<Supporting Information>

Synthesis of highly stable Mo-Fe bimetallic metal-organic framework and its catalytic activity for

the selective oxidation of sulfides under mild conditions

Xin Li^{a*}, Mohan Zu^a, Linzhuo Yan^a, Qiang Zhao ^{a*}, Liu Liu ^{b*}

^aCollege of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang, 473061, P. R. China.

^bNanyang Branch, Henan Provincial Tobacco Company, Nanyang, 473061, P. R. China.

* Correspondence authors

E-mail: lixin610207@126.com (X. Li)

E-mail: zhaoqiang0522@126.com (Q. Zhao)

E-mail:liuliu3281@126.com (L. Liu)

bond	distances (Å)	bond	distances (Å)
Mo(1)-O(6)	1.699(5)	Fe(1)-O(1)	2.134(5)
Mo(1)-O(7)	1.760(5)	Fe(1)-O(7)	2.150(5)
Mo(1)-O(8)	1.802(5)	Fe(1)-N(1)	2.165(6)
Mo(1)-O(5)	1.814(5)	Fe(1)-O(5)#3	2.203(5)
Mo(2)-O(2)#1	1.735(5)	Fe(2)-O(4)	2.059(5)
Mo(2)-O(3)	1.757(5)	Fe(2)-O(5)	2.094(5)
Mo(2)-O(4)	1.772(5)	Fe(2)-O(8)#2	2.101(5)
Mo(2)-O(1)#2	1.818(5)	Fe(2)-N(2)#4	2.125(6)
Fe(1)-O(2)	2.054(5)	Fe(2)-O(1)#3	2.136(5)
Fe(1)-O(3)	2.077(5)	Fe(2)-O(8)#3	2.230(5)

Table S1 Selected bond lengths (Å) and angles (°) for compound 1

Symmetry code for 1: #1 –1+*x*, –*y*–1, –*z*; #2 *x*+1, *y*, *z*; #3 1–*x*, –*y*, –*z*; #4 *x*+1, *y*+1, *z*+1.

Entry	Catalysts	0	S	O:S	Sol.	Т	t	Conv	Sel./	Ref.
						[°C]	[min]	./%	%	
1	Mo ₈ O ₂₆ -calixarene	H_2O_2	0.2	1	CH ₃ CN	50	40	81	91	1
2	Cs ₄ [M(H ₂ O) ₄][PM0 ₆ O ₂₁ (PABA) ₃] ₂ ·nH ₂ O	H_2O_2	0.2	1.2	СН ₃ ОН	25	20	99	98	2
	(M = Co, Mn, Ni, Zn; PABA = p-aminobenzoic acid)		5							
3	[Co(BBPTZ) ₃][HPMo ₁₂ O ₄₀]·24H ₂ O BBPTZ=4,4'-bis(1,2,4-triazol-	TBHP	0.4	3	CH ₂ Cl ₂	50	15	100		3
	1-ylmethyl)biphenyl]									
4	[Mn(TMR4A)(H ₂ O) ₄] [Mo ₆ O ₁₉]·0.5CH ₃ CH ₂ OH·H ₂ O (1),	TBHP	0.4	1	CH ₂ Cl ₂	40	60	99		4
	[Ni(TMR4A)(H ₂ O) ₄][Mo ₆ O ₁₉]·0.5CH ₃ CH ₂ OH·H ₂ O (2),									
	$[Zn(TMR4A)(H_2O)_4][Mo_6O_{19}] \cdot 0.5CH_3CH_2OH \cdot H_2O (3),$									
	$[Co_2(TMR4A)_2(H_2O)_4(\beta-Mo_8O_{26})] \cdot CH_3CN \cdot 12H_2O$ (4)									
5	[Co ₂ Mo ₁₀ H ₄ O ₃₈] ₆ (en)[Cu ₃ (ptz) ₄ (H ₂ O) ₄][Co ₂ Mo ₁₀ H ₄ O ₃₈]·24H ₂ O (1),	TBHP	0.2	2	CH ₃ CN	40	240	95	95	5
	(Hbim)2[{Cu(bim)2(H2O)2}2{Co2Mo10H4O38}]·5H ₂ O (2),		5							
	$H_{2}[Cu(dpdo)_{3}(H_{2}O)_{4}][\{Cu_{2}(dpdo)_{3}(H_{2}O)_{4}(CH_{3}CN)\}_{2}\{Co_{2}Mo_{10}H_{4}O_{3}$									
	$_{8}_{2}$]·9H ₂ O (3), (H ₂ bpp) ₄ [{Cu(H ₂ O) ₂ }{NaCo ₂ Mo ₁₀ H ₄ O ₃₈ } ₂]·10H ₂ O (4)									
6	[MoO3(2,2'-bipy)]n	TBHP	1	3	CH ₂ Cl ₂	20	120	97	99	6
7	M-Anderson-COF (MMo ₆ , $M = Mn^{3+}$, Co ³⁺ , Fe ³⁺)	H_2O_2	1	5	CH ₃ CN	50	60	100	100	7
8	$K_4H_5[Ln_3(H_2O)_{14}\{(Mo_8O_{24})(O_3PCH_2COO)_3\}_2] \cdot 23H_2O$	H_2O_2	1	2	CH ₃ CN	50	60	100	100	8
	(Ln = Gd (1Gd), Tb (2Tb), Dy (3Dy))									
9	$Na_{2}H_{2}[Mo_{4}O_{12}(C_{8}H_{17}O_{5}N)_{2}]$ ·10 $H_{2}O$ (1),	H_2O_2	0.7	1.5	C ₂ H ₅ OH	50	15	99	95	9
	Na ₂ [M(Bis-tris)(H ₂ O)] ₂ [Mo ₇ O ₂₄]·10H ₂ O									
	[M = Cu, Ni, Co, Zn,									
	Bis-tris =2,2-Bis(hydroxymethyl)-2,2',2"-nitrilotriethanol],									
10	[Mo(O)(O ₂) ₂ (Mepz) ₂]	H_2O_2	1	1	[C ₄ mim][PF ₆	20	60	80	96	10
					1					

Table S2 The summarize of heterogeneous catalysis of Mo conationing species

11	$(C_{19}H_{42}N)_2[MoO(O_2)_2(C_2O_4)] \cdot H_2O$	H_2O_2	1	1	H ₂ O	25	30	95		11
12	Fe ₃ O ₄ @Si-APFSB-MoO ₂	H_2O_2	10	1.5	H ₂ O	55	5	99	95	12
13	PMoCh	H_2O_2	5	4	H ₂ O	25	65	97	100	13
14	ECS-MoO ₂ (acac) ₂	TBHP	1	1.5	C ₂ H ₅ OH	25	360	91	97	14
15	[CMK-3/Im/MoO ₄ ^{2–}]	H_2O_2	1	2	CH ₃ CN	25	7	96		15
16	MFO@NS-MoOO ₂	H_2O_2	1	1.5	H ₂ O	55	5	98	95	16
17	GO/[Fe ₃ O ₄]/Co ₃ O ₄ -MoO ₃	H_2O_2	2	2.5	CH ₃ CN	40	10	100	57	17
18	Fe ₃ O ₄ @SiO ₂ -APTES	H_2O_2	1	5	CH ₃ CN	40	50	100	78	18
19	SBA-15@AP-LAEB-Mo(VI)O2	H_2O_2	1	3	C ₂ H ₅ OH	25	120	100	99	19
20	(L)Mo(VI)O ₂ @SBA-15	H_2O_2	1	1	CH ₃ CN	26	180	100	85	20
21	$(C_{19}H_{42}N)_2[MoO(O_2)_2(C_2O_4)] \cdot H_2O$	H_2O_2	1	1	H ₂ O	25	30	95	100	21
22	[MoO ₂ (O ₂)(L) ₂] ₂ MR [L = valine (MRVMo), alanine (MRAMo)]	H_2O_2	5	2	CH ₃ OH	25	40	98	100	22
23	TiO ₂ /AA/MoO ₂	H_2O_2	1	2	CH ₃ OH	70	30	100	100	23
24	Fe ₃ O ₄ @SiO ₂ -NH ₂ -Mo	UHP	0.4	0.45	CH ₃ OH	25	30	86	92	24
25	[Fe ₂ (4,4'-bpy)Mo ₂ O ₈]·3H ₂ O	H_2O_2	1	1	CH ₃ OH	25	60	96	98	This
										work

_

Fig. S1. Asymmetry unit structure of 1 with thermal ellipsoids set at 80% probability level.

Fig. S2. a)The dimensions of the channel and pore size of compound 1 along axis a. b)The dimensions of the channel and pore size of compound 1 along axis b.

Fig. S3. Crystallographically fashions of the [MoO₄]²⁻ linker with iron atom in 1.

Fig. S4. The Fe 2p XPS spectra of compound 1.

Fig. S5. IR spectra of compound 1

Fig. S6. The TGA of the 1.

Fig. S7. The experimental (top) and simulated (bottom) X-ray powder diffraction (XRPD) patterns of 1, showing that of the bulk product is in good agreement with the calculated one based on the single-crystal X-ray diffraction.

Fig. S8. The XRD of the sample immersed in varies solution for 2 days.

Fig. S9. The XRD of the sample immersed in varies pH solution for 2 days.

Fig. S10. The Diagram shows plots of the anodic (up) and the cathodic (down) peak currents for I–I' againt.

Fig. S11. The ¹H-NMR of the reaction mixtures after reaction.

Fig. S12. Kinetics for oxidation of methyl phenyl sulfide using catalyst 1 at room temperature. C_0 and C_t represent the concentrations of reactant initially and at time t, respectively. Equation: $\ln(C_t/C_0) = -kt$. Kinetic studies stated that the catalytic reaction follow first-order dependences [25].

Fig. S13. IR spectra of the catalyst 1 before and after reaction

Fig. S14. XRD for the catalyst 1 before and after reaction.

Fig. S15. Proposed catalytic mechanism for the sulfoxidation reaction using compound 1 and H_2O_2 as an oxidant.

References

[1] S. Meninno, A. Parrella, G. Brancatelli, S. Geremia, C. Gaeta, C. Talotta, P. Neri, A. Lattanzi, Polyoxomolybdate-calix[4]arene hybrid: a catalyst for sulfoxidation reactions with hydrogen peroxide, Org. Lett. 17 (2015) 5100–5103.

[2] H.Y. An, Y.J. Hou, S.Z. Chang, J. Zhang, Q.S. Zhu, Highly efficient oxidation of various thioethers catalyzed by organic ligand-modified polyoxomolybdates, Inorg. Chem. Front. 7 (2020) 169–176.

[3] X.L. Hao, Y.Y. Ma, H.Y. Zang, Y.H. Wang, Y.G. Li, E.B. Wang, A polyoxometalateencapsulating cationic metal–organic framework as a heterogeneous catalyst for desulfurization, Chem. Eur. J. 21 (2015) 3778 – 3784.

[4] M.Y. Yu, J. Yang, T.T. Guo, J.F. Ma, Efficient catalytic oxidative desulfurization toward thioether and sulfur mustard stimulant by polyoxomolybdate-resorcin[4]arene based metal-organic materials, Inorg. Chem. 59 (2020) 4985–4994.

[5] H.Y. An, Y.J. Hou, L. Wang, Y.M. Zhang, W. Yang, S.Z. Chang, Evans-showell-type polyoxometalates constructing high dimensional inorganic-organic hybrid compounds with copper-organic coordination complexes: synthesis and oxidation catalysis, Inorg. Chem. 56 (2017) 11619–11632.

[6] I. Tosia, C. Vurchio, M. Abrantes, I.S. Gonçalves, M. Pillinger, F. Cavani, F.M. Cordero, A. Brandi, [MoO₃(2,2'-bipy)]_n catalyzed oxidation of amines and sulfides, Catal. Commun. 103 (2018) 60–64.

[7] R. Ma, N.F. Liu, T.T. Lin, T.B. Zhao, S.L. Huang, G.Y. Yang, Anderson polyoxometalate built-in covalent organic frameworks for enhancing catalytic performances, J. Mater. Chem. A. 8 (2020) 8548–8553.

[8] J.W. Wang, Y.J. Niu, M. Zhang, P.T. Ma, C. Zhang, J.Y. Niu, J.P. Wang, Organophosphonate-functionalized lanthanopolyoxomolybdate: synthesis, characterization, magnetism, luminescence, and catalysis of H₂O₂-based thioether oxidation, Inorg. Chem. 57 (2018) 1796–1805.

[9] Y. Zhang, W.D. Yu, B. Li, Z.F. Chen, J. Yan, Discovery of a new family of polyoxometalatebased hybrids with improved catalytic performances for selective sulfoxidation: the synergy between classic heptamolybdate anions and complex cations, Inorg. Chem. 58 (2019) 14876-14884.

[10] C.J. Carrasco, F. Montilla, E. Álvarez, C. Mealli, G. Mancac, A. Galindo, Experimental and theoretical insights into the oxodiperoxomolybdenum-catalysed sulphide oxidation using hydrogen peroxide in ionic liquids, Dalton Trans. 43 (2014) 13711–13730

[11] R.D. Chakravarthy, V. Ramkumar, D.K. Chand, A molybdenum based metallomicellar catalyst for controlled and selective sulfoxidation reactions in aqueous medium, Green Chem. 16 (2014) 2190–2196.

[12] A. Bezaatpour, E. Askarizadeh, S. Akbarpour, M. Amiria, B. Babaei, Green oxidation of sulfides in solvent-free condition by reusable novel Mo(VI) complex anchored on magnetite as a high-efficiency

nanocatalyst with eco-friendly aqueous H₂O₂, Mol. Catal. 436 (2017) 199–209.

[13] K. Ahmed, Ga. Saikia, P. Begum, S.R. Gogoi, M. Sharma, H. Talukdar, N.S. Islam, Selective and green sulfoxidation in water using a new chitosan supported Mo(VI) complex as heterogeneous catalyst, ChemistrySelect 3 (2018) 12563–12575.

[14] M. Hong, J.M. Yan, Immobilized molybdenum acetylacetonate complex on expanded starch for chemoselective oxidation of sulfides to sulfoxides with t-BuOOH at room temperature, Phosphorus. Sulfur. Sillcon. 192 (2017) 985–988.

[15] F.H. Eshbala, A. Sedrpoushan, B. Breita, F. Mohanazadeh, H. Veisi, Ionic-liquid-modified CMK-3 as a support for the immobilization of molybdate ions (MoO₄²⁻): Heterogeneous nanocatalyst for selective oxidation of sulfides and benzylic alcohols. Mater. Sci. Eng. C. 110 (2020) 110577.

[16] B. Babaci, A. Bezaatpour, H. Basharnavaz, Robust and fast oxidation of sulfides by immobilized Mo(VI) complex on magnetic nanoparticles in solvent-free condition, Polyhedron 179 (2020) 114382.

[17] M. Khoshroo1, H.H. Monfared, Oxidation of sulfides with H₂O₂ catalyzed by impregnated graphene oxide with Co–Cu–Zn doped Fe₃O₄/Co₃O₄–MoO₃ nanocomposite in acetonitrile, J Inorg Organomet Polym. 27 (2017) 165–175.

[18] A. Bayat, M.S. Fard, M.M. Hashemi, Selective oxidation of sulfides to sulfoxides by a molybdate-based catalyst using 30% hydrogen peroxide, Catalysis Communications 52 (2014) 16–21.

[19] I. Saberikia, E. Safaei, B. Karimi, Y. Lee, Oxygenation of sulfides catalysed by SBA–15–immobilized molybdenum(VI) complex of a bis(phenol) diamine ligand using aqueous hydrogen peroxide as a green oxidant, Appl. Organometal. Chem. (2019) pp e4304.

[20] A. Lazar, W.R. Thielb, A.P. Singh, Synthesis and characterization of 3-[N,N'-bis-3-(salicylidenamino)ethyltriamine] Mo(VI)O₂@SBA-15: a highly stable and reusable catalyst for epoxidation and sulfoxidation reactions, RSC Adv. 4 (2014) 14063–14073.

[21] R.D. Chakravarthy, V. Ramkumar, D.K. Chand, A molybdenum based metallomicellar catalyst for controlled and selective sulfoxidation reactions in aqueous medium, Green Chem., 16 (2014) 2190–2196.

[22] J.J. Boruah, S.P. Das, S.R. Ankireddy, S.R. Gogoi, N.S. Islam, Merrifield resin supported peroxomolybdenum(VI) compounds: recoverable heterogeneous catalysts for the efficient, selective and mild oxidation of organic sulfides with H₂O₂, Green Chem. 15 (2013) 2944–2959.

[23] M. Jafarpour, A. Rezaeifard, M. Ghahramaninezhad, F. Feizpour, Dioxomolybdenum(VI) complex immobilized on ascorbic acid coated TiO₂ nanoparticles catalyzed heterogeneous oxidation of olefins and sulfides, Green Chem. 17 (2015) 442–452.

[24] H. Keypour, M. Balali, M.M. Haghdoost, M. Bagherzadeh, Mo(VI) complex supported on Fe₃O₄ nanoparticles: magnetically separable nanocatalysts for selective oxidation of sulfides to sulfoxides, RSC Adv. 5 (2015) 53349–53356.

[25] R. Wan, P.P. He, Z. Liu, X.Y. Ma, P.T. Ma, V. Singh, C. Zhang, J.Y. Niu, J.P. Wang, A lacunary polyoxovanadate precursor and transition-metal sandwiched derivatives for catalytic oxidation of sulfides, Chem. Eur. J. 26 (2020) 1–8.