Supplementary information

Table 1. Band gap energy (E_s) of ZnC and 6Cnt@ZnC samples.

	Bandgap (eV)	E _{cb} (eV)	E _{vb} (eV)
	3.1	-0.26	2.84
ZnC	2.2	-0.66	1.54
6Cnst@ZnC	2.9	-0.16	2.74
	1.78	-0.45	1.33

Table 2. Physicochemical properties of compound (6)

	•	• • • • • • • • • • • • • • • • • • • •
Property	Value	Comment
Molecular	273.13	Contain hydrogen atoms. Optimal:100-600
Weight	2/3.13	
Volume	268.436	Van der Waals volume
nHA	4	Number of hydrogen bond acceptors.
ШТА	7	Optimal:0-12
nHD	0	Number of hydrogen bond donors.
ши	U	Optimal:0-7
nRot	1	Number of rotatable bonds. Optimal:0-11
MovDing	11	Number of atoms in the biggest ring.
MaxRing		Optimal:0-18
nHet	5	Number of heteroatoms. Optimal:1-15
fChar	0	Formal charge. Optimal: -4-~4
nRig	20	Number of rigid bonds. Optimal:0-30
Flexibility	0.05	Flexibility =nRot /nRig
Stereo	0	Optimal: ≤ 2
Centers	U	

TPSA	20.64	Topological Polar Surface Area. Optimail: 0-140
10 oC	2 660	Log of the aqueous solubility. Optimal: -4-0.5 log
logS	-3.669	mol/L
LogD	2.704	Log of the octanol/water partition coefficient.
LogP	2.704	Optimal: 0-3
logD	2.361	logP at physiological pH 7.4. Optimal: 1-3

Table 3. Medicinal Chemistry of compound (6)

Property	Value	Comment
		A measure of drug-likeness based on the concept
QED	0.786	of desirability; Attractive: > 0.67; unattractive: 0.49~0.67;
		too complex: < 0.34
		Synthetic accessibility score is designed to estimate ease of
SAscore	3.746	synthesis of drug-like molecules. SAscore ≥ 6 , difficult to
		synthesize; Sashcord <6, easy to synthesize.
		The number of sp3 hybridized carbons / total
Fsp^3	0.467	carbon count, correlating with melting point and
		solubility. Fsp $^3 \ge 0.42$ is considered a suitable value
MCE-18	50.909	MCE-18 stands for medicinal chemistry evolution. MCE-18
WICE-16	30.909	≥ 45 is considered a suitable value.
		Natural product-likeness score. This score is typically in the
NPscore	-0.547	range from -5 to 5. The higher the score is, the higher the
		probability is that the molecule is a NP
T imimalsi		$MW \le 500$; $logP \le 5$; $Hacc \le 10$; $Hdon \le 5$; If two properties
Lipinski Rule	Accepted	are out of range, a poor absorption or permeability is
Kule		possible, one is acceptable.
Pfizer Rule	Accepted	logP > 3; TPSA < 75; Compounds with a high log P (>3) and
i iizei ixuit	Accepted	low TPSA (<75) are likely to be toxic.
GSK Rule	Accepted	$MW \le 400$; $logP \le 4$; Compounds satisfying the GSK rule

Property	Value	Comment
		may have a more favorable ADMET profile
Golden		$00 \le MW \le 50$; $-2 \le logD \le 5$; Compounds satisfying the
Triangle	Accepted	Golden Triangle rule may have a more favorable ADMET
Triangic		profile
PAINS	0 alerts	Pan Assay Interference Compounds, frequent hitters,
IAINS	0 alcrts	Alpha-screen artifacts and reactive compound.
ALARM	0 alerts	Thiol reactive compounds
NMR	0 alcrts	
BMS	0 alerts	Undesirable, reactive compounds
Chelator	0 alerts	Chelating compounds
Rule	U alci is	

Table 4. The properties of the drug metabolism of compound (6)

Property	Value	Comment
CYP1A2 inhibitor	0.896	Category 1: Inhibitor; Category 0: Non-inhibitor;
C111A2 Illinoitor	0.890	The output value is the probability of being inhibitor
		Category 1: Substrate; Category 0: Non-substrate.
CYP1A2 substrate	0.858	The output value is the probability of being
		substrate
CYP2C19 inhibitor	0.47	Category 1: Inhibitor; Category 0: Non-inhibitor.
C1F2C19 IIIIII0It0I	0.47	The output value is the probability of being inhibitor
		Category 1: Substrate; Category 0: Non-substrate;
CYP2C19 Substrate	0.932	The output value is the probability of being
		substrate
		Category 1: Inhibitor; Category 0: Non-inhibitor.
CYP2C9 inhibitor	0.114	The output value is the probability of being
		inhibitor.
CYP2C9 substrate	0.708	Category 1: Substrate; Category 0: Non-substrate;

Property	Value	Comment
		The output value is the probability of being
		substrate.
		Category 1: Inhibitor; Category 0: Non-
CYP2D6 inhibitor	0.492	inhibitor; The output value is the probability of being
		inhibitor.
		Category 1: Substrate; Category 0: Non-substrate;
CYP2D6 Substrate	0.919	The output value is the probability of being
		substrate
CYP3A4 inhibitor	0.143	Category 1: Inhibitor; Category 0: Non-inhibitor;
C1F3A4 minotion	0.143	The output value is the probability of being inhibitor
		Category 1: Substrate; Category 0: Non-substrate;
CYP3A4 Substrate	0.831	The output value is the probability of being
		substrate

Table 5. The properties of the drug excretion of compound (6)

Value	Comment
6.700	Clearance; High: >15 mL/min/kg; moderate: 5-15
0.709	mL/min/kg; low: <5 mL/min/kg
	Category 1: long half-life; Category 0: short; half-life;
0.07	long half-life: >3h; short half-life: <3h; The output
0.07	value is the probability of having long half-life.
	0.07

Table 6. The properties of the drug toxicity of compound (6)

Property	Value	Comment
Hana Dlaalzana	0.54	Category 1: active; Category 0: inactive; The output
Herg Blockers	0.34	value is the probability
H-HT	0.899	Human Hepatotoxicity; Category 1: H-HT positive

		(+); Category 0: H-HT negative (-); The output
		value is the probability of
		Drug Induced Liver Injury. Category 1: drugs with a
DILI	0.942	high risk of DILI; Category 0: drugs with no risk of
DILI	0.942	DILI. The output value is the
		probability of being toxic.
		Category 0: low-toxicity; Category 1: high-toxicity;
Rat Oral Acute	0.542	The output value is the probability of being highly
Toxicity		toxic
		Maximum Recommended Daily Dose; Category 1:
TD		FDAMDD (+); Category 0: FDAMDD
FDAMDD	0.322	(-); The output value is the probability of being
		positive.
		Category 1: Sensitizer; Category 0: Non-sensitizer;
Skin Sensitization	0.732	The output value is the probability of being
		sensitizer.
		Category 1: carcinogens; Category 0: non-
Carcinogencity	0.906	carcinogens; The output value is the probability of
		being toxic.
		Category 1: corrosives; Category 0: noncorrosives;
Eye corrosion	0.003	The output value is the probability of being
·		corrosives
		Category 1: irritants; Category 0: nonirritants;
Eye irritation	0.012	The output value is the probability of being irritants.
		Category 1: respiratory toxicants; Category 0:
Respiratory	0.94	respiratory nontoxicants; The output value is the
Toxicity		probability of being toxic.
		17

Table 7. The properties of the environmental toxicity of compound (6)

Property	Value	Comment
		Bioconcentration factors are used for considering
Bioconcentration	1 712	secondary poisoning potential and assessing risks
Factors	1.713	to human health via the food chain. The unit is -
		log10[(mg/L)/(1000*MW)]
		Tetrahymena pyriformis 50 percent growth
IGC_{50}	3.06	inhibition concentration; The unit is -
		log10[(mg/L)/(1000*MW)].
		96-hour fathead minnow 50 percent lethal
$LC_{50}FM$	4.397	concentration; The unit is -
		log10[(mg/L)/(1000*MW)].
		48-hour daphnia magna 50 percent lethal
$LC_{50}DM$	C ₅₀ DM 6.089	concentration; The unit is -
		log10[(mg/L)/(1000*MW)].