Supporting Information

Ruthenium (II) catalyzed C-3 site selective alkenylation of indole derivatives via C-H activation

Jithender Rallabandi^[a,b], Smrutiranjan Mohanty^[b], Indrajit Shown^{[a]*}

^[a] Department of Chemistry, Hindustan Institute of Technology and Science, Chennai-603103, India.

^[b] Syngene International Ltd., Genome Valley, Hyderabad, Telangana - 500078, India.

*Corresponding Author: Indrajit Shown; E-mail: <u>indrajits@hindustanuniv.ac.in</u> <u>shownindrajit@gmail.com</u>

Table of Contents

1.	General Information			
2.	Optim	Optimization Details		
3.	Exper	Experimental details		
4.	Mecha	Mechanistic Studies		
	4.1	Deuterium labelling experiments		
	4.2	Radical Process Experiments		
5.	Synthetic Applications		10-13	
6.	Experimental characterization data for products			
7.	Copies of ¹ H and ¹³ C{ ¹ H} spectra for the products			
8.	References			

1. General Information:¹

Reactions were performed using borosil sealed tube vial under N2 atmosphere. Column chromatography was done by using 230-400 mesh silica gel of Acme synthetic chemicals company. A gradient elution was performed by using distilled petroleum ether and ethyl acetate. Merck TLC Silica gel 60 F254 aluminum plates were used. TLC plates detected under UV light at 254 nm and vanillin. ¹H-NMR and ¹³C-NMR were recorded on Bruker AV 400 MHz spectrometer using DMSO- d_6 as the deuterated solvent.² Multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, sept = septet, m = multiplet, dd = double of doublet, br = broad signal), integration, and coupling constants (*J*) in hertz (Hz). ¹HNMR chemical shifts are reported in ppm relative to the TMS (= 0) and ¹³C-NMR chemical shifts are reported in ppm. IR spectra were recorded on a Shimadzu FT-IR spectrometer. HRMS signal analysis was performed using micro TOF Q-II mass spectrometer. Reagents and starting materials were purchased from Sigma Aldrich, TCI, Avra, Spectrochem and other commercially available sources, used without further purification unless otherwise noted.

Abbreviation:

THF (tetrahydrofuran), DMF (N,N'-dimethylformamide), DCE (1,2-dichloroethane), DME (1,2dimethoxyethane), MeOH (methanol), DCM (dichloromethane), EtOAc (ethyl acetate), Et₃N (triethylamine), DIPEA (N,N'-diisopropylethylamine), TFA (trifluoroacetic acid), Me (methyl), Et TEMPO (ethyl), Bn (benzyl), PMB (*p*-methoxy benzyl), Ph (phenyl), ((2,2,6,6-Tetramethylpiperidin-1-yl)oxyl) BHT (2,6-di-*tert*-butyl-4-methylphenol), and RT (room temperature), n.d. (not detected).

2. Optimization details:

[RuCl₂(*p*-cymene)]₂:

Ruthenium(II) complexes, such as [RuCl₂(p-cymene)]₂, are commonly used as catalysts in various organic transformations, including hydrogenation, transfer hydrogenation, and C-H activation reactions. For [RuCl₂(p-cymene)]₂, the TON (Turnover Number): can vary widely depending on the specific reaction. In some hydrogenation reactions or C-H activations, TON values range from 500 to 2000, indicating its high efficiency in catalytic cycles. In transfer hydrogenation reactions, the TON for [RuCl₂(p-cymene)]₂ typically reaches values up to 1000, depending on the substrate and reaction conditions. Reported TOFs (Turnover Frequency) for [RuCl₂(p-cymene)]₂ in transfer hydrogenation reactions can range from 10 to 100 h⁻¹, with higher TOFs observed in more efficient systems or when optimized reaction conditions (temperature, solvent, etc.) are employed. The catalyst [RuCl₂(p-cymene)]₂ exhibited a TOF of 50 h⁻¹ in hydrogenation reactions under optimized conditions. The lifetime of [RuCl₂(p-cymene)]₂ in catalytic reactions depends on the specific conditions and substrates involved. It generally has good stability under standard reaction conditions (moderate temperature and inert atmosphere). Over time, the catalyst may deactivate due to the formation of inactive ruthenium species or degradation of the p-cymene ligand. Studies suggest it remains active for several hours to multiple reaction cycles, especially in transfer hydrogenation. The catalyst remained active for 8 hours, after which a gradual decrease in activity was observed, potentially due to ligand degradation. [RuCl₂(p-cymene)]₂ can be reused, but its activity may decrease after multiple cycles due to metal leaching, catalyst aggregation, or ligand degradation. In some cases, reusability is reported for 2 to 5 cycles with a slight drop in catalytic efficiency. After three reaction cycles, the catalyst retained 85% of its original activity, demonstrating moderate reusability. The catalyst can often be recovered through filtration or precipitation methods, but recovery efficiency depends on the reaction system and workup. Recycling efficiency might decrease due to loss of active species during handling. The catalyst could be recovered and recycled, but after three cycles, a significant drop in activity was observed due to partial deactivation. The choice of solvent and reaction conditions (e.g., base, co-solvents, temperature) can significantly influence both the TON and TOF values, as well as the stability and reusability of the catalyst. Careful optimization of conditions may extend the lifetime and improve the recyclability of the catalyst.

For the optimization of reaction conditions, reactions were performed according to General Procedure (see section 3.2).

Table S1. Screening of Directing groups^a

Entry	Directing Group (DG)	Observation (yield)
1	-СНО	n.d.
2	-CH ₂ OH	n.d.
3	-COOMe	52%
4	absence of DG	n.d.

^aReaction conditions: **1** (1.0 equiv), **2a** (3.0 equiv), [RuCl₂(*p*-cymene)]₂ (5 mol %), AgSbF₆ (20 mol %), Cu(OAc)₂·H₂O (1.2 equiv), THF (0.5 M), 50 °C, 24 h.

Table S2. Screening of solvents^a

Entry	Solvent (0.5 M)	Isolated yield of 3aa
1	DMF	24%
2	DCE	34%
3	Dioxane	73%
4	DME	46%
5	THF	81%

^aReaction conditions: **1a** (1.0 equiv), **2a** (3.0 equiv), $[RuCl_2(p-cymene)]_2$ (5 mol %), AgSbF₆ (20 mol %), Cu(OAc)₂·H₂O (1.2 equiv), solvent (0.5 M), 50 °C, 24 h.

Table S3. Screening of temperature^a

Entry	Temperature (°C)	Isolated yield of 3aa
1	RT	16%
2	50	81%
3	80	61%
4	100	52%

^aReaction conditions: **1a** (1.0 equiv), **2a** (3.0 equiv), [RuCl₂(*p*-cymene)]₂ (5 mol %), AgSbF₆ (20 mol %), Cu(OAc)₂·H₂O (1.2 equiv), THF (0.5 M), at **temp (°C)**, 24 h.

Table S4. Screening of starting material equivalency and coupling partner equivalency^a

Entry	Equivalency of 1a	Equivalency of 2a	Isolated yield of 3aa
1	1 equiv	1.2 equiv	55%
2	1 equiv	2 equiv	67%
3	1 equiv	3 equiv	81%
4	1 equiv	5 equiv	77%
3	2 equiv	1 equiv	51%

^aReaction conditions: **1a** (equiv), **2a** (equiv), [RuCl₂(*p*-cymene)]₂ (5 mol %), AgSbF₆ (40 mol %), Cu(OAc)₂·H₂O (1.2 equiv), THF (0.5 M), 50 °C, 24 h.

Table S5. Screening of time^a

Entry	Time (h)	Isolated yield of 3aa
1	8 h	45%
2	16 h	72%
3	24 h	88%
4	48 h	78%

^aReaction conditions: **1a** (1.0 equiv), **2a** (3equiv), [RuCl₂(*p*-cymene)]₂ (5 mol %), AgSbF₆ (40 mol %), Cu(OAc)₂·H₂O (1.2 equiv), THF (0.5 M), 50 °C, time (h).

Table S6. Screening of reaction conditions with vinyl methyl ketone^a

Entry	Additive 1	Additive 2 (equiv)	Temp.	Solvent	Isolated yield of 3ae
1	$Cu(OAc)_2 \cdot H_2O$		50 °C	THF	76%
2	$Cu(OAc)_2 \cdot H_2O$		50 °C	DCE	27%
3	$Cu(OAc)_2 \cdot H_2O$	AcOH (4)	50 °C	THF	38%
4	$Cu(OAc)_2 \cdot H_2O$	AcOH (4)	50 °C	DCE	16%
5		AcOH (4)	50 °C	DCE	9%
6		PivOH (4)	50 °C	DCE	trace
7		AcOH (4)	100 °C	DCE	n.d.
8	Cu(OAc)2.H2O	NaHCO ₃ (1)	50 °C	DCE	n.d.

^aReaction conditions: **1a** (1.0 equiv), **2a** (3.0 equiv), $[RuCl_2(p-cymene)]_2$ (5 mol %), AgSbF₆ (40 mol %), Cu(OAc)₂·H₂O (1.2 equiv), additive 2 (x equiv), solvent (0.5 M), (x) °C, 24 h.

3. Experimental details:

3.1 Starting materials preparation:³

Substrates *N*-substituted 1*H*-indole-4-carboxylates (**1b**, **1d** and **1e**) were prepared according to the reported procedure.³ All substrates **1** are known compounds and their spectral data were in agreement with the corresponding literature values.

(1b. 1d. 1e)

To a well stirred solution of methyl 1*H*-indole-4-carboxylate (**1a**, 5.71 mmol, 1.0 equiv), in DMF (0.2 M) was added sodium hydride (60% in mineral oil, 8.56 mmol, 1.5 equiv) at 0 °C under nitrogen atmosphere. The reaction mixture was stirred at 0 °C for 30 minutes followed by the addition of alkyl halide (6.85 mmol, 1.2 equiv). The reaction mixture was warmed to ambient temperature and stirred under N₂ for 12 h. After that, reaction mixture was quenched with aqueous ammonium chloride solution and extracted with ethyl acetate (3 x 30 mL), dried over anhydrous Na₂SO₄. The organic layer was filtered, concentrated under reduced pressure. The residue was purified by column chromatography on silica gel using EtOAc:Hexane gradient elution to give the corresponding product **1**. **1b**, **1d and 1e** were synthesized using the same procedure. **1a**, **1c** and **1f** were commercially available from different sources.

3.2 General procedure for C3 alkenylation of indole-4-carboxylates:

To a flame-dried teflon-screw-capped tube was equipped with a magnetic stir bar, $[RuCl_2(p-cymene)]_2$ (0.05 mmol, 5 mol %), THF (0.5 M), methyl indole-4-carboxylate **1** (0.2 mmol, 1.0 equiv), acrylate **2** (0.60 mmol, 3.0 equiv), Cu(OAc)₂.H₂O (0.24 mmol, 1.2 equiv) were added sequentially under air and AgSbF₆ (0.4 mmol, 40 mol%) were added inside the glove box and sealed. The sealed tube was directly put into a pre-heated aluminum block at 50 °C and stirred for 24 h. After 24 h, the reaction mixture was diluted with EtOAc and passed through a short pad of celite, the solvent was evaporated under reduced pressure and the crude product was purified by silica gel column chromatography to obtain **3**.

3.3 3 mmol scale reaction:

To a flame-dried teflon-screw-capped tube was equipped with a magnetic stir bar, $[RuCl_2(p-cymene)]_2$ (96 mg, 0.16 mmol, 5 mol %), THF (0.5 M), methyl 1*H*-indole-4-carboxylate **1a** (550 mg, 3.14 mmol), methyl acrylate **2a** (810 mg, 9.42 mmol, 3.0 equiv), Cu(OAc)_2.H₂O (752 mg, 3.77 mmol, 1.2 equiv) were added sequentially under air and AgSbF₆ (432 mg, 1.28 mmol, 40 mol %) were added inside the glove box and sealed. The sealed tube was directly put into a pre-heated aluminum block at 50 °C and stirred for 24 h. After completion of the reaction, the resulting mixture was cooled down to room temperature, diluted with EtOAc, filtered through a short pad of celite. The filtrate was pre-absorbed on silica gel and concentrated by rotary evaporator. The crude product was purified by silica gel column chromatography (EtOAc:Hexane = 40:60) to afford the product **3aa** with 78% yield.

4. Mechanistic studies:

4.1 Deuterium labelling experiments:

In an oven dried screw cap Schlenk tube equipped with stir bar was purged with nitrogen was charged with methyl 1H-indole-4-carboxylate **1a** (50 mg, 0.28 mmol, 1.0 equiv), [RuCl2(*p*-cymene)]2 (9 mg, 0.014 mmol, 5 mol%), AgSbF6 (40 mg, 0.112 mmol, 40 mol%), Cu(OAc)2·H2O (62.2 mg, 0.32 mmol, 1.2 equiv). The tube was purged with nitrogen followed by addition of THF and D₂O (1:1) (0.5 M) *via* syringe. The reaction mixture allowed to stir at 50 $^{\circ}$ C for 1 h. Then the reaction mixture was cooled to room temperature, and the solvents were removed under reduced pressure. The 54% H/D exchange was calculated by ¹H NMR analysis of crude mixture.

4.2 Radical Process Experiments:

In an oven dried screw cap Schlenk tube equipped with stir bar was purged with nitrogen was charged with methyl 1*H*-indole-4-carboxylate **1a** (50 mg, 0.28 mmol, 1.0 equiv), methyl acrylate (73.7 mg, 0.84 mmol, 3.0 equic), [RuCl2(*p*-cymene)]2 (9 mg, 0.014 mmol, 5 mol%), AgSbF6 (40 mg, 0.112 mmol, 40 mol%,), Cu(OAc)2·H2O (62.2 mg, 0.32 mmol, 1.2 equiv), TEMPO (4.5 mg, 0.28 mmol, 1 equiv) or BHT (6.3 mg, 0.28 mmol, 1 equiv) followed by THF (0.5 M). The reaction mixture was vigorously stirred in a preheated aluminum block at 50 °C for 24 h. After completion of reaction as monitored by TLC analysis, the reaction mixture was cooled to room temperature and diluted with DCM and passed through a short pad of celite, the solvent was evaporated under reduced pressure

and the residue was purified by column chromatography using EtOAc/DCM (1:1) mixture on silica gel to give the pure product **3aa** (Yield 68% and 63% with TEMPO and BHT respectively).

5. Synthetic Applications:

Procedure for synthesis of methyl 3-(3-(*tert***-butoxy)-3-oxopropyl)-1***H***-indole-4-carboxylate (4):** To a stirred solution of **3ac** (500 mg, 1.66 mmol) in 1,4-dioxane (8 mL) was added 10% Pd-C (70 mg) at room temperature under nitrogen atmosphere. The reaction mixture was stirred at room temperature under bladder pressure of H₂ gas (1 atm) for 3 h. After completion of reaction, the reaction mixture was filtered through a celite pad and the filtrate was concentrated under reduced pressure. The crude product was purified by silica gel column chromatography using EtOAc:Hexane gradient elution to afford methyl 3-(3-(*tert*-butoxy)-3-oxopropyl)-1*H*-indole-4-carboxylate **4** as an off-white solid (443 mg, yield = 88%).

Procedure for synthesis of 3-(4-(methoxycarbonyl)-1*H*-indol-3-yl)propanoic acid (5):

To a stirred solution of methyl 3-(3-(*tert*-butoxy)-3-oxopropyl)-1*H*-indole-4-carboxylate (4, 200 mg, 0.66 mmol) in DCM (1.2 mL) was added TFA (225 mg, 1.98 mmol, 568 μ L) at 0 °C. The reaction mixture was stirred at room temperature for 3 h. After completion of reaction, the reaction mixture was concentrated under reduced pressure and triturated with MTBE and dried to afford 3-(4-(methoxycarbonyl)-1*H*-indol-3-yl)propanoic acid **5** as an off-white solid (150 mg, yield = 92%).

Procedure for synthesis of methyl 3-(3-(4-(tert-butoxycarbonyl)piperazin-1-yl)-3-oxopropyl)-1H-indole-4-carboxylate (6a):

To a stirred mixture of 3-(4-(methoxycarbonyl)-1*H*-indol-3-yl)propanoic acid (5, 50 mg, 0.202 mmol) and 1-Boc-piperazine (56.5 mg, 0.30 mmol) in DMF (0.9 mL) were added HATU (115 mg, 0.30 mmol) and DIPEA (130.7 mg, 1.011 mmol, 176 μ L) at room temperature under nitrogen atmosphere. The reaction mixture was stirred at room temperature for 12 h. After completion of reaction, the reaction mixture was concentrated diluted with water and extracted with EtOAc (2 x 10 mL). Combined organic layers were dried over sodium sulphate, filtered, and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography using EtOAc:Hexane gradient elution to afford methyl 3-(3-(4-(*tert*-butoxycarbonyl)piperazin-1-yl)-3-oxopropyl)-1*H*-indole-4-carboxylate **6a** (67.5 mg, yield = 80%).

Procedure for synthesis of methyl 3-(3-oxo-3-(4-phenylpiperidin-1-yl)propyl)-1H-indole-4carboxylate (6b):

To a stirred mixture of 3-(4-(methoxycarbonyl)-1*H*-indol-3-yl)propanoic acid (**5**, 50 mg, 0.202 mmol) and 4-phenylpiperidine (48.9 mg, 0.30 mmol) in DMF (0.9 mL) were added HATU (115 mg, 0.30 mmol) and DIPEA (130.7 mg, 1.011 mmol, 176 μ L) at room temperature under nitrogen atmosphere. The reaction mixture was stirred at room temperature for 12 h. After completion of reaction, the reaction mixture was concentrated diluted with water and extracted with EtOAc (2 x 10 mL). Combined organic layers were dried over sodium sulphate, filtered, and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography using EtOAc:Hexane gradient elution to afford methyl 3-(3-oxo-3-(4-phenylpiperidin-1-yl)propyl)-1*H*-indole-4-carboxylate **6b** as an off-white solid (65.5 mg, yield = 83%).

6. Characterization data for C3-alkenylated indole-4-methylcarboxylate:

6.1 Structure elucidation of C3-alkenylated product (3ac) with heteronuclear multiple bond correlation (HMBC) and nuclear byerhauser effect spectroscopy (NOESY):

- HMBC: Ester carbonyl -C10 at 168.4ppm showing correlation with ester methyl (H12) at 3.92ppm and aromatic doublet proton (H1) at 7.62ppm.
- NOESY: Vinyl -CH (H14) at 6.24ppm showing enhancement with indole ring singlet proton H8 at 8.25ppm.

Based on the correlations by HMBC and NOESY, the structure of **3ac** has been confirmed.

6.2 Experimental characterization data for products

1) Methyl (*E*)-3-(3-methoxy-3-oxoprop-1-en-1-yl)-1*H*-indole-4-carboxylate (3aa): Prepared as shown in general procedure to obtain the product as off-white

solid; Yield = 81% (86 mg); m.p.= 135-137 °C; $R_f = 0.2$ (Ethyl Acetate/Hexane : 40/60); ¹H NMR (400 MHz, DMSO-*d*₆): δ 12.17 (s, 1H, NH), 8.39 (d, J = 15.60 Hz, 1H), 8.28 (s, 1H), 7.68 (dd, J = 6.40, 9.60 Hz, 2H), 7.26 (t, J = 7.60 Hz, 1H), 6.31 (d, J = 15.60 Hz, 1H), 3.91 (s, 3H, OMe), 3.70 (s, 3H, OMe) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆) δ 168.4 (C=O), 167.9 (C=O),

141.0, 138.3, 129.8, 124.1, 123.6, 123.4, 121.6, 117.3, 112.1, 112.0, 52.4 (OCH₃), 51.4 (OCH₃) ppm; **IR (neat)**: 3235 (N-H), 3117 (C-H), 3073 (C-H), 2996 (C-H), 2950 (C-H), 1709 (C=O), 1679 (C=O), 1604 (C=C), 1347 (C-N), 1284 (C-O), 1250 (C-O), 1176 (C-O), 1054 (C-N), 993, 853, 743, 602 (C-H) cm⁻¹; **HRMS (ESI)** (*m/z*): Calculated for C₁₄H₁₄NO₄ [M + H]⁺: 260.0923, found: 260.0949.

2) Methyl (*E*)-3-(3-ethoxy-3-oxoprop-1-en-1-yl)-1*H*-indole-4-carboxylate (3ab): Prepared as shown in general procedure to obtain the product as an off-white

solid; Yield = 79% (88 mg); m.p.= 137-139 °C; $R_f = 0.2$ (Ethyl Acetate/Hexane : 40/60); ¹H NMR (400 MHz, DMSO-*d*₆): δ 12.14 (s, 1H, NH), 8.36 (dd, J = 0.80, 16.00 Hz, 1H), 8.28 (s, 1H), 7.70 (dd, J = 1.20, 8.00 Hz, 1H), 7.64 (dd, J = 1.20, 7.60 Hz, 1H), 7.25 (t, J = 8.00 Hz, 1H), 6.30 (d, J = 16.00 Hz, 1H), 4.16 (q, J = 7.20 Hz, 2H, OCH₂CH₃), 3.91 (s, 3H, OMe), 1.26 (t, J = 7.20 Hz,

3H, OCH₂CH₃) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆) δ 168.5 (C=O), 167.4 (C=O), 140.7, 138.3, 129.7, 124.0, 123.6, 123.4, 121.6, 117.2, 112.5, 112.0, 59.8 (OCH₂), 52.3 (OCH₃), 14.8 (OCH₂CH₃) ppm; **IR (neat):** 3231 (N-H), 2987 (C-H), 2942 (C-H), 2901 (C-H), 2845 (C-H), 1714 (C=O), 1677 (C=O), 1604 (C=C), 1369 (C-H), 1340 (C-N), 1246 (C-O), 1176 (C-O), 1148, 747, 708, 602 cm⁻¹; **HRMS (ESI)** *(m/z)*: Calculated for C₁₅H₁₆NO₄ [M + H]⁺: 274.1079, found: 274.1086.

3) Methyl (E)-3-(3-(tert-butoxy)-3-oxoprop-1-en-1-yl)-1H-indole-4-carboxylate (3ac):

Prepared as shown in general procedure to obtain the product as a white solid, Yield = 69% (78 mg); m.p.= 128-130 °C; $R_f = 0.2$ (Ethyl Acetate/Hexane : 40/60); ¹H NMR (400 MHz, DMSO d_6) δ 12.11 (s, 1H, NH), 8.28-8.23 (m, 1H), 7.68 (dd, J = 0.80, 8.20 Hz, 1H), 7.62 (dd, J = 1.20, 7.40 Hz, 1H), 7.24 (t, J = 7.60Hz, 1H), 6.21 (d, J = 15.60 Hz, 1H), 3.91 (s, 3H, OCH₃), 1.49 (s, 9H, *tert*-butyl) ppm; ¹³C NMR (100 MHz, DMSO- d_6) δ

168.5 (C=O), 166.9 (C=O), 139.7, 138.2, 129.4, 123.8, 123.6, 123.4, 121.5, 117.1, 114.3, 112.0, 79.3 (C-O, *tert*-Bu), 52.3 (OCH₃), 28.4 (*tert*-Bu) ppm; **IR (neat)**: 3293 (N-H), 3099 (C-H), 3056 (C-H), 2972 (C-H), 1714 (C=O, ester), 1675 (C=O, ketone), 1604 (C=C), 1353 (C-N), 1250 (C-O), 1151 (C-H), 1053 (C-N), 749, 713, 596 cm⁻¹; **HRMS (ESI)** (*m/z*): Calculated for C₁₇H₂₀NO₄ [M + H]⁺: 302.1392, found: 302.1411.

4) Methyl (E)-3-(3-(benzyloxy)-3-oxoprop-1-en-1-yl)-1H-indole-4-carboxylate (3ad):
 Prepared as shown in general procedure to obtain the product as a white solid, Yield = 88% (92)

mg); m.p.= 102-104 °C; $R_f = 0.4$ (Ethyl Acetate/Hexane : 40/60); ¹H-NMR (400 MHz, DMSO-*d*₆): δ 12.19 (s, 1H, NH), 8.45 (d, J = 15.60 Hz, 1H), 8.30 (d, J = 2.80 Hz, 1H), 7.71-7.64 (m, 2H), 7.46-7.35 (m, 5H), 7.25 (t, J = 8.00 Hz, 1H), 6.37(d, 16.0 Hz, 1H), 5.21 (s, 2H, OCH₂Ph), 3.86 (s, 3H, OCH₃)ppm; ¹³C NMR (100 MHz, DMSO-*d*₆) δ 168.5 (C=O, ester), 167.2 (C=O, ketone), 141.3, 138.3, 137.1, 129.9, 128.9, 128.4, 128.3,

124.1, 123.6, 123.4, 121.6, 117.3, 112.0, 65.4 (C-O, benzyloxy), 52.3 (OCH₃) ppm; **IR (neat):** 3278 (N-H), 3093, 3032, 2994, 2950, 1709, 1677 (C=O), 1604 (C=C), 1373 (C-N), 1341 (C-O), 1246 (C-O), 1194, 1166, 752 (C-H), 695 (C-H) cm⁻¹; **HRMS (ESI)** *(m/z)*: Calculated for C₂₀H₁₈NO₄ [M + H]⁺: 336.1205, found: 336.1236.

5) Methyl 3-(3-oxobutyl)-1*H*-indole-4-carboxylate (3ae): Prepared as shown in general procedure to obtain the product as a white solid, Yield = 76% (78 mg); m.p.= 108-109 °C; R_f =

0.4 (Ethyl Acetate/Hexane : 40/60); ¹H-NMR (400 MHz, DMSOd₆): δ 11.25 (s, 1H, NH), 7.58 (dd, J = 0.80, Hz, 1H), 7.45 (d, J = 6.80 Hz, 1H), 7.29 (d, J = 2.00 Hz, 1H), 7.14 (t, J = 7.60 Hz, 1H), 3.86 (s, 3H, OCH₃), 2.98 (t, J = 8.00 Hz, 2H, CH₂), 2.67 (t, J = 7.20 Hz, 2H, CH₂), 2.10 (s, 3H, COCH₃) ppm; ¹³C NMR (100 MHz, DMSO-d₆) δ 208.7 (C=O, ketone), 168.9 (C=O, ester), 138.1, 126.3, 124.0, 123.6, 121.7, 120.3, 116.2, 114.3, 52.2 (OCH₃), 44.7 (CH₂),

30.1 (CH₂), 21.7 (CH₃) ppm; **IR (neat):** 3357 (N-H), 3131 (C-H), 3062 (C-H), 2994 (C-H), 2946 (C-H), 1728 (C=O), 1709 (C=O), 1438 (C-H), 1345 (C-N), 1263 (C-O), 1192 (C-H), 1142 (C-H), 1038 (C-O), 749 (C-H) cm⁻¹; **HRMS (ESI)** *(m/z)*: Calculated for C₁₄H₁₆NO₃ [M + H]⁺: 246.1130, found: 246.1151.

6) Methyl (E)-3-(3-methoxy-3-oxoprop-1-en-1-yl)-1-methyl-1H-indole-4-carboxylate (3ba):

Prepared as shown in general procedure to obtain the product as

a white solid; Yield = 78% (82 mg); m.p.= 93-95°C; $R_f = 0.2$ (Ethyl Acetate/Hexane : 20/80); ¹H NMR (400 MHz, DMSO-d₆) δ 8.37 (d, J = 16.00 Hz, 1H), 8.28 (s, 1H), 7.80 (dd, J = 0.80, 8.40 Hz, 1H), 7.69 (dd, J = 0.80, 7.20 Hz, 1H), 7.33 (t, J = 8.00 Hz, 1H), 6.24 (d, J = 15.60 Hz, 1H), 3.92 (s, 3H, OCH₃), 3.89 (s, 3H, OCH₃), 3.70 (s, 3H, OCH₃) ppm; ¹³C NMR (100 MHz, DMSO-

 d_6) δ 168.3 (C=O), 167.8 (C=O), 140.5, 138.7, 133.7, 124.3,

124.1, 123.5, 121.6, 115.7, 111.9, 110.9, 52.5 (OCH₃), 51.4 (OCH₃), 33.7 (NCH₃) ppm; **IR** (neat): 3108 (C-H), 3035 (C-H), 2952 (C-H), 1705 (C=O), 1680 (C=O), 1612 (C=C), 1341 (C-N), 1263 (C-O), 1196 (C-H), 745 (C-H) cm⁻¹; **HRMS (ESI)** *(m/z)*: Calculated for C₁₅H₁₆NO₄ [M + H]⁺: 274.1079, found: 274.1083.

7) Methyl (E)-3-(3-ethoxy-3-oxoprop-1-en-1-yl)-1-methyl-1H-indole-4-carboxylate (3bb): Prepared as shown in general procedure to obtain the product as

a white solid; Yield = 68% (76 mg); m.p.= 85-88 °C; $R_f = 0.2$ (Ethyl Acetate/Hexane : 20/80); ¹H NMR (400 MHz, DMSO d_6) δ 8.33 (d, J = 0.40 Hz, 1H), 8.28 (s, 1H), 7.80 (dd, J = 1.20, 8.20 Hz, 1H), 7.68 (dd, J = 0.80, 7.60 Hz, 1H), 7.31 (t, J = 7.60Hz, 1H), 6.23 (d, J = 15.60 Hz, 1H), 4.16 (q, J = 7.20 Hz, 2H, OCH₂CH₃), 3.92 (s, 3H, OCH₃), 3.88 (s, 3H, NCH₃), 1.26 (t, J = 7.20 Hz, 3H, OCH₂CH₃) ppm; ¹³C NMR (100 MHz, DMSO-

*d*₆) δ 168.4 (C=O), 167.3 (C=O), 140.2, 138.6, 133.6, 124.2, 124.0, 123.6, 121.6, 115.6, 112.3, 110.9, 59.8 (OCH₂), 52.4 (OCH₃), 33.7 (NCH₃), 14.8 (OCH₂CH₃) ppm; **IR (neat):** 2985 (C-H), 2932 (C-H), 2849 (C-H), 1695 (C=O), 1612 (C=C), 1526 (C=C), 1448 (C-H), 1338 (C-N), 1248 (C-O), 1162 (C-H), 1129 (C-H), 1050 (C-O), 878 (C-H), 751 (C-H) cm⁻¹; **HRMS (ESI)** *(m/z)*: Calculated for C₁₆H₁₈NO₄ [M + H]⁺: 288.1236, found: 288.1247.

8) Methyl (*E*)-3-(3-(tert-butoxy)-3-oxoprop-1-en-1-yl)-1-methyl-1*H*-indole-4-carboxylate

(3bc): Prepared as shown in general procedure to obtain the product as a white solid; Yield = 72% (82 mg); m.p.= 120-125 °C; $R_f = 0.4$ (Ethyl Acetate/Hexane : 40/60); ¹H-NMR (400 MHz, DMSO-*d*₆): δ 8.26 (s, 1H), 8.22 (dd, J = 0.40, 15.80 Hz, 1H), 7.78 (dd, J = 1.20, 8.20 Hz, 1H), 7.66 (dd, J = 0.80, 7.40 Hz, 1H), 7.31 (dd, J = 7.60, 8.20 Hz, 1H), 6.14 (d, J = 16.00 Hz, 1H), 3.92 (s, 3H, OCH₃), 3.87 (s, 3H, NCH₃), 1.49 (s, 9H, *tert*-butyl) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆) δ 168.4 (C=O),

166.8 (C=O), 139.3, 138.6, 133.3, 124.0, 123.6, 121.5, 115.6, 114.2, 110.9, 79.3, 52.4 (OCH₃), 33.7 (*tert*-butyl), 28.4 (*tert*-butyl) ppm; **IR (neat):** 3006 (C-H), 2978 (C-H), 2922 (C-H), 2845 (C-H), 1695 (C=O, ester), 1612 (C=C), 1528 (C-H), 1451 (C-H), 1336 (C-N), 1254 (C-O), 1127 (C-H), 745 (C-H) cm⁻¹; **HRMS (ESI)** (*m/z*): Calculated for C₁₈H₂₂NO₄ [M + H]⁺: 316.1549, found: 316.1556.

9) Methyl (*E*)-3-(3-(benzyloxy)-3-oxoprop-1-en-1-yl)-1-methyl-1*H*-indole-4-carboxylate (3bd): Prepared as shown in general procedure to obtain the product as a white solid; Yield = 83% (88 mg); m.p.= 92-94 °C; $R_f = 0.4$ (Ethyl Acetate/Hexane : 40/60); ¹H-NMR (400 MHz, DMSO-d_6): δ 8.43 (d, *J* = 16.00 Hz, 1H), 8.31 (s, 1H), 7.80 (dd, *J* = 0.40, 8.20 Hz, 1H), 7.68 (dd, *J* = 0.80, 7.20 Hz, 1H), 7.46-7.31 (m, 7H), 6.30 (d, *J* = 16.00 Hz, 1H), 5.21 (s, 2H, OCH₂Bn), 3.88 (s, 3H, OCH₃), 3.87 (s, 3H, NCH₃) ppm; ¹³C NMR (100 MHz, DMSO-d_6): δ 168.3 (C=O), 167.18 (C=O), 140.8, 138.6,

137.1, 133.8, 128.9, 128.3, 124.3, 124.0, 123.5, 121.6, 115.7, 111.8, 110.9, 65.5, 52.4 (OCH₃),
33.7 (NCH₃) ppm; **IR (neat):** 3030 (C-H), 2948 (C-H), 2845 (C-H), 1705 (C=O), 1612 (C=C),
1528 (C-H), 1340 (C-N), 1129 (C-O), 752 (C-H), 697 (C-H) cm⁻¹; **HRMS (ESI)** (*m/z*):
Calculated for C₂₁H₂₀NO₄ [M + H]⁺: 350.1392, found: 350.1377.

10) Methyl (*E*)-1-ethyl-3-(3-methoxy-3-oxoprop-1-en-1-yl)-1*H*-indole-4-carboxylate (3ca): Prepared as shown in general procedure to obtain the product as a white solid; Yield = 80% (82

mg); m.p.= 94-96°C; $R_f = 0.3$ (Ethyl Acetate/Hexane : 20/80); ¹H NMR (400 MHz, DMSO- d_6) δ 8.35 (d, J = 15.60 Hz, 1H), 8.36 (s, 1H), 7.86 (d, J = 8.00 Hz, 1H), 7.67 (d, J = 7.20 Hz, 1H), 7.31 (t, J = 8.00 Hz, 1H), 6.28 (d, J = 16.00 Hz, 1H), 4.31 (q, J = 7.20Hz, 2H, CH₂CH₃), 3.92 (s, 3H, OCH₃), 3.70 (s, 3H, NCH₂CH₃) ppm; ¹³C NMR (100 MHz, DMSO- d_6) δ 168.4 (C=O), 167.8 (C=O), 140.4, 137.7, 132.1, 124.20, 124.20, 123.7, 121.6, 115.6,

112.0, 111.1, 52.5 (OCH₃), 51.4 (OCH₃), 41.5 (NCH₂), 15.6 (NCH₃) ppm; **IR (neat):** 3100 (C-H), 2952 (C-H), 1709 (C=O), 1615 (C=C), 1524 (C-H), 1440 (C-H), 1345 (C-N), 1248 (C-O), 1161 (C-O), 752 (C-H) cm⁻¹; **HRMS (ESI)** *(m/z)*: Calculated for C₁₆H₁₈NO₄ [M + H]⁺: 288.1236, found: 288.1231.

11) Methyl (*E*)-3-(3-ethoxy-3-oxoprop-1-en-1-yl)-1-ethyl-1*H*-indole-4-carboxylate (3cb): Prepared as shown in general procedure to obtain the product as a

white solid; Yield = 76% (78 mg); m.p.= 79-83 °C; $R_f = 0.3$ (Ethyl Acetate/Hexane : 20/80); ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.36 (s, 1H), 8.31 (d, J = 0.40 Hz, 1H), 7.86 (dd, J = 0.80, 8.20 Hz, 1H), 7.66 (dd, J = 0.80, 7.40 Hz, 1H), 7.31 (t, J = 7.60 Hz, 1H), 6.27 (d, J = 16.00 Hz, 1H), 4.30 (q, J = 7.20 Hz, 2H, OCH₂), 4.16 (q, J = 7.20 Hz, 2H, NCH₂), 3.92 (s, 3H, OCH₃), 1.42 (t, J = 7.20 Hz, 3H, OCH₂CH₃), 1.26 (t, J = 7.20 Hz, 3H, NCH₂CH₃) ppm;

¹³C NMR (100 MHz, DMSO-*d*₆) δ 168.4 (C=O), 167.3 (C=O), 140.2, 137.7, 132.0, 124.1, 124.0, 123.7, 121.6, 115.5, 112.4, 111.2, 59.8 (OCH₂CH₃), 52.4 (OCH₃), 41.5 (NCH₂CH₃), 15.5 (OCH₂CH₃), 14.7 (NCH₂CH₃) ppm; **IR (neat):** 2978 (C-H), 2952 (C-H), 2903 (C-H), 1703 (C=O), 1619 (C=C), 1526 (C-H), 1440 (C-H), 1343 (C-N), 1250 (C-O), 1151 (C-O), 1030 (C-O), 870 (C-H), 751 (C-H) cm⁻¹; **HRMS (ESI)** *(m/z)*: Calculated for C₁₇H₂₀NO₄ [M + H]⁺: 302.1392, found: 302.1384.

12) Methyl (E)-3-(3-(tert-butoxy)-3-oxoprop-1-en-1-yl)-1-ethyl-1H-indole-4-carboxylate

(3cc): Prepared as shown in general procedure to obtain the product as a white solid; Yield = 72% (76 mg); m.p.= 113-116 °C; $R_f = 0.4$ (Ethyl Acetate/Hexane : 40/60); ¹H-NMR (400 MHz, DMSO-*d*₆): δ 8.33 (s, 1H), 8.21 (dd, J = 0.40, 15.80 Hz, 1H), 7.84 (dd, J = 0.80, 8.40 Hz, 1H), 7.64 (dd, J = 0.80, 7.60 Hz, 1H), 7.30 (dd, J = 7.60, 8.00 Hz, 1H), 6.18 (d, J = 16.00 Hz, 1H), 4.29 (q, J = 7.20 Hz, 2H, OCH₂CH₃), 3.92 (s, 3H, OCH₃),

1.49 (s, 9H, *tert*-butyl), 1.41 (t, *J* = 7.20 Hz, 3H, CH₂CH₃) ppm; ¹³C NMR (100 MHz, DMSO*d*₆) δ 168.4 (C=O), 166.8 (C=O), 139.2, 137.6, 131.8, 124.1, 123.9, 123.7, 121.5, 115.5, 114.3, 111.2, 79.3 (C-3 *tert*-butyl), 52.4 (OCH₃), 28.4 (*tert*-butyl), 15.5 (ethyl) ppm; **IR (neat):** 2976 (C-H), 2935 (C-H), 2847 (C-H), 1701 (C=O), 1617 (C=C), 1524 (C-H), 1438 (C-H), 1347 (C-N), 1254 (C-O), 1138 (C-O), 754 (C-H) cm⁻¹; **HRMS (ESI)** (*m/z*): Calculated for C₁₉H₂₄NO₄ [M + H]⁺: 330.1705, found: 330.1698.

13) Methyl (E)-3-(3-(benzyloxy)-3-oxoprop-1-en-1-yl)-1-ethyl-1H-indole-4-carboxylate (3cd):Prepared as shown in general procedure to obtain the product as an off-white solid; Yield =

82% (79 mg); m.p.= 108-110 °C; $R_f = 0.2$ (Ethyl Acetate/Hexane : 40/60); ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.42 (s, 1H), 8.38 (s, 1H), 7.86 (d, J = 7.60 Hz, 1H), 7.66 (d, J = 0.40 Hz, 1H), 7.46-7.26 (m, 6H), 6.34 (d, J = 16.00 Hz, 1H), 5.21 (s, 2H, OCH₂Bn), 4.30 (q, J = 7.20 Hz, 2H, OCH₂CH₃), 3.86 (s, 3H, OCH₃), 1.42 (t, J = 7.20 Hz, 3H, CH₃) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆) δ 168.4 (C=O), 167.2 (C=O),

140.8, 137.7, 137.1, 132.2, 128.9, 128.7, 128.3, 128.2, 124.2, 123.7, 121.6, 115.6, 111.9, 111.1, 65.4 (O<u>CH</u>₂Bn), 52.4 (OCH₃), 41.5 (N<u>CH</u>₂CH₃), 15.5 (NCH₂<u>CH</u>₃) ppm; **IR (neat):** 3103 (C-H), 3080 (C-H), 2981 (C-H), 2950 (C-H), 2883 (C-H), 1714 (C=O), 1612 (C=C), 1526 (C-H), 1440 (C-H), 1377 (C-H), 1345 (C-O), 1287 (C-O), 1194 (C-H), 1146 (C-H), 752 (C-H), 698 (C-H); **HRMS (ESI)** *(m/z)*: Calculated for C₂₂H₂₂NO₄ [M + H]⁺: 364.1549, found: 364.1516.

14) Methyl (E)-1-benzyl-3-(3-methoxy-3-oxoprop-1-en-1-yl)-1H-indole-4-carboxylate (3da):

Prepared as shown in general procedure to obtain the product as

a white solid; Yield = 74% (68 mg); m.p.= 101-103°C; $R_f = 0.4$ (Ethyl Acetate/Hexane : 20/80); ¹H NMR (400 MHz, DMSO d_6) δ 8.50 (s, 1H), 8.33 (d, J = 0.40 Hz, 1H), 7.83 (dd, J = 0.80, 8.00 Hz, 1H), 7.65 (dd, J = 0.80, 7.60 Hz, 1H), 7.35-7.25 (m, 6H), 6.30 (d, J = 16.00 Hz, 1H), 5.53 (s, 2H, O<u>CH</u>₂Bn), 3.91 (s, 3H, OCH₃), 3.71 (s, 3H, OCH₃)ppm; ¹³C NMR (100 MHz, DMSO- d_6) δ 168.3 (C=O), 167.7 (C=O), 140.3, 137.9, 137.4,

133.1, 129.1, 128.1, 127.6, 124.3, 124.2, 123.8, 121.9, 116.0, 112.6, 111.6, 52.5 (N<u>CH₂</u>Bn), 51.5 (OCH₃), 50.1 (OCH₃) ppm; **IR (neat):** 3084 (C-H), 3030 (C-H), 2943 (C-H), 2844 (C-H), 1703 (C=O, ester), 1619 (C=C), 1567 (C-H), 1431 (C-H), 1343 (C-O), 1168 (C-H), 751 (C-H), 698 (C-H) cm⁻¹; **HRMS-ESI** (*m/z*): **HRMS (ESI)** (*m/z*): Calculated for C₂₁H₂₀NO₄ [M + H]⁺: 350.1392, found: 350.1358.

15) Methyl (*E*)-1-benzyl-3-(3-ethoxy-3-oxoprop-1-en-1-yl)-1*H*-indole-4-carboxylate (3db): Prepared as shown in general procedure to obtain the product

as an off-white solid; Yield = 71% (82 mg); m.p.= 60-64 °C; R_f = 0.4 (Ethyl Acetate/Hexane : 20/80); ¹H NMR (400 MHz, DMSO-d₆) δ 8.50 (s, 1H), 8.31 (d, J = 0.80 Hz, 1H), 7.83 (dd, J = 0.80, 8.20 Hz, 1H), 7.64 (dd, J = 0.80, 7.60 Hz, 1H), 7.35-7.25 (m, 6H), 6.29 (d, J = 15.60 Hz, 1H), 5.53 (s, 2H, O<u>CH₂Bn</u>), 4.17 (q, J = 7.20 Hz, 2H, O<u>CH₂CH₃</u>), 3.91 (s, 3H, OCH₃), 1.26 (t, J = 6.80 Hz, 3H, OCH₂CH₃) ppm; ¹³C NMR

(100 MHz, DMSO-*d*₆) δ 168.4 (C=O), 167.3 (C=O), 140.0, 137.9, 137.5, 133.1, 129.2, 129.1, 128.2, 127.7, 127.6 124.3, 124.2, 123.9, 121.9, 116.0, 113.0, 111.6, 59.9 (O<u>CH</u>₂CH₃), 52.5 (N<u>CH</u>₂Bn), 50.1 (OCH₃), 14.8 (OCH₂CH₃) ppm; **IR (neat):** 3103 (C-H), 3063 (C-H), 2981 (C-H), 2901 (C-H), 1694 (C=O), 1619 (C=C), 1530 (C-H), 1438 (C-H), 1338 (C-O), 1254 (C-O), 1173 (C-H), 1039 (C-H), 736 (C-H), 698 (C-H) cm⁻¹; **HRMS (ESI)** *(m/z)*: Calculated for C₂₂H₂₂NO₄ [M + H]⁺: 364.1549, found: 364.1541.

16) Methyl (E)-1-benzyl-3-(3-(tert-butoxy)-3-oxoprop-1-en-1-yl)-1H-indole-4-carboxylate

(3dc): Prepared as shown in general procedure to obtain the product as a white solid; Yield =

69% (83 mg); m.p.= 111-115 °C; $R_f = 0.4$ (Ethyl Acetate/Hexane : 40/60); ¹H-NMR (400 MHz, DMSO- d_6): δ 8.48 (s, 1H), 8.20 (dd, J = 0.80, 15.80 Hz, 1H), 7.82 (dd, J = 0.80, 8.20 Hz, 1H), 7.62 (dd, J = 1.20, 7.40 Hz, 1H), 7.35-7.24 (m, 6H), 6.20 (d, J = 15.60 Hz, 1H), 5.51 (s, 2H, O<u>CH₂</u>Bn), 3.91 (s, 3H, OCH₃), 1.49 (s, 9H, *tert*-butyl) ppm; ¹³C NMR (100 MHz, DMSO- d_6) δ 168.4, 166.7, 139.0, 137.8, 137.5, 132.8,

129.1, 128.1, 127.7, 124.2, 124.0, 123.9, 121.8, 115.9, 114.8, 111.6, 79.4 (*tert*-butyl), 52.5 (O<u>CH₂</u>Bn), 50.1 (OCH₃), 28.4 (*tert*-butyl) ppm; **IR (neat):** 3101 (C-H), 3062 (C-H), 2978 (C-H), 2864 (C-H), 1701 (C=O), 1623 (C=C), 1530 (C-H), 1433 (C-H), 1340 (C-O), 1286 (C-O), 1142 (C-H), 747 (C-H), 697 (C-H) cm⁻¹; **HRMS (ESI)** (*m/z*): Calculated for C₂₄H₂₆NO₄ [M + H]⁺: 392.1862, found: 392.1849.

17) Methyl (E)-1-benzyl-3-(3-(benzyloxy)-3-oxoprop-1-en-1-yl)-1H-indole-4-carboxylate

(3dd): Prepared as shown in general procedure to obtain the product as an off-white solid; Yield = 76% (98 mg); m.p.= 96-98 °C; $R_f = 0.4$ (Ethyl Acetate/Hexane : 40/60); **1H-NMR (400 MHz, DMSO-***d*₆): δ 8.53 (s, 1H), 8.40 (d, J = 15.60 Hz, 1H), 7.83 (d, J = 8.00 Hz, 1H), 7.65 (d, J = 7.20 Hz, 1H), 7.46-7.39 (m, 4H), 7.37-7.25 (m, 7H), 6.36 (d, J = 16.00 Hz, 1H), 5.53 (s, 2H, N<u>CH</u>₂Bn), 5.22 (s, 2H, O<u>CH</u>₂Bn), 3.86 (s, 3H, OCH₃) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆) δ 168.3 (C=O), 167.1

(C=O), 140.6, 137.9, 137.4, 137.1, 133.2, 129.1, 128.9, 128.3, 128.3, 128.2, 127.6, 124.3, 123.8, 121.9, 116.0, 112.5, 111.5, 65.5 (O<u>CH₂Bn</u> 52.4 (N<u>CH₂Bn</u>), 50.1 (OCH₃) ppm; **IR (neat):** 3103 (C-H), 3032 (C-H), 2946 (C-H), 2847 (C-H), 1709 (C=O), 1681 (C=O), 1612 (C=C), 1526 (C-

H), 1433 (C-H), 1254 (C-O), 1222 (C-O), 1144 (C-H), 747 (C-H), 695 (C-H) cm⁻¹; **HRMS** (ESI) (m/z): Calculated for C₂₇H₂₄NO₄ [M + H]⁺: 426.1705, found: 426.1697.

18) Methyl 1-benzyl-3-(3-oxobutyl)-1*H*-indole-4-carboxylate (3de): Prepared as shown in general procedure to obtain the product as an off-white solid; Yield = 66% (78 mg); m.p.= 82-

84 °C; $R_f = 0.4$ (Ethyl Acetate/Hexane : 40/60); ¹H-NMR (400 MHz, DMSO-*d*₆): δ 7.67 (dd, J = 0.80, 8.00 Hz, 1H), 7.47 (s, 1H), 7.44 (d, J = 0.80 Hz, 1H), 7.35-7.13 (m, 6H), 5.42 (s, 2H, O<u>CH</u>₂Bn), 3.86 (s, 3H, OCH₃), 2.97 (t, J = 8.00 Hz, 2H, CH₂), 2.69 (t, J = 7.20 Hz, 2H, CH₂), 2.09 (s, 3H, COCH₃) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 208.5, 168.8, 138.4, 137.6, 130.1, 129.0, 127.8, 127.3, 124.6, 124.1, 121.8, 120.7, 114.7, 114.2, 52.3 (N<u>CH</u>₂Bn), 49.4 (OCH₃), 44.4

(CO<u>CH</u>₂), 30.1 (CO<u>CH</u>₃), 21.5 (CH₂) ppm; **IR (neat):** 3063 (C-H), 3028 (C-H), 2994 (C-H), 2926 (C-H), 1701 (C=O), 1433 (C-H), 1326 (C-O), 1258 (C-H), 1192 (C-O), 1142 (C-H), 1040 (C-H), 1038 (C-H), 743 (C-H), 702 (C-H) cm⁻¹; **HRMS (ESI)** *(m/z)*: Calculated for C₂₁H₂₂NO₃ [M + H]⁺: 336.1600, found: 336.1589.

19) Methyl (E)-3-(3-methoxy-3-oxoprop-1-en-1-yl)-1-(4-methoxybenzyl)-1H-indole-4-

carboxylate (3ea): Prepared as shown in general procedure to obtain the product as a white

solid; Yield = 68% (64 mg); m.p.= 90-93 °C; $R_f = 0.4$ (Ethyl Acetate/Hexane : 20/80); ¹H NMR (400 MHz, DMSO- d_6): δ 8.47 (s, 1H), 8.33 (d, J = 0.40 Hz, 1H), 7.86 (dd, J = 0.80, 8.20 Hz, 1H), 7.64 (dd, J = 1.20, 7.40 Hz, 1H), 7.29-7.25 (m, 3H), 6.89 (d, J = 2.00 Hz, 2H), 6.28 (d, J = 15.60 Hz, 1H), 5.44 (s, 2H, <u>CH₂PMB</u>), 3.91 (s, 3H, OCH₃), 3.70 (s, 3H, PMBO<u>CH₃</u>), 3.70 (s, 3H, OCH₃) ppm; ¹³C NMR (100 MHz, DMSO- d_6): δ

168.3, 167.7, 159.2, 140.3, 137.8, 132.9, 129.3, 129.2, 124.3, 124.2, 123.8, 121.8, 116.1, 114.5, 112.4, 111.4, 55.5 (PMBO<u>CH₃</u>), 52.5 (NCH₂), 51.5 (OCH₃), 49.6 (OCH₃)ppm; **IR (neat):** 3103 (C-H), 3028 (C-H), 2942 (C-H), 2838 (C-H), 1725 (C=O), 1682 (C=O), 1608 (C=C), 1515 (C-

H), 1433 (C-H), 1276 (C-O), 1235 (C-O), 1174 (C-H), 1144 (C-H), 1026 (C-O), 747 (C-H) cm⁻¹; **HRMS (ESI)** *(m/z)*: Calculated for C₂₂H₂₂NO₅ [M + H]⁺: 380.1498, found: 380.1475.

20) Methyl (E)-3-(3-ethoxy-3-oxoprop-1-en-1-yl)-1-(4-methoxybenzyl)-1H-indole-4-

carboxylate (3eb): Prepared as shown in general procedure to obtain the product as a white solid; Yield = 76% (68 mg); m.p.= 70-72 °C; $R_f = 0.4$ (Ethyl Acetate/Hexane : 20/80); ¹H NMR (400 MHz, DMSO- d_6): δ 8.48 (s, 1H), 8.30 (d, J = 0.80 Hz, 1H), 7.86 (dd, J = 0.80, 8.40 Hz, 1H), 7.63 (dd, J = 0.80, 7.20 Hz, 1H), 7.29-7.25 (m, 3H), 6.89 (d, J = 2.00 Hz, 2H), 6.28 (d, J = 15.60 Hz, 1H), 5.43 (s, 2H, N<u>CH₂</u>PMB), 4.17 (q, J = 7.20 Hz, 2H, O<u>CH₂</u>CH₃), 3.91 (s, 3H, OCH₃), 3.70 (s, 3H, OCH₃), 1.26 (t,

J = 7.20 Hz, 3H, OCH₂<u>CH₃</u>) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 168.4 (C=O), 167.3 (C=O), 159.2, 140.0, 137.7, 132.8, 129.3, 129.2, 124.3, 124.1, 123.8, 121.7, 116.0, 114.5, 112.8, 111.5, 59.8 (O<u>CH₂</u>CH₃), 55.5 (OCH₃), 52.4 (OCH₃), 49.6 (OCH₃), 14.7 (OCH₂<u>CH₃</u>) ppm; **IR** (neat): 3101 (C-H), 3032 (C-H), 2972 (C-H), 2844 (C-H), 1723 (C=O), 1684 (C=O), 1610 (C=C), 1515 (C-H), 1438 (C-H), 1258 (C-O), 1146 (C-H), 1051 (C-O), 982 (C-O), 743 (C-H) cm⁻¹; HRMS (ESI) (*m/z*): Calculated for C₂₃H₂₄NO₅ [M + H]⁺: 394.1654, found: 394.1639.

21) Methyl (E)-3-(3-(benzyloxy)-3-oxoprop-1-en-1-yl)-1-(4-methoxybenzyl)-1H-indole-4-

carboxylate (3ed): Prepared as shown in general procedure to obtain the product as a white solid; Yield = 81% (88 mg); m.p.= 104-106 °C; $R_f = 0.4$ (Ethyl Acetate/Hexane : 40/60); ¹H-NMR (400 MHz, DMSO- d_6): δ 8.50 (s, 1H), 8.39 (d, J = 15.60 Hz, 1H), 7.86 (d, J = 8.00 Hz, 1H), 7.64 (d, J = 7.20 Hz, 1H), 7.46-7.35 (m, 5H), 7.29-7.25 (m, 3H), 6.88 (d, J = 8.80 Hz, 2H), 6.35 (d, J = 15.60 Hz, 1H), 5.43 (s, 2H, OCH₂(Bn)), 5.21 (s, 2H, NCH₂(PMB)), 3.86 (s, 3H, OCH₃), 3.70 (s, 3H, OCH₃) ppm; ¹³C

NMR (100 MHz, DMSO-*d*₆): δ 168.3 (C=O), 167.1 (C=O), 159.2, 140.6, 137.8, 137.1, 133.0, 129.2, 128.9, 128.3, 128.3, 124.2, 123.8, 121.8, 116.1, 114.5, 112.3, 111.4, 65.5 (O<u>CH₂(Bn</u>)), 55.5 (OCH₃), 52.4 (OCH₃), 49.6 (N<u>CH₂(PMB)</u>) ppm; **IR (neat)**: 3106 (C-H), 3032 (C-H), 2948 (C-H), 2838 (C-H), 1723 (C=O), 1631 (C=C), 1608 (C=C), 1513 (C-H), 1433 (C-H), 1253 (C-O), 1172 (C-H), 747 (C-H), 693 (C-H) cm⁻¹; **HRMS (ESI)** *(m/z)*: Calculated for C₂₈H₂₆NO₅ [M + H]⁺: 456.1811, found: 456.1793.

22) Methyl 1-(4-methoxybenzyl)-3-(3-oxobutyl)-1*H*-indole-4-carboxylate (3ee): Prepared as shown in general procedure to obtain the product as a ccolorless gum; Yield = 69% (78 mg); R_f

= 0.4 (Ethyl Acetate/Hexane : 40/60); ¹H-NMR (400 MHz, DMSOd₆): δ 7.69 (d, J = 8.00 Hz, 1H), 7.45 (d, J = 6.40 Hz, 2H), 7.18-7.14 (m, 3H), 6.86 (d, J = 8.80 Hz, 2H), 5.33 (s, 2H, O<u>CH₂(PMB)</u>), 3.86 (s, 3H, OCH₃), 3.70 (s, 3H, OCH₃), 2.96 (t, J = 7.60 Hz, 2H, CH₂), 2.68 (t, J = 7.20 Hz, 2H, CH₂), 2.10 (s, 3H, CO<u>CH₃</u>) ppm; ¹³C NMR (100 MHz, DMSO-d₆): δ 208.5 (C=O), 208.5, 159.0, 137.5, 130.3, 128.8, 124.6, 124.0, 121.7, 120.6, 114.8, 114.0, 55.5 (OCH₃(PMB)),

52.6 (OCH₃), 48.9 (CH₂), 44.5 (CH₂), 30.1 (CO<u>CH₃</u>), 21.0 (CH₂) ppm; **IR (neat):** 3065 (C-H), 2998 (C-H), 2948 (C-H), 2838 (C-H), 1709 (C=O), 1608 (C=C), 1511 (C-H), 1435 (C-H), 1246 (C-O), 1174 (C-H), 1146 (C-H), 1034 (C-H), 820 (C-H), 749 (C-H) cm⁻¹; **HRMS (ESI)** *(m/z)*: Calculated for C₂₂H₂₄NO₄ [M + H]⁺: 366.1705, found: 366.1697.

23) Methyl (E)-3-(3-methoxy-3-oxoprop-1-en-1-yl)-1-phenyl-1H-indole-4-carboxylate (3fa):

Prepared as shown in general procedure to obtain the product

as a white solid; Yield = 59% (57 mg); m.p.= 119-120 °C; R_f = 0.4 (Ethyl Acetate/Hexane : 20/80); ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.55 (s, 1H), 8.32 (d, *J* = 0.40 Hz, 1H), 7.76-7.73 (m, 2H), 7.76-7.63 (m, 4H), 7.56-7.48 (m, 1H), 7.35 (t, *J* = 8.00 Hz, 1H), 6.46 (d, *J* = 16.00 Hz, 1H), 3.95 (s, 3H, OCH₃), 3.72 (s, 3H, OCH₃) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 168.3 (C=O), 167.7 (C=O), 139.6, 138.0, 137.6, 132.3, 130.4, 128.4,

125.5, 124.8, 124.6, 124.2, 122.8, 115.8, 114.0, 113.3, 52.6 (OCH₃), 51.6 (OCH₃) ppm; **IR**

(neat): 3050 (C-H), 2991 (C-H), 2942 (C-H), 1716 (C=O), 1623 (C=C), 1539 (C-H), 1504 (C-H), 1429 (C-H), 1256 (C-O), 1159 (C-H), 745 (C-H), 702 (C-H) cm⁻¹; HRMS (ESI) (*m/z*): Calculated for C₂₀H₁₈NO₄ [M + H]⁺: 336.1236, found: 336.1222.

24) Methyl (*E*)-3-(3-ethoxy-3-oxoprop-1-en-1-yl)-1-phenyl-1*H*-indole-4-carboxylate (3fb): Prepared as shown in general procedure to obtain the product as a white solid; Yield = 61% (58

mg); m.p.= 104-106 °C; $R_f = 0.4$ (Ethyl Acetate/Hexane : 20/80); ¹H NMR (400 MHz, DMSO- d_6): δ 8.55 (s, 1H), 8.29 (d, J = 0.80 Hz, 1H), 7.76-7.71 (m, 2H), 7.68-7.62 (m, 4H), 7.55-7.51 (m, 1H), 7.35-7.33 (m, 1H), 6.46 (d, J = 16.00 Hz, 1H), 4.18 (q, J = 7.20 Hz, 2H, O<u>CH₂CH₃</u>), 3.95 (s, 3H, OCH₃), 1.27 (t, J = 6.80 Hz, 3H, OCH₂<u>CH₃</u>) ppm; ¹³C NMR (100 MHz, DMSO- d_6): δ 168.3 (C=O), 167.2 (C=O), 139.3, 138.0,

137.6, 132.1, 130.4, 128.4, 125.4, 124.7, 124.6, 124.3, 122.8, 115.8, 114.4, 113.3, 59.9 (OCH_2CH_3), 52.6 (OCH_3), 14.7 (OCH_2CH_3) ppm; **IR (neat):** 3049 (C-H), 2978 (C-H), 2899 (C-H), 1705 (C=O), 1649 (C=C), 1536 (C-H), 1436 (C-H), 1265 (C-O), 1151 (C-H), 743 (C-H), 702 (C-H) cm⁻¹; **HRMS (ESI)** *(m/z)*: Calculated for C₂₁H₂₀NO₄[M+H]⁺: 350.1392, found: 350.1378.

25) Methyl (E)-3-(3-(benzyloxy)-3-oxoprop-1-en-1-yl)-1-phenyl-1H-indole-4-carboxylate (3fd): Prepared as shown in general procedure to obtain the product as a white solid; Yield =

68% (87 mg); m.p.= 90-92 °C; R_f = 0.4 (Ethyl Acetate/Hexane : 40/60); ¹H-NMR (400 MHz, DMSO-*d*₆): δ 8.58 (s, 1H), 8.38 (d, *J* = 16.00 Hz, 1H), 7.76-7.72 (m, 2H), 7.66-7.64 (m, 4H), 7.53 (d, *J* = 6.00 Hz, 1H), 7.47-7.33 (m, 6H), 6.52 (d, *J* = 16.00 Hz, 1H), 5.23 (s, 2H, <u>CH₂(Bn)</u>), 3.90 (s, 3H, OCH₃) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 168.3 (C=O), 167.0 (C=O), 139.9, 138.0, 137.6, 137.0, 132.4, 130.4, 128.9, 128.4, 125.4,

124.8, 124.6, 124.2, 122.9, 115.9, 114.0, 113.2, 65.6 (O<u>CH₂(Bn)</u>), 52.5 (OCH₃) ppm; **IR (neat)**: 3142 (C-H), 3062 (C-H), 2950 (C-H), 2842 (C-H), 1703 (C=O), 1595 (C=C), 1537 (C-H), 1502

(C-H), 1435 (C-H), 1259 (C-O), 1194 (C-H), 1138 (C-H), 972 (C-H), 736 (C-H), 695 (C-H) cm⁻¹; **HRMS (ESI)** *(m/z)*: Calculated for C₂₆H₂₂NO₄ [M + H]⁺: 412.1549, found: 412.1541.

26) Ethyl (E)-3-(3-(benzyloxy)-3-oxoprop-1-en-1-yl)-1H-indole-4-carboxylate (3gd): Prepared as shown in general procedure to obtain the product as a white solid; Yield = 82% (93 mg); m.p.=

115-117 °C; $R_f = 0.4$ (Ethyl Acetate/Hexane : 40/60); ¹H-NMR (400 MHz, DMSO- d_6): δ 12.17 (s, 1H, NH), 8.41 (dd, J = 0.80, 15.80 Hz, 1H, <u>CH</u>=CHCOOBn), 8.30 (s, 1H), 7.69 (dd, J = 0.80, 8.20 Hz, 1H), 7.45-7.33 (m, 5H, O<u>Bn</u>), 7.28-7.22 (m, 1H), 6.37 (d, J = 15.60 Hz, 1H, CH=<u>CH</u>COOBn), 5.20 (s, 2H, O<u>CH</u>₂Bn), 4.33 (q, J = 7.20, 2H, O<u>CH</u>₂CH₃), 1.31 (t, J = 7.20 Hz, OCH₂CH₃) ppm; ¹³C NMR (100 MHz, DMSO- d_6): δ 168.2

(C=O), 167.2 (C=O), 141.2, 138.3, 137.1, 129.9, 128.8, 128.5, 128.4, 123.9, 123.8, 123.5, 121.6, 117.1, 112.0, 111.9, 65.4 (OCH₂Ph), 61.2 (OCH₂CH₃), 14.4 (OCH₂CH₃) ppm; **IR** (neat): 3235 (N-H), 1703 (C=O), 1671 (C=O), 1593 (C=C), 1341 (C-N), 1246 (C-O), 1187 (C-O), 1164 (C-O), 1053, 1041, 1000 (C-H), 846 (C-H), 769 (C-H), 751 (C-H) cm⁻¹; **HRMS (ESI)** (m/z): Calculated for C₂₁H₂₀NO₄ [M + H]⁺: 350.1392, found: 350.1401.

27) Methyl 3-(3-(tert-butoxy)-3-oxopropyl)-1H-indole-4-carboxylate (4): Prepared as shown in

general procedure to obtain the product as a white solid; Yield = 88% (443 mg); m.p.= 101-103 °C; $R_f = 0.2$ (Ethyl Acetate/Hexane : 40/60); ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.25 (s, 1H, NH), 7.59 (dd, J = 0.80, 8.00 Hz, 1H), 7.45 (dd, J = 0.80, 7.40 Hz, 1H), 7.30 (d, J = 2.40 Hz, 1H), 7.14 (t, J = 7.60 Hz, 1H), 3.87 (s, 3H, OCH₃), 3.01 (t, J = 7.60 Hz, 2H, CH₂), 2.42 (t, J = 7.60 Hz, 2H, CH₂), 1.37 (s, 9H, *tert*-butyl) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 172.4 (C=O), 168.9 (C=O),

138.1, 126.5, 123.9, 123.5, 121.7, 120.3, 116.2, 113.9, 79.8 (C-O *tert*-butyl), 52.1 (OCH₃), 36.7 (CH₂), 28.2 ((*tert*-butyl), 23.1 (CH₂) ppm; **IR (neat):** 3354 (C-H), 3123 (C-H), 3043 (C-H), 2978 (C-H), 1697 (C=O), 1431 (C-H), 1351 (C-H), 1313 (C-H), 1269 (C-O), 1196 (C-H), 1136

(C-H), 1051 (C-O), 1026 (C-H), 846 (C-H), 751 cm⁻¹; **HRMS-ESI** (*m/z*): Calculated for $C_{17}H_{22}NO_4[M + H]^+$: 304.1549, found: 304.1532.

28) 3-(4-(methoxycarbonyl)-1*H***-indol-3-yl)propanoic acid (5):** Prepared as shown in general procedure to obtain the product as a white solid; Yield = 92%

(150 mg); m.p.= 124-126 °C; $R_f = 0.2$ (Ethyl Acetate/Hexane : 40/60); ¹H NMR (400 MHz, DMSO-*d*₆): δ 12.02 (s, 1H, COO<u>H</u>), 11.25 (s, 1H, NH), 7.59 (dd, J = 0.40, Hz, 1H), 7.46 (dd, J = 0.80, 7.20 Hz, 1H), 7.31 (d, J = 2.40 Hz, 1H), 7.14 (t, J = 8.00 Hz, 1H), 3.85 (s, 3H, OCH₃), 3.02 (t, J = 7.60 Hz, 2H, CH₂), 2.46 (t, J = 7.20 Hz, 2H, CH₂) ppm; ¹³C NMR (100 MHz,

DMSO-*d*₆): δ 174.6 (C=O, carboxylic acid), 168.9 (C=O, ester), 138.1, 126.4, 124.0, 123.5, 121.7, 120.3, 116.2, 114.2, 52.2 (OCH₃), 35.6 (CH₂), 22.9 (CH₂) ppm; **IR (neat)**: 3315 (O-H), 2993 (C-H), 2924 (C-H), 2849 (C-H), 1723 (C=O, carboxylic acid), 1688 (C=O), 1442 (C-H), 1295 (C-O), 1271 (C-H), 1209 (C-H), 1176 (C-H), 1053 (C-O), 834 (C-H), 747 (C-H) cm⁻¹; **HRMS-ESI** (*m/z*): Calculated for C₁₃H₁₄NO₄ [M + H]⁺: 280.0923, found: 280.0912.

29) Methyl 3-(3-(4-(*tert*-butoxycarbonyl)piperazin-1-yl)-3-oxopropyl)-1*H*-indole-4-

carboxylate (6a): Prepared as shown in general procedure to obtain the product as a white solid; Yield = 80% (67.5 mg); m.p.= 131-133; $R_f = 0.2$ (Ethyl Acetate/Hexane : 40/60); ¹H NMR (400 MHz, DMSO- d_6): δ 11.26 (s, 1H, NH), 7.59 (dd, J = 0.80, 8.00 Hz, 1H), 7.45 (dd, J = 0.80, 7.20 Hz, 1H), 7.34 (s, 1H), 7.14 (t, J = 7.60 Hz, 1H), 3.86 (s, 3H, OCH₃), 3.44-3.38 (m, 4H, piperazine protons), 3.28-3.19 (m, 4H, piperazine

protons), 3.01 (t, *J* = 8.00 Hz, 2H, CH₂), 2.56 (t, *J* = 7.60 Hz, 2H, CH₂), 1.40 (s, 9H, *tert*-butyl) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆) :δ 171.0 (C=O), 168.9 (C=O), 154.2, 138.1, 126.6, 124.1, 123.6, 121.7, 120.3, 116.2, 114.5, 79.5, 52.2, 45.0, 43.7, 41.2, 34.3, 28.4, 28.3, 28.2, 23.1 ppm; IR (neat): 3261 (N-H), 3050 (C-H), 2974 (C-H), 2931 (C-H), 2862 (C-H), 1692 (C=O), 1615 (C=C), 1416 (C-H), 1364 (C-H), 1248 (C-O), 1196 (C-H), 1162 (C-H), 1049 (C-O), 995

(C-H), 749 (C-H) cm⁻¹; **HRMS-ESI** (m/z): Calculated for C₂₂H₃₀N₃O₅ [M + H]⁺: 416.2185, found: 416.2179.

30) Methyl 3-(3-oxo-3-(4-phenylpiperidin-1-yl)propyl)-1*H*-indole-4-carboxylate (6b):

Prepared as shown in general procedure to obtain the product as a white solid; Yield = 83% (65.5 mg); m.p.= 138-140; R_f = 0.4 (Ethyl Acetate/Hexane : 40/60); ¹H-NMR (400 MHz, DMSO- d_6): δ 11.31 (s, 1H, NH), 7.59 (dd, J = 0.80, 8.00 Hz, 1H), 7.45 (dd, J = 1.20, 7.40 Hz, 1H), 7.35 (d, J = 2.40 Hz, 1H), 7.32-7.28 (m, 2H), 7.21-7.11 (m, 4H), 4.57 (d, J = 13.20 Hz, 1H), 3.94-3.88 (m, 4H), 3.06-3.02 (m, 3H), 2.71-2.50 (m,

4H), 1.73-1.64 (m, 2H), 1.35-1.30 (m, 2H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 170.6 (C=O), 169.0 (C=O), 146.1, 138.1, 128.8, 127.1, 126.7, 126.6, 124.1, 123.6, 121.6, 120.2, 116.1, 114.6, 52.2 (OCH₃), 46.0, 40.6, 34.2, 33.6, 33.3, 23 ppm; **IR (neat)**: 3214 (N-H), 3028 (C-H), 2994 (C-H), 2939 (C-H), 2853 (C-H), 1712 (C=O, ester), 1604 (C=C), 1433 (C-H), 1347 (C-H), 1265 (C-O), 1194 (C-H), 1140 (C-H), 1049 (C-O), 1006 (C-H), 747 (C-H), 698 (C-H) cm⁻¹; **HRMS-ESI** (*m/z*): Calculated for C₂₄H₂₇N₂O₃ [M + H]⁺: 391.2022, found: 391.2013.

7. Copies of NMR spectra of products:

8. References

- 1 S. R. Mohanty, B. V. Pati, S. K. Banjare, G. K. D. Adhikari and P. C. Ravikumar, *J. Org. Chem.*, 2021, **86**, 1074.
- 2 H. E. Gottlieb, V. Kotlyar and A. Nudelman, J. Org. Chem., 1997, 62, 7512-7515.
- 3 (a) M. Kitano, A. Kojima, K. Nakano, A. Miyagisi, T. Noguchi and N. Ohashi, *Chem. Pharm. Bull.*, 1999, 47, 1538; (b) 5-HT3 Receptor Modulators, Methods of making and use thereof (WO2011/8572, 2011, A2).
- 4 (a) S. R. Mohanty, N. Prusty, T. Nanda, S. K. Banjare and P. C. Ravikumar, *J. Org. Chem.*, 2022, **87**, 6189; (b) P. P. Jadhav, N. M. Kahar and S. G. Dawande, *Org. Lett.*, 2021, **23**, 8673.