Supporting Information

Sequential Effects of Two Cations on the Fluorescence Emission of a Coordination Polymer with Zn₄O

Core in Node

Jagajiban Sendh, and Jubaraj B. Baruah*

Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.

Figure/table	Description
Figure S1	Illustrations of some nodes of zinc carboxylate coordination polymers
Figure S2	(a) The powder X-ray diffraction pattern of the zinc-coordination polymer (blue): Experimental; (red): simulated from the crystallographic information file; (b) The FT-IR spectra of the (i) $H_2NAPHISO$ and (ii) the
F' 62	zine coordination polymer Zn ₄ O-CP.
Figure S3	Energy dispersive X-ray (EDX) spectra of powder samples of Zn ₄ O-CP
Figure S4	EDX elemental mapping of Zn_4Q -CP.
Figure S5	(i) The optical microscopic images of crystals and (ii) SEM images of the powdered samples of the Zn_4O -CP.
Figure S6	Thermogravimetry of the $\mathbf{Zn}_4\mathbf{O}$ - CP under nitrogen atmosphere at a heating rate of 10 °C/min.
Figure S7	Nitrogen gas adsorption and desorption isotherm of Zn_4O-CP performed at -196 °C.
Figure S8	Concentration-dependent UV-visible spectra of $H_2NAPHISO$ ($\lambda_{max} = 335$ nm) (3 mL, 1 mM of $H_2NAPHISO$ in DMF by adding 10 µL in aliquots1 mM of the same).
Figure S9	Fluorescence emission of H ₂ NAPHISO (1 mM in DMF, 3 mL, $\lambda_{ex} = 335$ nm, $\lambda_{em} = 452$ nm) with zinc(II)
Figure \$10	Plots of fluorescence intensity v/s concentration of the solution of the H.NAPHISO (1 mM in DMF 3 mI)
Figure 510	with aqueous Zn^{2+} ions (10 mM) and Cd^{2+} ions (10 mM) at different concentrations.
Figure S11	Fluorescence emission spectra of $H_2NAPHISO$ (1mM solution in DMF, 3000 μ L taken in cuvette)
	$(\lambda ex = 333 \text{ nm}, \lambda em = 452 \text{ nm})$ with aqueous Zn^{2+} (10mM, 400 µL) in the presence of (a) Mg ²⁺ (b)
	Al^{3+} (c) Na^{+} (d) K^{+} (e) Li^{+} (f) Cs^{+} (g) Hg^{2+} (h) Mn^{2+} (i) Fe^{2+} (j) Ni^{2+} (k) Sn^{2+} (l) Pb^{2+} , (m) Ag^{+}
	ions. (in each case the to a ligand solution the specific metal ions was added followed by solution of zinc ions)
Figure S12	Change in the fluorescence emission of (a) $H_2NAPHISO$ as a function of concentration of Zn^{2+} ion and (b)
	Change in I/I_0 of Zn₄O-CP with increasing amounts of Fe ²⁺ ions
Figure S13	Bar graph of relative changes in the fluorescence emission intensity of H ₂ NAPHISO with
-	different ions with respect to Zn^{2+} ion.
Figure S14	Competitive fluorescence emission spectra of Zn_4O-CP (3mL, 4 mg in 10 mL of DMF with
	aqueous Fe ²⁺ (10mM, 400 μ L) in the presence of (a) Li ⁺ (b) Al ³⁺ (c) Cd ²⁺ (d) Hg ²⁺ (e) Na ⁺ ions.
	Change in the fluorescence emission of H_2 NAPHISO as a function of Zn^{2+} ion concentration.
Figure S15	(a) The absorption and emission spectra of Zn₄O-CP in DMF and (b) Comparison of experimental
	PXRD patterns of the Zn ₄ O-CP and PXRD of the sample after treatment with Fe^{2+} .
Figure S16	FT-IR spectra of H ₂ NAPHISO and precipitate obtained after treating it with zinc acetate
	hexahydrate for 2 hrs in DMF at room temperature.
Figure S17	Life-time decay profile of (i) Zn ₄ O-CP (4 mg 4 mg in 3 mL DMF dispersed by sonication), (ii) by
	adding Fe^{2+} (200 µL from 10 mM solution in DMF), and (iii) H ₂ NAPHISO (1mM in 3 mL
	DMF) with 300 μ L Zn ²⁺ (10 mM stock solution in DMF).
Figure S18	The change in emission spectra of H ₂ NAPHISO (1 mM in DMF, 2.5 mL) incrementally diluted with water
Table S1	Crystals parameters of the Zn ₄ O-CP
Table S2	Life-time decay data
Table S3	A comparison of the detection limits of Fe ²⁺ ions by various substrates reported recently

Figure S1: Illustrations of some nodes of zinc carboxylate coordination polymers

Figure S2: (a) The powder X-ray diffraction pattern of the zinc-coordination polymer (blue): Experimental; (red): simulated from the crystallographic information file; (b) The FT-IR spectra of the (i) $H_2NAPHISO$ and (ii) the zinc coordination polymer Zn_4O -CP.

Figure S3: Energy dispersive X-ray (EDX) spectra of powder samples of Zn₄O-CP.

EDS Layered Infrage 1

N Kα1_2

10µm

Figure S4: EDX elemental mapping of **Zn₄O-CP**

10µm

C Kα1_2

Figure S5: (i) The optical microscopic images of the crystals and (ii) SEM images of the powdered samples of the **Zn₄O-CP**.

Figure S6: Thermogravimetry of the **Zn₄O-CP** under nitrogen atmosphere at a heating rate of 10 °C/min.

Figure S7: Nitrogen gas adsorption and desorption isotherm of **Zn₄O-CP** performed at -196 °C.

Figure S8: Concentration-dependent UV-visible spectra of $H_2NAPHISO$ ($\lambda_{max} = 335$ nm) (3 mL, 1 mM of $H_2NAPHISO$ in DMF by adding 10 µL in aliquots1 mM of the same).

Figure S9: Fluorescence emission of H₂NAPHISO (1 mM in DMF, 3 mL, $\lambda_{ex} = 335$ nm, $\lambda_{em} = 452$ nm) with zinc(II) acetate (300 µL 10 mM in water) recorded after one minute for nine times.

Figure S10: Plots of fluorescence intensity v/s concentration of the solution of the $H_2NAPHISO$ (1 mM in DMF, 3 mL) with aqueous Zn^{2+} ions (10 mM) and Cd^{2+} ions (10 mM) at different concentrations.

(c)

(d)

Figure S11: Fluorescence emission spectra of **H**₂**NAPHISO** (1mM solution in DMF, 3000 μ L taken in cuvette) ($\lambda_{ex} = 333 \text{ nm}$, $\lambda_{em} = 452 \text{ nm}$) with aqueous Zn²⁺ (10mM, 400 μ L) in the presence of (a) Mg²⁺ (b) Al³⁺ (c) Na⁺ (d) K⁺ (e) Li⁺, (f) Cs⁺, (g) Hg²⁺, (h) Mn²⁺, (i) Fe²⁺, (j) Ni²⁺, (k) Sn²⁺, (l) Pb²⁺, (m) Ag⁺ ions (in each case the to a ligand solution the specific metal ion was added followed by solution of zinc ions)

Figure S12 : Change in the fluorescence emission of (a) $H_2NAPHISO$ as a function of concentration of Zn^{2+} ion and (b) Change in I/I₀ of Zn_4O -CP with increasing amounts of Fe²⁺ ions.

Figure S13: Bar graph of relative changes in the fluorescence emission intensity of $H_2NAPHISO$ with different ions with respect to Zn^{2+} ion.

450 500 550 Wavelength (nm)

(c)

600

650

400

350

Figure S14: Competitive fluorescence emission spectra of Zn_4O -CP (3mL, 4 mg in 10 mL of DMF with aqueous Fe²⁺ (10mM, 400 µL) in the presence of (a) Li⁺ (b) Al³⁺ (c) Cd²⁺ (d) Hg²⁺ (e) Na⁺ ions. (f) The emission intensity of Zn₄MOF decreased with the incremental addition of 10 mM aqueous Fe³⁺ solution, ranging from 0 µL to 300 µL ($\lambda ex = 350$ nm, and $\lambda em = 435$ nm).

Figure S15: (a) The absorption and emission spectra of Zn_4O -CP in DMF and (b) Comparison of experimental PXRD patterns of the Zn_4O -CP and PXRD of the sample after treatment with Fe²⁺.

Figure S16: FT-IR spectra of H_2 NAPHISO and precipitate obtained after treating it with zinc acetate hexahydrate for 2 hrs in DMF at room temperature.

Figure S17: Life-time decay profile of (i) Zn_4O -CP (4 mg in 3 mL DMF dispersed by sonication), (ii) by adding Fe²⁺ (200 µL from 10 mM solution in DMF), and (iii) H₂NAPHISO (1mM in 3 mL DMF) with 300 µL Zn²⁺ (10 mM stock solution in DMF).

Figure S18: The change in emission spectra of $H_2NAPHISO$ (1 mM in DMF, 2.5 mL) incrementally diluted with water

Table S1: Crystals parameters of the Zn₄O-CP

Empirical Formula	$C_{66}H_{48}N_5O_{24}Zn_4$
Formula Weight	1556.57

Space group	Triclinic PI
a/ Å	10.3826 (6)
b/Å	16.2352 (10)
c/ Å	21.2335 (14)
α/ °	106.864 (2)
β/ °	102.927 (2)
γ/ °	102.216 (2)
V/ Å ³	3188.4 (3)
Z	2
$\rho_{cal}(gcm^{-3})$	1.621
μ (mm ⁻¹)	1.575
F(000)	1582
Refl Collected	76522
Independent Refl	11228
Ranges (h, k, l)	$\text{-}12 \leq h \leq 12$
	$-19 \le k \le 19$
Max A (degree)	$-25 \le 1 \le 25$
Nax (degree)	11228/0/860
Data/Restraints/Faranieter	11220/0/009
GOOF (F ²)	1.0/0
R indexes	0.0507
$[I > 2\sigma]$	0.0729
WR ₂	0.1284

Table S2: Life-time decay data

Compound	$\tau_1(ns)$	$\tau_2(ns)$	τ_3 (ns)	< \ \ >	χ^2
	[% fraction]	[% fraction]	[% fraction]	(ns)	
Zn ₄ O-CP	0.8959	4.226	15.22	7.219	1.0129
	[32.72]	[30.15]	[37.13]		
Zn ₄ O-CP with Fe ²⁺ ions	0.8999	4.533	16.17	6.639	1.1482
	[39.87]	[29.59]	[30.54]		
H ₂ NAPHISO with Zn ²⁺ ions	0.9220	6.407	20.81	11.129	1.0485
	[2.06]	[19.40]	[78.54]		

Equation for tri-exponential fit: A + B₁exp(-t/ τ_1) + B₂exp(-t/ τ_2) + B₃exp(-t/ τ_3)

 $<\tau>=(B_{1}\tau_{1}{}^{2}\!+B_{2}\tau_{2}{}^{2}\!+B_{3}\tau_{3}{}^{2})/(B_{1}\tau_{1}\!+\!B_{2}\tau_{2}\!+\!B_{3}\tau_{3})$

Compound/composite	Detection limit	Reference
Phenanthroline derivative	2.60 ppb	H. Nawaz, W. Tian, J. Zhang, R. Jia, Z. Chen, J. Zhang, ACS Appl. Mater. Interfaces. 2018, 10, 2114 - 2121.
Eu-MOF	2.00 nM	Y. Cheng, M. Wu, Z. Du, Y. Chen, L. Zhao, Z. Zhu, X. Yu, Y. Yang, C. Zeng, <i>ACS Appl. Mater. Interfaces.</i> 2023, <i>15</i> , 24570 - 24582.
2-((3-Hydroxyphenyl)amino)-3- (phenylthio)naphthalene-1,4-dione	0.27 μΜ	P. Ravichandiran, A. Boguszewska-Czubara, M. Masłyk, A. P. Bella, S. A. Subramaniyan, P. M. Johnson, K. S. Shim, H. G. Kim, D. Yoo,
Polyoxometalate	8.00 nM	Y. Xu, P. Li, X. Hu, H. Chen, Y. Tang, Y. Zhu, X. Zhu, Y. Zhang, M. Liu, S. Yao, <i>ACS Appl. Nano Mater.</i> 2021, <i>4</i> , 8302 - 8313.
Naphthalimide derivative	82.00 nM	T. Yan, X. Wang, C. Liu, X. Cai, Y. Wang, X. Liu, X. Rong, K. Wang, W. Li, W.
Carbamoyl oxime		Sheng, B. Zhu, J. Agricultural and Food Chem. 2024, 72, 13341 - 13347
Naphthalimide derivative	0.50 µM	W. Xuan, , R. Pan, Y. Wei, Y. Cao, H. Li, FS. Liang, KJ. Liu, J. B. Wang,

		<i>Bioconjugate Chem.</i> 2016, 27, 302 - 308.
S–S derivative	17.54 nM	D. C. Immanuel, N. Bhuvanesh, H. Jayaraj, A. Thamilselvan, D. P. Devi, A.
		Abiram, J. Prabhu, R. J. A. O. Nandhakumar, ACS Omega. 2020, 5, 3055 - 3072.
CdTe quantum dot	5.00 nM	P. Wu, Y. Li, XP. J. A. Yan, Anal. Chem. 2009, 81, 6252 - 6257.
Salicylyliminedibenzyl derivative	3.96 ppb	R. Joseph, J. P. Chinta, C. P. Rao, Inorg. Chem. 2011, 50, 7050 - 7058.
ZnO ₄ -CP	42.57 nM	This work