Synthesis, mixed-spin-state structure and Langmuir-Blodgett deposition of amphiphilic Fe(III) quinolylsalicylaldimine complexes

Peeranuch Poungsripong,^b Theerapoom Boonprab,^a Phimphaka Harding,^a Keith S. Murray,^c Wasinee Phonsri,^c Ningjin Zhang^d, Jonathan A. Kitchen^{e⁺} and David J. Harding^{a⁺}

^a School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand

Previous address: Functional Materials and Nanotechnology Centre of Excellence, Walailak University, Thasala, Nakhon Si Thammarat, 80160, Thailand

^b Functional Materials and Nanotechnology Centre of Excellence, Walailak University, Thasala, Nakhon Si Thammarat, 80160, Thailand

^c School of Chemistry, Monash University, Clayton, Victoria 3800, Australia

^d School of Chemistry, University of Southampton, Highfield, Southampton, SO17 3SJ, United Kingdom

^e Department of Chemistry, Auckland University of Technology, New Zealand.

^f The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand

E-mail: david@g.sut.ac.th or jonathan.kitchen@aut.ac.nz

Contents

Synthesis of the pre-ligands and Hqsal-OR; $R = C_{12}H_{25}$, $C_{16}H_{33}$ and $C_{22}H_{45}$	1
NMR spectra of Hqsal-OR; R = C ₁₂ H ₂₅ , C ₁₆ H ₃₃ and C ₂₂ H ₄₅	5
FT-IR and UV-Visible absorption spectra of Hqsal-OR	8
Mass spectra of Hqsal-OR and [Fe(qsal-OR)₂]NO₃ (1-3)	9
FT-IR and UV-Visible absorption spectra of [Fe(qsal-OR)2]NO3 (1-3)	13
Crystallographic data for Hqsal-OC ₁₂ H ₂₅ and 1	14
Powder X-ray diffraction (PXRD) of [Fe(qsal-OR)2]NO3 (1,3)	18
Langmuir data for Hqsal-OR and [Fe(qsal-OR)2]NO₃ (1,3)	18

Synthesis of the pre-ligands and Hqsal-OR; R = C₁₂H₂₅, C₁₆H₃₃ and C₂₂H₄₅

The alkoxysalicyladehydes were synthesized using the procedure described by Albrecht and coworkers (C. Gandolfi, C. Moitzi, P. Schurtenberger, G. G. Morgan and M. Albrecht, *J. Am. Chem. Soc.*, 2008, **130**, 14434–14435). We include details of these pre-ligands in the interests of completeness.

Synthesis of 4-(dodecyloxy)salicylaldehyde

To a solution of 2,4-dihydroxybenzaldehyde (1.86 g, 13.2 mmol) in DMF (15 mL) was added NaHCO₃ (1.11 g, 13.2 mmol). After 10 min stirring at RT, 1-bromododecane (3.163 mL, 13.2 mmol) in THF (20 mL) was slowly added. The mixture was heated to 120 °C for overnight under Ar. After cooling to RT, aqueous HCl (1 M, 100 mL) was added, and the mixture was stirred vigorously and then filtered. Purification by column chromatography (SiO₂, hexane-ethyl acetate 9:1) afforded a micro analytically pure white solid (2.71 g, 67%). v_{max}/cm⁻¹ 3053, 2919 (alkyl chain), 2852 (alkyl chain), 1673 (C=O).

Synthesis of 4-(hexyloxy)salicylaldehyde

To a solution of 2,4-dihydroxybenzaldehyde (1.86 g, 13.2 mmol) in DMF (20 mL) was added NaHCO₃ (1.11 g, 13.2 mmol). After 10 min stirring at RT, 1-bromohexadecane (4.0305 mL, 13.2 mmol) in THF (20 mL) was slowly added. The mixture was heated to 120 °C for overnight under Ar. After cooling to RT, aqueous HCl (1 M, 100 mL) was added until pH \approx 7, and the mixture was stirred vigorously and then cooled in the fridge. The residue was suspended, filtered to give the title compound as a pale-cream solid (3.57 g, 74%). v_{max}/cm⁻¹ 3057, 2920 (alkyl chain), 2851 (alkyl chain), 1671 (C=O).

Synthesis of 4-(docoxyloxy)salicylaldehyde

To a solution of 2,4-dihydroxybenzaldehyde (1.86 g, 13.2 mmol) in DMF (20 mL) was added NaHCO₃ (1.11 g, 13.2 mmol). After 10 min stirring at RT, 1-bromodocosane (4.50 g, 11.0 mmol) in DMF–THF (1:4 v/v, 25 mL) was slowly added. The mixture was heated to 120 °C for overnight under Ar. After cooling to RT, aqueous HCl (1 M, 100 mL) was added about 10 mL, and the mixture was stirred vigorously and then filtered. The residue was suspended in acetone (50 mL), filtered, dissolved solid in THF (250 mL), and then left overnight. A brownish precipitate was filtered off. The solution was evaporated and EtOH was added, giving pale-purple powder. The pale-purple powder was dissolved in warm THF (20 mL), cooled in the fridge, and then filtered to give a pale-grey solid (3.26 g, 55%). v_{max} /cm⁻¹ 3055, 2918 (alkyl chain), 2851 (alkyl chain), 1676 (C=O).

Synthesis of Hqsal-OC12H25

To a solution of 4-(dodecyloxy)salicylaldehyde (1.22 g, 4.0 mmol) in DCM (10 mL) was added 8-aminoquinoline (0.57 g, 4.0 mmol). Then a few drops of trifluoroacetic acid were added to the solution. The solution was stirred overnight under nitrogen, and then evaporated to dryness (yellow solid). This solid was washed with hexane and diethyl-ether to give the title compound as a yellow solid (1.43 g, 83%). HRMS (ESI+) m/z 433.2848 [M+H]⁺ (Calcd. for C₂₈H₃₇N₂O₂, 433.2850). 11.48 (1H, s, imine CH), 9.70 (1H, d, J=0.48 Hz, OH), 8.82 (1H, dd, J=6.00, 2.60, Ar_q-CH), 8.14 (1H, dd, J=8.28, 1.64 Hz, Ar_q-CH), 7.41 (2H, m, Ar_q-CH), 7.36 (1H, d, J=7.68 Hz, Ar_q-CH), 7.18 (1H, dd, J=8.16, 1.16 Hz, Ar_q-CH), 6.97 (1H, dd, J=7.54, 1.18 Hz, Ar_s-CH), 6.53 (1H, dd, J=8.68, 2.32 Hz, Ar_s-CH), 6.41 (1H, d, J=2.32 Hz, Ar_s-CH), 4.00 (2H, t, J=6.56 Hz, OCH₂), 1.78 (2H, m, OCH₂CH₂), 1.44 (2H, m, OCH₂CH₂CH₂), 1.26 (16H, m, 18 x alkyl-chain CH₂), 0.88 (3H, t, J=13.84 Hz, CH₂CH₃). v_{max}/cm⁻¹ 3061, 2921 (alkyl chain), 2850 (alkyl chain), 1622 (C=N).

Synthesis of Hqsal-OC16H33

To a solution of 4-(hexyloxy)salicylaldehyde (0.75 g, 2.0 mmol) in DCM (10 mL) was added 8aminoquinoline (0.29 g, 2.0 mmol). Then a few drops of trifluoroacetic acid were added to the solution. The solution was stirred overnight under nitrogen, and then evaporated to dryness (yellow solid). This solid was washed with hexane and diethyl-ether to give the title compound as a yellow solid (0.87 g, 90%). HRMS (ESI+) *m/z* 489.3482 [M+H]⁺ (Calcd. for C₃₂H₄₅N₂O₂, 489.3476). 11.48 (1H, s, imine CH), 9.70 (1H, d, J=0.44 Hz, OH), 8.78 (1H, dd, J=4.18, 1.70, Ar_q-CH), 8.10 (1H, dd, J=8.32, 1.68 Hz, Ar_q-CH), 7.39 (2H, m, Ar_q-CH), 7.34 (1H, d, J=7.56 Hz, Ar_q-CH), 7.16 (1H, dd, J=8.14, 1.18 Hz, Ar_q-CH), 6.95 (1H, dd, J=7.48, 1.24 Hz, Ar_s-CH), 6.53 (1H, dd, J=8.66, 2.34 Hz, Ar_s-CH), 6.41 (1H, d, J=2.04 Hz, Ar_s-CH), 4.00 (2H, t, J=6.58 Hz, OCH₂), 1.79 (2H, m, OCH₂CH₂), 1.45 (2H, m, OCH₂CH₂CH₂), 1.25 (24H, m, 18 x alkyl-chain CH₂), 0.88 (3H, t, J=13.74 Hz, CH₂CH₃). v_{max}/cm⁻¹ 3063, 2921 (alkyl chain), 2850 (alkyl chain), 1618 (C=N).

Synthesis of Hqsal-OC22H45

To a solution of 4-(docosyloxy)salicylaldehyde (0.89 g, 2.0 mmol) in DCM (10 mL) was added 8aminoquinoline (0.29 g, 2.0 mmol). Then a few drops of trifluoroacetic acid were added to the solution. The solution was stirred overnight under nitrogen, and then evaporated to dryness (yellow solid). This solid was washed with hexane and diethyl-ether to give the title compound as a yellow solid (1.13 g, 99%). HRMS (ESI+) *m/z* 573.4413 [M+H]⁺ (Calcd. for C₃₈H₅₇N₂O₂, 573.4415). δ H(400 MHz; CDCl₃) 11.48 (1H, s, imine CH), 9.70 (1H, d, J=0.39 Hz, OH), 8.88 (1H, dd, J=4.39, 1.66, Ar_q-CH), 8.21 (1H, dd, J=8.34, 1.61 Hz, Ar_q-CH), 7.46 (1H, dd, 8.32, 4.41 Hz, Ar_q-CH), 7.40 (2H, m, Ar_q-CH), 7.21 (1H, dd, J=8.15, 1.14 Hz, Ar_q-CH), 6.99 (1H, dd, J=7.55, 1.18 Hz, Ar_s-CH), 6.52 (1H, dd, J=8.67, 2.32 Hz, Ar_s-CH), 6.41 (1H, d, J=2.28 Hz, Ar_s-CH), 4.00 (2H, t, J=6.57 Hz, OCH₂), 1.79 (2H, m, OCH₂CH₂), 1.44 (2H, m, OCH₂CH₂CH₂), 1.25 (36H, m, 18 x alkyl-chain CH₂), 0.88 (3H, t, J=13.74 Hz, CH₂CH₃). v_{max}/cm⁻¹ 3060, 2917 (alkyl chain), 2849 (alkyl chain), 1626 (C=N).

NMR spectra of Hqsal-OR; $R = C_{12}H_{25}$, $C_{16}H_{33}$ and $C_{22}H_{45}$

Figure S1 ¹H-NMR (CDCl₃) of Hqsal-OC₁₂H₂₅

Figure S2 ¹H-NMR (CDCl₃) of Hqsal-OC₁₆H₃₃

Figure S3 ¹H-NMR (CDCl₃) of Hqsal-OC₂₂H₄₅

FT-IR and UV-Visible absorption spectra of Hqsal-OR

Figure S4 FT-IR spectra of Hqsal-OR ligands.

Mass spectra of Hqsal-OR and [Fe(qsal-OR)₂]NO₃ (1-3)

Figure S8 Mass spectrum (ESI+) of Hqsal-OC₂₂H₄₅

Figure S9 Observed (top) and calculated (bottom) isotope pattern (ESI+) of 1

Figure S10 Observed (top) and calculated (bottom) isotope pattern (ESI+) of 2

Figure S11 Observed (top) and calculated (bottom) isotope pattern (ESI+) of 3

FT-IR and UV-Visible absorption spectra of [Fe(qsal-OR)₂]NO₃ (1-3)

Figure S12 FT-IR spectra of 1-3

Figure S13 UV-Visible absorption spectra (MeOH, 0.0001 M) of 1-3.

Crystallographic data for Hqsal-OC $_{12}\rm H_{25}$ and 1

Figure S14 a) Asymmetric unit and b) packing diagram of Hqsal-OC₁₂H₂₅.

Figure S15 Asymmetric unit of 1.

and SI crystanographic data and remement parameters for right Oct2/123 and I			
	Hqsal-OC ₁₂ H ₂₅	1	
Formula	$C_{28}H_{36}N_2O_2 \cdot 2/3CH_3COOH \cdot 1/3H_2O$	$C_{56}H_{70}FeN_5O_7 \cdot CH_2Cl_2$	
т (к)	293(2)	293(2)	
MW (g/mol)	472.24	1065.94	
Radiation	ΜοΚ/α	ΜοΚ/α	
λ (Å)	0.71073	0.71073	
Crystal system	Triclinic	Triclinic	
Space group	PĪ	РĪ	
a (Å)	10.5229(3)	10.1979(3)	
b (Å)	13.1254(3)	15.7859(6)	
c (Å)	30.4202(6)	35.2696(11)	
α (°)	95.812(2)	87.523(3)	
β (°)	97.764(2)	83.973(3)	
γ (°)	100.884(2)	72.534(3)	
Cell volume (Å ³)	4053.30(17)	5385.7(3)	
Z	18	4	
μ (mm ⁻¹)	0.082	0.436	
Reflections collected	18590	18922	
Independent reflections,	13617, 3.85	12359, 7.09	
R _{int} (%)			
<i>R</i> -Factor (%), w <i>R</i> ₂ (%)	6.19, 15.66	7.86, 15.83	
CCDC No.			

Table S1 Crystallographic data and refinement parameters for Hqsal-OC₁₂H₂₅ and $\bf{1}$

Table S2 Intermolecular interaction in Hqsal-OC_{12}H_{25}

Interaction	Distance (Å)		
Intramolecular imine in keto form			
N2-H…O1	1.515		
N4-H…O3	1.968		
N6-H…O5	2.013		
Solvent mediated intermolecular interaction			
07-H…01	1.515		
O9-H…O3	1.426		
C1-H…O11	2.638		
C41-H…O5	2.508		
C43-H…O9	2.647		
C35-H…O10	2.493		
C38-H…O10	2.368		
C63-H…O1	2.636		
C66-H…O7	2.371		
C88-H…O8	2.639		
011-H…05	1.602		
011-H…O9	2.058		
π mediated intermolecular interaction			
π(sal)…π(quin)	3.364, 3.431		
C47-H···π(sal)	3.480		
C51-H…π(quin)	3.122, 3.227		

Parameters	Fe1 (LS)	Fe2 (HS)
Fe-O _{avg} (Å)	1.882	1.912
Fe-N _{imine} (Å)	1.931	2.114
Fe-N _{quin} (Å)	1.972	2.136
Fe-N _{avg} (Å)	1.952	2.125
Fe-O/N _{avg} (Å)	1.928	2.019
∆Fe-O/N _{avg} (Å)	-	0.091
Σ(°)	49.6	71.1
Θ (°)	131	250
ΔΣ, ΔΘ (°)	-	21.5, 119

Table S3 Fe-ligand bond lengths, angles and octahedral distortions parameters in

[Fe(qsal-OC₁₂H₂₅)₂]NO₃ 1

Interaction	Distance (Å)			
Interaction betwe	en 2 Fe center and			
corresponding nitrate and CH ₂ Cl ₂				
$\pi_{quin}\cdots\pi_{sal}$	4.382			
C89-H…π _{quin}	2.961			
C90-H…π _{quin}	2.951			
C68-H…π _{sal}	3.334			
C69-H…O3	3.004			
C101-H…O6	2.740			
C1-H…O10	2.496			
C2-H…O9	2.493			
C73-H…O11	2.669			
C57-H…O14	2.647			
C58-H…O12	2.537			
C113-H…O3	3.036			
C113-H…π _{sal}	2.678			
C36-H…Cl1	3.144			
C45-H…Cl1	3.260			
C91-H…Cl2	3.471			
05…Cl3	3.501			
C114-H…O13	2.515			
Interaction between Fe	center in the 2-D plane			
with same typ	e of Fe center			
C7-H…O4	2.770			
C10-H…O4	2.770			
$\pi_{quin}\cdots\pi_{quin}$	3.886			
Interaction between 2-D plane mediated by				
nitrate a	nd CH ₂ Cl ₂			
C74-H…O9	2.572			
C18-H…O10	2.612			
C59-H…O11	2.557			
C73-H…O11	2.669			
C74-H…O11	2.618			
C75-H…O11	2.538			
C21-H…O12	2.576			
C114-H…O12	2.515			
C23-H…O13	2.497			
C26-H…O13	2.441			
C26-H…O14	2.756			
Interaction between 2	bilaver linked by CH ₂ Cl ₂			
C100-H…Cl2	3.059			
Fe-Fe distances	in the 2-D plane			
Fe1···· Fe1	10.198, 12.877			
Fe2 Fe2	10.198, 10.209			
Fe1 Fe1	25.298			
(across bilaver)	23.230			
	28,865			
(across bilaver)	20.000			

Table S4 Intermolecular interaction in $[Fe(qsal-OC_{12}H_{25})_2]NO_3$ 1

Powder X-Ray diffraction (PXRD) of [Fe(qsal-OR)₂]NO₃ (1-3)

Figure S16 PXRD patterns of 1-3.

Langmuir data for Hqsal-OR and [Fe(qsal-OR)₂]NO₃ (1-3)

Figure S17 Pressure-area isotherms for ligands Hqsal-OR.

Figure S18 Stability measurements for ligands Hqsal-OR.

Figure S19 Langmuir film transfer for [Fe(qsal-OC₁₂H₃₃)₂]NO₃ (1).

Figure S20 Langmuir film transfer for [Fe(qsal-OC₂₂H₃₃)₂]NO₃ (**3**).