Study on the sorption and desorption behavior of La³⁺ and Bi³⁺ by bis(2-ethylhexyl)phosphate modified activated carbon

Hongshan Zhu^{a,b,c}, Stephan Heinitz^a, Koen Binnemans^b, Steven Mullens^c, Thomas Cardinaels^{a,b,*}

^a Belgian Nuclear Research Centre (SCK CEN), Institute for Nuclear Materials Science, Boeretang

200, B-2400 Mol, Belgium

^b KU Leuven, Department of Chemistry, Celestijnenlaan 200F, P.O. 2404, B-3001 Leuven, Belgium

^c Flemish Institute for Technological Research (VITO NV), Sustainable Materials Management,

Boeretang 200, 2400 Mol, Belgium

E-mail of corresponding author: thomas.cardinaels@sckcen.be

Supporting Information (SI)

Preliminary column test

Columns with 1-mL empty cartridges (AC-100-R01) were obtained from TrisKem International, and the columns were filled with 0.5 g HDEHP/AC. The initial solution used 3 mL for the column with 300 ± 30 kBq of ²²⁵Ac at pH 5 ± 1. The prepared HDEHP/AC column was rinsed with water before 3 mL of ²²⁵Ac solution was loaded onto the column at a flow rate of 0.5 ± 0.03 mL min⁻¹. Subsequently, another HDEHP/AC column was connected to the first column as the guard column during the eluting process. Finally, 5 mL of 1 mol L⁻¹ NaI/0.01 mol L⁻¹ HNO₃ solution was used for eluting ²¹³Bi at a flow rate of 0.6 ± 0.2 mL min⁻¹. The schematic separation process is shown in Fig. 11a.

Effect of solid-to-liquid ratio

The solid-to-liquid ratio was an important factor in choosing an appropriate sorbent mass for the generator column, especially when the density of extractant that immobilized onto materials was low. The results show that the K_d values and sorption percentages for Bi³⁺ onto HDEHP/AC were more than 10⁵ mL g⁻¹ and 99.7%, respectively, as calculated by the detection limit threshold. This demonstrates that the HDEHP/AC had a strong affinity for Bi³⁺ even at much lower solid-to-liquid ratios (e.g., 1 g L⁻¹). Fig. S1 shows that the sorption percentages and K_d values of HDEHP/AC for La³⁺ increased rapidly as the solid-to-liquid ratio increased from 0 to 4 g L⁻¹. This

was because the high sorbent dose generally offered sufficient active sites for La^{3+} , resulting in a lower equilibrium concentration of La^{3+} in the solution. The sorption percentages then stabilized because of nearly all of La^{3+} adsorbed onto the HDEHP/AC.

Fig. S1. The effect of solid-to-liquid ratio on the sorption performance of HDEHP/AC for La³⁺ and Bi³⁺ in the binary system. (C_o (La³⁺) = 10 µmol L⁻¹ and C_o (Bi³⁺) = 10 µmol L⁻¹, pH = 2, t = 24 h).

Table S1. Elemental composition and specific surface area of HDEHP/AC

	N ₂ adsorption				
C (wt%)	H (wt%)	N (wt%)	O (wt%)	P (wt%)	BET area (m ² g ⁻¹)
82.8 ± 0.2	3.14 ± 0.01	0.19 ± 0.01	7 ± 1	2.42 ± 0.08	528

Model	Parameters	La ³⁺	Bi ³⁺	La ³⁺	Bi ³⁺
Widdei		(Single)	(Single)	(Binary)	(Binary)
	$k_1 ({ m min}^{-1})$	0.103	0.308	0.045	0.268
Pseudo-first-order	$q_{ m e}~(\mu{ m mol}~{ m g}^{-1})$	5.175	10.583	3.682	10.313
	R^2	0.857	0.951	0.943	0.978
Davida accord	$k_2 (g \ \mu mol^{-1} \ min^{-1})$	0.028	0.038	0.015	0.029
Pseudo-second-	$q_{\rm e}$ (µmol g ⁻¹)	5.590	11.319	4.069	11.228
order	R^2	0.957	0.997	0.977	0.995
Introportiala	$K_{IPD} \ (\mu mol g^{-1} min^{-1/2})$	0.245	0.797		
diffusion model	$C (\mu \mathrm{mol} \mathrm{g}^{-1})$	2.692	5.301		
	R^2	0.860	0.797		
	$\alpha \;(\mu mol \; g^{-1} \; min^{-1})$	5.535	24.354		
Elovich model	β (g µmol ⁻¹)	1.244	0.600		
	R^2	0.970	0.946		

Table S2. Kinetic parameters of La^{3+}/Bi^{3+} sorption onto HDEHP/AC

Table S3. Langmuir and Freundlich isotherm parameters for La³⁺ sorption onto

HDEHP/AC.

Langmuir			Freundlich			
q_{\max} (µmol g ⁻¹)	$K_{\rm L}$ (L µmol ⁻¹)	R^2	$K_{\rm F} (\mu { m mol}^{1-{ m n}} \cdot { m L}^{ m n} { m g}^{-1})$	1/n	R^2	
15.226	0.242	0.984	3.545	0.469	0.970	