensive
improve accuracy and reduce overfitting. If eature importance can be derived. and slow on very large datasets.
SVMs find the hyperplane that best (DEffective in high-dimensional (DSlow for large datasets and
Support Support
Vector Vector
Machine also fit data with a margin of tolerance. Kernel functions (linear, polynomial, Kernel).
(SVM) (SVM)
storing the entire training set for
predictions.
of gradient-boosting algorithms focusing
XGBoost on improving prediction accuracy by 20 Handles missing data automatically hyperparameters
(XGB) iteratively adding decision trees and includes regularization (2)Can be slow to train for very large
techniques to reduce overfitting datasets if not ontimized properly

Table S1 Comparison of the advantages and disadvantages of machine learning algorithms used in this study.

- Brudy B			ТРН	As	Co	Ni	Ph
		Min	ND	5 110	2 582	5 337	2 880
		Max	30000 000	51 227	280 953	714 864	1114 107
	0 - 0.5 m	Mean	502.397	14.352	15.289	31.839	38.383
	(n=459)	SD	1997.717	8.316	13.538	46.308	55.208
		DR%	97.17	100	100	100	100
		CV	3.976	0.579	0.885	1.454	1.438
		Min	ND	1.165	3.866	12.146	9.849
		Max	26412.000	95.890	65.525	207.718	836.996
	0.5 - 1.5 m	Mean	654.204	14.218	14.273	27.957	34.464
	(n=527)	SD	1634.338	7.765	7.760	14.864	40.483
		DR%	93.36	100	100	100	100
a 11	Statistics	CV	2.498	0.546	0.544	0.532	1.175
Soil	based on depth	Min	6.000	2.049	4.164	11.087	11.705
(mg/kg)		Max	39715.027	52.037	51.979	125.782	190.574
	1.5 - 2.5 m	Mean	821.069	13.650	14.089	27.547	30.798
	(n=478)	SD	2427.848	7.371	9.423	20.130	18.624
		DR%	100	100	100	100	100
		CV	2.957	0.540	0.669	0.731	0.605
		Min	ND	1.615	4.964	10.272	13.102
		Max	8421.575	52.319	54.347	107.521	1204.567
	2.5 - 4.0 m	Mean	244.352	14.361	14.503	28.639	34.197
	(n=366)	SD	851.084	7.541	6.412	11.682	70.566
		DR%	90.16	100	100	100	100
		CV	3.483	0.525	0.442	0.408	2.064
	Soil reference value* ¹		826	40	40	150	400
		Min	40.000	0.300	0.780	0.710	1.450
Groundwater (µg/L)		Max	44500.000	63.400	2778.000	2367.000	249.000
	Perched water	Mean	4887.347	5.555	63.167	54.980	28.535
	(n=46)	SD	9020.447	12.247	391.899	333.803	42.375
		CV	1.846	2.205	6.204	6.071	1.485
		OSR%	95.65	4.348	2.174	2.174	6.522
		Min	30.000	0.300	0.153	0.924	0.621
		Max	4140.000	18.500	93.225	282	358.593
	Pore water	Mean	556.429	3.572	11.730	16.110	26.484
	(n=69)	SD	962.932	3.561	18.427	35.471	50.682
		CV	1.731	0.997	1.571	2.202	1.914
		OSR%	17.391	5.797	0	2.899	4.348
	Groundwater reference value* ²		500	10	100	100	100

Table S2 Basic statistical parameters of TPH and heavy metal concentrations in soil and groundwater at the study site.

*¹: Risk intervention values (GB36600-2018)^[1];*²: Risk intervention values (GB-T14848-2018^[2]; GB3838-2002^[3]); ND: Not detected; SD: Standard Deviation; DR: Detection rate; CV: Coefficient of Variation; OSR: Over-standard rate.

	-	Pre-training		Valio	dation	Т	Test		
		\mathbb{R}^2	RMSE	\mathbb{R}^2	RMSE	\mathbf{R}^2	RMSE		
	TPH	0.951	0.354	0.883	0.568	0.830	0.614		
	As	0.929	0.103	0.728	0.197	0.800	0.170		
RF	Со	0.948	0.082	0.695	0.174	0.697	0.173		
	Ni	0.975	0.050	0.861	0.102	0.883	0.100		
	Pb	0.994	0.030	0.978	0.067	0.964	0.072		
	TPH	0.916	0.463	0.875	0.588	0.825	0.622		
	As	0.883	0.133	0.717	0.201	0.783	0.177		
XGB	Co	0.870	0.130	0.704	0.171	0.693	0.174		
	Ni	0.984	0.041	0.880	0.095	0.870	0.105		
	Pb	1.000	0.001	0.918	0.130	0.962	0.074		
	TPH	0.818	0.682	0.730	0.863	0.693	0.825		
	As	0.792	0.177	0.739	0.193	0.780	0.179		
SVM	Co	0.792	0.164	0.698	0.173	0.682	0.177		
	Ni	0.934	0.082	0.860	0.103	0.810	0.127		
	Pb	0.970	0.065	0.741	0.231	0.796	0.170		
	TPH	1.000	0.000	0.548	1.116	0.458	1.096		
	As	1.000	0.000	0.671	0.217	0.739	0.195		
KNN	Co	1.000	0.000	0.511	0.220	0.553	0.210		
	Ni	1.000	0.000	0.605	0.172	0.670	0.168		
	Pb	1.000	0.000	0.634	0.275	0.561	0.249		
	TPH	0.842	0.635	0.868	0.602	0.810	0.649		
	As	0.781	0.182	0.684	0.212	0.812	0.165		
ANN	Co	0.852	0.138	0.599	0.199	0.672	0.180		
	Ni	0.937	0.080	0.857	0.104	0.834	0.119		
	Pb	0.995	0.027	0.991	0.042	0.983	0.049		
	TPH	0.942	0.385	0.779	0.781	0.690	0.829		
DTree	As	0.911	0.116	0.622	0.232	0.600	0.241		
	Co	0.928	0.096	0.497	0.223	0.525	0.217		
	Ni	0.962	0.062	0.804	0.121	0.817	0.125		
	Pb	0.998	0.015	0.988	0.049	0.960	0.075		
EBM	TPH	0.911	0.476	0.897	0.512	0.812	0.645		
	As	0.840	0.156	0.724	0.198	0.791	0.174		
	Co	0.858	0.136	0.708	0.170	0.692	0.175		
	Ni	0.933	0.083	0.884	0.093	0.884	0.099		
	Pb	0.987	0.043	0.956	0.095	0.981	0.051		
	TPH	0.376	1.263	0.375	1.312	0.387	1.166		
	As	0.670	0.224	0.706	0.205	0.709	0.206		
LR	Co	0.529	0.247	0.516	0.219	0.495	0.224		
	Ni	0.712	0.171	0.639	0.165	0.544	0.197		
	Pb	0.522	0.260	0.626	0.278	0.558	0.250		

 Table S3 The model fitting results

	Hyperparameter	ТРН	As	Со	Ni	Pb
RF	Max_depth	13	10	10	10	10
	Min_samples_split	10	6	2	2	4
	n_estimators	132	237	322	127	500
XGB	Learning_rate	0.059	0.048	0.169	0.126	0.3
	Max_depth	4	3	3	4	8
	n_estimators	104	217	50	150	104
SVM	С	8.030	1.023	1.251	3.341	9.493
	gamma	scale	scale	scale	scale	scale
	kernel	rbf	rbf	rbf	rbf	rbf
KNN	n_neighbors	9	9	8	6	7
	weigths	distance	distance	distance	distance	distance
DTree	Max_depth	10	10	10	10	10
	Min_samples_split	9	9	10	9	6
ANN	activation	tanh	tanh	tanh	tanh	tanh
	Hidden_layer_sizes	(100.50)	(100.50)	(50,)	(50,)	(50,50)
	Learning_rate	constant	constant	constant	constant	constant
	solver	adam	adam	lbfgs	lbfgs	lbfgs
EBM	Learning_rate	0.066	0.010	0.010	0.010	0.010
	Max_bins	223	177	254	222	202
	Max_leaves	4	3	3	3	3

Table S4 The Hyperparameter results of different models

	Table SS Linear Regression Results						
			TPH	As	Со	Ni	Pb
Perched	Convection	Beta	0.365	0.056	0.142	0.796	0.188
		р	0.049*	0.836	0.531	0.071	0.528
water	Diffusion	Beta	0.888	0.363	0.193	0.193	0.114
		р	0.000***	0.190	0.399	0.649	0.701
Pore water	Convection	Beta	0.239	0.229	0.110	0.006	0.333
		р	0.298	0.464	0.715	0.989	0.202
	Diffusion	Beta	-0.012	0.414	0.359	-0.240	-0.192
		р	0.959	0.191	0.242	0.587	0.457

Table S5 Linear Regression Results

*:p<0.05; ***:p<0.001

Fig. S1. Functional Zoning of the Study Site

Fig. S2 Groundwater level contour map of the abandoned refinery

Fig. S3. Sampling Locations in the Abandoned Refinery's Soil

Fig. S4. Groundwater Sampling Locations at the Abandoned Refiner

Fig. S5. Model data segmentation diagram

Fig. S6. Spatial Distribution of TPH and HMs in Groundwater. Panels (a) to (e) display the distribution of TPH, As, Co, Ni, and Pb in the perched water. Panels (f) to (j) illustrate the distribution of TPH, As, Co, Ni, and Pb in pore water. The Risk intervention values (GB-T14848-2018^[2]; GB3838-2002^[3]) for pollutants are as follows: TPH is set at 0.5 mg/kg, As at 10 μ g/kg, Co at 100 μ g/kg, Ni at 100 μ g/kg, and Pb at 100 μ g/kg. The orange or red areas indicate that the pollutant levels in these regions exceed the standard values.

Fig. S7. Relationship between soil depth and concentrations of TPH and HMs. (a) Based on importance indices from Random Forest; (b) based on SHAP value.

Fig. S8. Bootstrapped confidence intervals. (a) TPH, (b) As, (c) Co, (d) Ni, (e)Pb.

Fig. S9. Importance Indices of the Random Forest Model for TPH and HMs in perched water. TDS: Total dissolved solids; TH: Total hardness; D(.): Diffusion of TPH, As, Co, Ni, Pb; C(.): Convection of TPH, As, Co, Ni, Pb.

Fig. S10. SHAP value for TPH and HMs in perched water. TDS: Total dissolved solids; TH: Total hardness; D(.): Diffusion of TPH, As, Co, Ni, Pb; C(.): Convection of TPH, As, Co, Ni, Pb.

Fig. S11. Importance Indices of the Random Forest Model for TPH and HMs in pore water. TDS: Total dissolved solids; TH: Total hardness. D(.): Diffusion of TPH, As, Co, Ni, Pb; C(.): Convection of TPH, As, Co, Ni, Pb.

Fig. S12. SHAP value for TPH and HMs in pore water. TDS: Total dissolved solids; TH: Total hardness. D(.): Diffusion of TPH, As, Co, Ni, Pb; C(.): Convection of TPH, As, Co, Ni, Pb.

Fig. S13. The dependency plots between contaminant concentrations in perched water and convection/diffusion. (a) - (g) represent the dependency plots of TPH, As, Co, Ni and Pb on convection; (h) - (m) represent the dependency plots of TPH, As, Co, Ni and Pb on diffusion.

Fig. S14. The dependency plots between contaminant concentrations in pore water and convection/diffusion. (a) - (f) represent the dependency plots of TPH, As, Co, Ni and Pb on convection; (g) - (k) represent the dependency plots of TPH, As, Co, Ni and Pb on diffusion.

References

[1] P.R.C. Ministry of Ecology and Environment Soil Environmental Quality Risk Control Standard for Soil Contamination of Development Land (2018). China Beijing (Ed.)

[2] P.R.C. Ministry of Ecology and Environment. Quality Standard for Groundwater (2018). China Beijing (Ed.)

[3] P.R.C. Ministry of Ecology and Environment. Environmental Quality Standards for Surface Water (2002). China Beijing (Ed.)