Supporting Information

MnFe₂O₄-loaded bamboo pulp carbon-based aerogel composite: synthesis, characterization and adsorption behavior study for heavy metals removal

Wenxiang Jing^{a,b,c}, Chai Yang^b, Xiaoyan Lin^{a,c}*, Min Tang^b, Dongming Lian^b, Ying Yu^b, Dongyang Liu^b

a. School of Materials and Chemistry, Southwest University of Science and Technology, 621010, Mianyang, Sichuan, China

b. Yibin Forestry and Bamboo Industry Research Institute, Yibin 644005, China.

c. Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China.

* Corresponding author: Xiaoyan Lin; E-mail: lxy20100205@163.com

Fig. S1 The particle size distribution of MnFe₂O₄ on the surface of MCA obtained by directional freezing: (a) MCA1-2; (b) MCA1-3; (c) MCA1-4; (d) MCA2-1; (e) MCA2-2; (f) MCA2-3

Fig. S2 XRD characterization of MCA

No.	S_{BET} $/m^2 \cdot g^{-1}$	D _{pore} /nm	$V_{total pore}$ /cm ³ ·g ⁻¹	$\frac{V_{<50nm}}{/cm^3 \cdot g^{-1}}$	V _{<50 nm} /V _{total}	ρ/%
MCA1-1	182.67	4.077	0.1772	0.1447	0.8166	95.33
MCA1-2	128.79	5.890	0.1515	0.1025	0.6766	90.51
MCA1-3	112.09	5.122	0.1358	0.1186	0.8733	80.88
MCA1-4	109.72	4.897	0.1085	0.0838	0.7724	66.18

Table S1 Specific surface area, pore volume and porosity of MCA with different

amounts of modifiers

 ρ_0 is the density of graphite, $\ 2.3 \ g/cm^3$

Pseudo-first-order kinetic equation (Equation S1) and pseudo-second-order kinetic equation (Equation S2) are as follows:

$$q_t = q_e(1 - e^{-k_1 t})$$
(Equation S1)
$$q_t = k_2 q_e^2 t / (1 + k_2 q_e t)$$
(Equation S2)

Where q_e and q_t are the amounts of Pb²⁺, Cu²⁺, or Cd²⁺ adsorbed at equilibrium and t min, respectively, mg/g; K₁ is the rate constant of the pseudo-first-order kinetic model, min⁻¹; K₂ is the rate constant of the pseudo-second-order kinetic model, g/(mg·min); t is the adsorption time, min.

ternary systems									
	concentration	Pseudo-	first-order m	odel	Pseudo-see	Pseudo-second-order model			
adsorbates	(mg/L)	K_1 (min ⁻¹)	q _e (mg/g)	R ²	$\begin{array}{c} K_2 \\ (g/mg \cdot min) \end{array}$	q _e (mg/g)	R ²		
Pb ²⁺	20	0.0253	16.74	0.985	0.0014	19.91	0.974		
	40	0.0346	29.24	0.997	0.0013	33.34	0.994		
	60	0.0319	38.88	0.957	0.0010	43.83	0.971		
	20	0.0261	9.55	0.981	0.0027	11.24	0.966		
Pb^{2+}/Cu^{2+}	40	0.0301	16.87	0.988	0.0020	19.41	0.992		
	60	0.0383	18.93	0.994	0.0022	21.55	0.974		
	20	0.0381	12.10	0.950	0.0035	13.73	0.916		
Pb^{2+}/Cd^{2+}	40	0.0474	19.88	0.981	0.0029	22.20	0.997		
	60	0.0249	25.59	0.987	0.0010	30.15	0.983		
	20	0.0266	7.12	0.972	0.0039	8.35	0.986		
$Pb^{2+}/Cu^{2+}/Cd^{2+}$	40	0.0188	13.74	0.979	0.0011	17.27	0.966		
	60	0.0268	16.53	0.993	0.0015	19.73	0.979		

Table S2 MCA adsorption kinetics fitting parameters for Pb^{2+} in single, binary, and

5.5								
	aanaantration	Pseudo-	first-order m	odel	Pseudo-see	Pseudo-second-order model		
adsorbates (mg	(mg/L)	K_1 (min ⁻¹)	q _e (mg/g)	R ²	$\frac{K_2}{(g/mg \cdot min)}$	q _e (mg/g)	R ²	
	20	0.0196	22.29	0.981	0.0007	28.09	0.963	
Cu^{2+}	40	0.0304	32.97	0.969	0.0009	38.89	0.937	
	60	0.0438	37.46	0.985	0.0016	41.40	0.973	
	20	0.0363	11.70	0.935	0.0035	13.32	0.903	
Cu^{2+}/Pb^{2+}	40	0.0574	16.53	0.995	0.0048	18.05	0.988	
	60	0.0402	20.44	0.950	0.0023	23.05	0.983	
	20	0.0421	16.13	0.962	0.0032	18.03	0.927	
Cu^{2+}/Cd^{2+}	40	0.0170	24.38	0.975	0.0005	31.16	0.961	
	60	0.0250	30.47	0.971	0.0007	36.67	0.945	
(1)	20	0.0398	8.31	0.963	0.0059	9.31	0.986	
$Cu^{2+}/Pb^{2+}/Cd^{2}$	40	0.0247	14.70	0.989	0.0017	17.41	0.986	
	60	0.0201	20.02	0.997	0.0009	24.60	0.994	

Table S3 MCA adsorption kinetics fitting parameters for Cu²⁺ in single, binary, and

ternary systems

ternary systems									
	concentration	Pseudo-f	irst-order mo	odel	Pseudo-se	Pseudo-second-order model			
adsorbates	(mg/L)	K_1 (min ⁻¹)	q _e (mg/g)	R ²	$\frac{K_2}{(g/mg \cdot min)}$	q _e (mg/g)	R ²		
	20	0.0167	15.28	0.920	0.0007	20.11	0.892		
Cd^{2+}	40	0.0127	29.46	0.972	0.0003	40.68	0.961		
	60	0.0199	36.52	0.983	0.0004	45.61	0.969		
	20	0.0214	11.95	0.966	0.0015	14.74	0.943		
Cd^{2+}/Pb^{2+}	40	0.0234	18.03	0.998	0.0012	21.77	0.987		
	60	0.0384	18.73	0.964	0.0021	21.58	0.938		
	20	0.0284	7.63	0.913	0.0045	8.69	0.955		
Cd^{2+}/Cu^{2+}	40	0.0228	12.69	0.990	0.0016	15.30	0.977		
	60	0.0188	17.03	0.974	0.0010	20.82	0.983		
	20	0.0137	6.09	0.930	0.0017	7.82	0.941		
$Cd^{2+}/Pb^{2+}/Cu^{2+}$	40	0.0195	9.63	0.988	0.0016	12.06	0.983		
	60	0.0295	12.83	0.989	0.0024	14.93	0.992		

Table S4 MCA adsorption kinetics fitting parameters for Cd²⁺ in single, binary, and

Langmuir isotherm model (Equation S3) and Freundlich isotherm model (Equation S4) are as follows:

$$q_e = q_m K_L C_e / (1 + bC_e)$$
 (Equation S3)
$$q_e = K_F C_e^{1/n}$$
 (Equation S4)

Where q_e is the amount of Pb²⁺, Cu²⁺, or Cd²⁺ adsorbed by MCA at equilibrium and q_m is saturation capacity of MCA forPb²⁺, Cu²⁺, or Cd²⁺, mg/g; C_e is the concentration of Pb²⁺, Cu²⁺ and Cd²⁺ in the solution at equilibrium, μ g/mL; K_L is the adsorption equilibrium constant of Langmuir isothermal model, L/mg; K_F is the adsorption equilibrium constant of Freundlich isothermal model, mg·g⁻¹·(L·mg⁻¹)^{1/n}; 1/n is the adsorption intensity.

and ternary systems									
	temperature	Langmui	r isotherm	model	Freundlich isotherm model				
adsorbates	(°C)	$q_m (mg/g)$	K_L	R ²	n	$K_{\rm F}$	R ²		
	25	53.18	0.0568	0.997	2.037	6.02	0.983		
Pb ²⁺	35	61.70	0.0771	0.999	2.034	8.07	0.970		
	45	74.38	0.0982	0.993	1.971	10.55	0.947		
	25	30.47	0.0444	0.946	2.064	3.20	0.990		
Pb^{2+}/Cu^{2+}	35	34.31	0.0055	0.975	2.167	4.26	0.991		
	45	37.01	0.0751	0.963	2.384	5.98	0.942		
	25	38.91	0.0352	0.984	1.805	2.90	0.951		
Pb^{2+}/Cd^{2+}	35	44.37	0.0434	0.982	1.916	4.07	0.947		
	45	55.26	0.0466	0.995	1.887	5.31	0.968		
	25	24.68	0.0353	0.886	1.930	2.08	0.943		
$Pb^{2+}/Cu^{2+}/Cd^{2+}$	35	32.30	0.0340	0.922	1.837	2.45	0.973		
	45	37.49	0.0372	0.995	1.788	2.83	0.966		

Table S5 MCA adsorption isotherm curve fitting parameters for Pb^{2+} in single, binary,

and ternary systems									
	temperature	Langmui	r isotherm	model	Freundlich isotherm model				
adsorbates	(°C)	$q_m (mg/g)$	K_L	\mathbb{R}^2	n	$K_{\rm F}$	R ²		
	25	44.54	0.1402	0.978	2.668	9.95	0.990		
Cu^{2+}	35	63.86	0.1103	0.957	2.291	11.21	0.999		
	45	84.21	0.1014	0.933	2.160	13.47	0.996		
	25	34.54	0.0249	0.910	1.651	1.80	0.853		
Cu^{2+}/Pb^{2+}	35	53.18	0.0206	0.957	1.484	1.98	0.926		
	45	67.07	0.0226	0.963	1.489	2.67	0.940		
	25	44.57	0.0550	0.985	1.950	4.73	0.942		
Cu^{2+}/Cd^{2+}	35	49.26	0.0834	0.992	2.071	6.95	0.948		
	45	52.63	0.1317	0.971	2.239	9.97	0.898		
	25	28.56	0.0390	0.988	2.005	2.67	0.956		
$Cu^{2+}/Pb^{2+}/Cd^{2+}$	35	32.50	0.0447	0.978	2.008	3.26	0.928		
	45	36.14	0.0574	0.949	2.128	4.43	0.875		

Table S6 MCA adsorption isotherm curve fitting parameters for Cu^{2+} in single, binary,

and ternary systems									
	temperature	Langmui	r isotherm	model	Freundlich isotherm model				
adsorbates	(°C)	$q_m (mg/g)$	K_L	R ²	n	$K_{\rm F}$	R ²		
	25	61.05	0.0338	0.953	1.692	4.00	0.977		
Cd^{2+}	35	64.01	0.0450	0.959	1.788	5.39	0.971		
	45	73.63	0.0509	0.941	1.753	6.47	0.956		
	25	20.20	0.3478	0.878	4.421	8.21	0.977		
Cd^{2+}/Pb^{2+}	35	24.12	0.4406	0.923	4.328	10.22	0.988		
	45	26.47	0.6602	0.926	4.707	12.77	0.982		
	25	31.02	0.0187	0.993	1.496	1.10	0.981		
Cd^{2+}/Cu^{2+}	35	37.46	0.0212	0.991	1.458	1.37	0.980		
	45	55.35	0.0158	0.989	1.307	1.31	0.980		
	25	30.71	0.0252	0.984	1.417	0.84	0.977		
$Cd^{2+}/Pb^{2+}/Cu^{2+}$	35	31.00	0.1049	0.991	1.509	1.37	0.965		
	45	36.29	0.0331	0.974	1.501	1.92	0.947		

Table S7 MCA adsorption isotherm curve fitting parameters for Cd^{2+} in single, binary,

The thermodynamic parameters of the adsorption process are calculated by Equations (S5)-(S8).

$$\ln K = \frac{\Delta S^{\theta}}{R} - \frac{\Delta H^{\theta}}{RT}$$
 (Equation S5)

$$\Delta G^{\theta} = -RT \ln K \qquad (Equation S6)$$

$$\Delta G^{\theta} = \Delta H^{\theta} - T\Delta S^{\theta}$$
 (Equation S7)

$$K_{\rm d} = \frac{q_e}{C_e}$$
 (Equation S8)

Where R is the ideal gas constant, 8.314 J/(mol • K); T is the absolute temperature, K; ΔG^{θ} is the change of Gibbs free energy, J/K; ΔH^{θ} is the change of enthalpy, J/K; ΔS^{θ} is change of entropy, J/(mol • K); K is the equilibrium constant, (L/mol); q_e is the amount of Pb²⁺, Cu²⁺ or Cd²⁺ in the MCA at equilibrium; C_e is the concentration of Pb²⁺, Cu²⁺ or Cd²⁺ in the solution at equilibrium, mg/L.

5 5								
adsorbates	Δ	G^{θ} (kJ/mol))	ΔH^{θ}	ΔS^{θ} (kJ/mol·K)			
	25°C	35 °C	45 °C	(KJ/mol)				
Pb ²⁺	-1.152	-2.324	-3.589	35.162	0.122			
Pb^{2+}/Cu^{2+}	-0.311	-0.354	-1.001	20.551	0.066			
Pb^{2+}/Cd^{2+}	-0.072	-0.656	-0.879	23.517	0.077			
$Pb^{2+}/Cu^{2+}/Cd^{2+}$	-0.631	-1.093	-1.770	18.782	0.057			

Table S8 Thermodynamic parameters of Pb²⁺adsorption by MCA in single, binary,

and ternary systems

adsorbates	Δ	G^{θ} (kJ/mol))	ΔH^{θ}	(kJ/mol·K)			
	25°C	35 °C	45 °C	(KJ/MOI)				
Cu^{2+}	-1.958	-2.906	-3.829	25.933		0.094		
Cu^{2+}/Pb^{2+}	-0.040	-0.819	-1.656	26.941		0.085		
Cu^{2+}/Cd^{2+}	-0.189	-1.573	-3.004	41.776		0.141		
$Cu^{2+}/Pb^{2+}/Cd^{2+}$	-0.236	-0.987	-1.704	23.581		0.073		

Table S9 Thermodynamic parameters of Cu^{2+} adsorption by MCA in single, binary,

and ternary systems

adsorbates	Δ	G^{θ} (kJ/mol)		ΔH^{θ}	ΔS^{θ} (kJ/mol·K)
	25°C	35 °C	45 °C	(KJ/mol)	
Cd^{2+}	-0.804	-1.519	-2.327	21.878	0.076
Cd^{2+}/Pb^{2+}	-0.531	-1.719	-2.832	33.784	0.115
Cd^{2+}/Cu^{2+}	-1.130	-1.600	-2.387	21.167	0.063
$Cd^{2+}/Pb^{2+}/Cu^{2+}$	-0.628	-1.752	-2.803	35.207	0.109

Table S10 Thermodynamic parameters of Cd²⁺adsorption by MCA in single, binary,

and ternary systems

Distribution coefficient (K_d) and adsorption selectivity factor α_M^A are calculated by Equations (S9)-(S10). K_d represents the strength of the affinity of the adsorbent to the adsorbate, L/g. α_M^A represents the adsorption selectivity factor of the adsorbent on the target ion (A) in the solution with interfering ions (M).

$$\mathbf{K}_{d} = (\mathbf{C}_{0} \Box \mathbf{C}_{e}) / \mathbf{C}_{e} \times \mathbf{V} / \mathbf{m}$$
 (Equation S9)

$$\alpha_M^A = \frac{q_A C_M}{q_M C_A}$$
 (Equation S10)

Where C_0 is the concentration of heavy metals in the solution before adsorption, mg/mL, C_e is the concentration of heavy metals in solution at adsorption equilibrium, g/ml, V is the volume of sample solution, mL; m is the weight of sample, g; q_A is the adsorption amount of A at adsorption equilibrium, mg/g; q_M is the adsorption amount of M at adsorption equilibrium, mg/g; C_A is the concentration of A in solution at adsorption equilibrium, mg/L; C_M is the concentration of M in solution at adsorption equilibrium, mg/L; C_M is the concentration of M in solution at adsorption equilibrium, mg/L; C_M is the concentration of M in solution at adsorption equilibrium, mg/L; C_M is the concentration of M in solution at adsorption equilibrium, mg/L.

Fig. S3 The zeta potentials of MCA1-3 at different pH in the presence of KNO₃ $(10^{-3}mol \cdot L^{-1})$.

Adsorbent	Initial concentration (µg/mL)			Adsorpti	Dof		
	Pb^{2+}	Cu ²⁺	Cd^{2+}	Pb ²⁺	Cu^{2+}	Cd^{2+}	Kel.
Magnetic carbon							
quantum dots from	150	/	150	17.92	/	23.75	[1]
Pomegranate peel							
(Fe ₃ O ₄ -PPCQDs)							
magnetic multi-							
functional biochar	25	,	25	61.25	/	53 53	[2]
adsorbents (MMF-	25	/				53.72	
BC)							
Wood ash	1.50	1.50	1.50	<i>(</i> 1 -	20.0	10.0	501
amended biochar	150	150	150	61.5	38.9	10.2	[3]
Garden waste biochar	300	300	/	45.9	25.2	/	[4]
MCA	60	60	60	74.38	84.21	73.63	This work

Table S11 Comparison of MCA with other biomass based materials.