Supporting information

Rhodamine-based fluorescent probe bearing 8-hydroxyquinoline

group for the highly selective detection of Hg2+ and its practical

application in cells imaging

Lei Zhang,^a Jun Guo,^b Qihua You^{c,*}

^a Department of Biology, Xinzhou Normal University, Xinzhou, Shanxi Province 034000, P. R. of China.

^b ShanXi Weipu Testing Technology Co. Ltd, Taiyuan, Shanxi Province 030012, P. R. of China

^c Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clear Water Bay Road, Saikung, Hong Kong SAR

Email Address: qihuayou@ust.hk

Τ

		Page
Table S1	Comparison of RHOQ with other Hg^{2+} probes.	3
Figure S1	¹ H-NMR (400 MHz, CDCl ₃) spectrum of compound 1 .	5
Figure S2	13 C-NMR (100 MHz, CDCl ₃) spectrum of compound 1.	5
Figure S3	¹ H-NMR (400 MHz, DMSO- d_6) spectrum of compound 2 .	6
Figure S4	¹³ C-NMR (100 MHz, DMSO- d_6) spectrum of compound 2 .	6
Figure S5	¹ H-NMR (400 MHz, CD_3CN) spectrum of probe RHOQ .	7
Figure S6	¹³ C-NMR (100 MHz, CD_3CN) spectrum of probe RHOQ .	7
Figure S7	HRMS spectrum of probe RHOQ .	8

Table of Contents

Τ

Figure S8	Absorption spectra of mixture of RHOQ (10 μ M) and Hg ²⁺ (40 equiv.) upon addition of different metal ions in MeOH- Tris buffer (20 mM, pH = 7.4, 1:9, v/v).	8
Figure S9	Fluorescence intensity at 594 nm of RHOQ (10 μ M) as a function of concentration of Hg ²⁺ (0-120 μ M).	9
Figure S10	Cell viability of HeLa cells treated with various concentrations (0, 5, 10, 20, 30 μ M) of RHOQ for 24 h. Cell viability was assessed by using the MTT assay.	9

Probe	$\lambda_{abs}/\lambda_{em}$ (nm)	linear range	LOD	Response time	Fluorescence enhancement ratio	Reference
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	315/510	0-4 µM	0.51 μΜ	20 min	18-fold	A. Ren, W. Yao and D. Zhu, Analyst, 2023, 148 , 5882.
	424/585	0-50 μM	0.582 μM	12 min	4-fold	S. Pei, C. Li, X. Pei, X. Zhang, Y. Chi, W. Zeng, Y. Zhang, X. Liao and J. Chen, <i>Anal. Methods</i> , 2023, 15 , 3026.
HO O OH HO O O N Ph Ph	477/620	0-80 μΜ	0.224 μM	40 min	20-fold	J. Tian, X. Tian, S. Gong, Y. Liang, Z. Meng, W. Liu, X. Xu, Z. Wang and S. Wang, <i>Anal. Methods</i> , 2024, 16 , 1846.
$H \xrightarrow{N}_{H_2N} CN$	-/570	-	0.146 μM	< 5 s	-	M. Yu, T. Fu, W. Li, Y. Zhang, H. Wen, M. Zheng, M. Shi, C. Liu, M. Jin, K. Liu, L. Cai, B. Zhu and W. Sheng, <i>New J. Chem.</i> , 2023, 47 , 22103.
HO B HO HO NH Ph Ph	-/440	1-4 µM	273 ppb	20 min	14-fold	L. Li, H. Ouyang, Z. Long, Q. Zhang, Y. Jiang, M. Cai, S. Xiong, S. Peng, G. Xu and Q. He, <i>Org.</i> <i>Biomol. Chem.</i> , 2023, 21 , 5560.

Table S1. Comparison of **RHOQ** with other Hg^{2+} probes.

	615/674	0-25 μM	1.41 μM	< 1 min	-	S. Fang, L. Zhang, Y. Zhao, X. Zhang, L. Zhang, L. Chen, J. Yoon and S. Liu, <i>Sens. Actuators, B</i> , 2024, 411 , 135768.
NH ₂ N HN-N	505/585	-	0.33 nM	40 min	150-fold	 B. Du, Q. Li, K. Huang, Q. Wang and L. Liang, <i>J. Photochem.</i> <i>Photobiol.</i>, <i>A</i>, 2023, 436, 114419.
N O N O N	565/585	0-200 μM	2.32 μM	10 min	-	D. Wu, M. Ma, M. Zhang, Y. Xiao, H. Yu, Y. Shao, X. Zhang, Z. Cheng and Y. Xiao, <i>Dyes Pigm.</i> , 2022, 198 , 110001.
		0-120 μM	9.67×10 ⁻⁸ M	< 2 min	550-fold	This work

Figure S1. ¹H-NMR (400 MHz, CDCl₃) spectrum of compound 1.

Figure S2. ¹³C-NMR (100 MHz, CDCl₃) spectrum of compound 1.

Figure S3. ¹H-NMR (400 MHz, DMSO-*d*₆) spectrum of compound 2.

Figure S4. ¹³C-NMR (100 MHz, DMSO- d_6) spectrum of compound 2.

Figure S5. ¹H-NMR (400 MHz, CD₃CN) spectrum of probe RHOQ.

Figure S6. ¹³C-NMR (100 MHz, CD₃CN) spectrum of probe RHOQ.

Figure S7. HRMS spectrum of probe RHOQ.

Figure S8. Absorption spectra of mixture of **RHOQ** (10 μ M) and Hg²⁺ (40 equiv.) upon addition of different metal ions in MeOH-Tris buffer (20 mM, pH = 7.4, 1:9, v/v).

Figure S9. Fluorescence intensity at 594 nm of RHOQ (10 μ M) as a function of concentration of Hg²⁺ (0-120 μ M).

Figure S10. Cell viability of HeLa cells treated with various concentrations (0, 5, 10, 20, 30 μ M) of **RHOQ** for 24 h. Cell viability was assessed by using the MTT assay. The results were presented as means \pm SE with replicates n = 3.