Supporting Information for:

Levoglucosenone as Starting Material for Cascade Continuous-Flow Synthesis of (*R*)-γ-Carboxy-γbutyrolactone

Caio M. Pacheco,^a Wesley Lima,^a Fernanda A. Lima, ^a Mauro R. B. P. Gomez,^a Isabela

G. da Silva,^a Leandro S. M. Miranda,^a Pierre M. Esteves,^b Ivaldo Itabaiana Jr,^c Robert

Wojcieszak, d,e Raquel A. C. Leão, a Rodrigo O. M. A. de Souza a*

^a Biocatalysis and Organic Synthesis Group, Chemistry Institute, Federal University of Rio de Janeiro, 21941910, Rio de Janeiro, Brazil;

^b Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, CT, A-622, Cid. Univ., Rio de Janeiro, RJ 21941-909, Brazil

^c Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, 21941909, Rio de Janeiro, Brazil;

^d Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, France;

^e Université de Lorraine, CNRS, L2CM UMR 7053, F-54000 Nancy, France.

souzarod21@gmail.com

Keywords: Continuous Flow Chemistry, Baeyer-Villiger Reaction, Levoglucosenone, Cyrene.

COMPOUND DATA CONTENT:

S	ummar	y	
1.	Batch	h Reactions	.2
	1.1.	Synthesis of lactone 2H-HBO (3) from Cyrene TM (2)	.2
	1.2.	Synthesis of oxidation of 2H-HBO (3) towards carboxylic acid 4	.3
2. Chomatographic Analysis		natographic Analysis	.4
	2.1. the prod	Gas Chromatography-Mass Spectrometry (GC-MS): Continuous-flow hydrogenation of LGO (1) fo uction of Cyrene TM (2)	r .4
	2.2. Cyrene ^T	Gas Chromatography-FID Spectrometry (GC-FID): Continuous-flow Baeyer-Villiger oxidation of ^M (2) towards 2H-HBO (3).	.7
	2.3.	Gas Chromatography-Mass Spectrometry (GC-MS): Carboxylic acid 4	10
	2.4. towards	Gas Chromatography-FID Spectrometry (GC-FID): Continuous-flow oxidation of 2H-HBO (3) carboxylic acid 4.	10
3.	Speci	tral data	15

EXPERIMENTAL

1. Batch Reactions

1.1. Synthesis of lactone 2H-HBO (3) from $Cyrene^{TM}$ (2)

The synthesis of (S)- γ -Hydroxymethyl- γ -butyrolactone (2H-HBO, **3**) from CyreneTM (**2**) was performed by a previously established method.^{*i*}

The synthesis of 2H-HBO were performed in a 50 mL round bottom flask, a solution containing by slow dripping Hydrogen Peroxide 30 % (0.81 mL, 7.11 mmol, 1.08 Eq.) into a 6.6 M solution of CyreneTM at 0 °C (0.844 g, 6.59 mmol, 1 Eq.) in 1 mL H₂O. Than the solution was heated to 50 °C for 30 min and reaction progression was tracked through thin layer chromatography (ethyl acetate/cyclohexane 8:2). At the end, the reaction was heated to 90 °C to kill any hydrogen peroxide excess. The reaction was dried through rotatory evaporation, using cyclohexane as azeotrope then lyophilized. Obtaining the product in the form of a colorless oil of 0.75 g mass with an isolated yield of 98 % (Conv.: >99 %, Selec.: 97 %). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 4.59 (tdd, J = 7.4, 4.6, 2.8 Hz, H 4), 3.86 (dd, J = 12.5, 2.8 Hz, H 5b), 3.64 – 3.55 (m, H 5a), 2.89 (s, H 6), 2.64 – 2.45 (m, H 2), 2.27 – 2.04 (m, H 3). ¹³C NMR (126 MHz, CDCl₃) δ (ppm) 177.84 (s, C1), 80.87 (s, C4), 64.10 (s, C5), 28.70 (s, C2), 23.15 (s, C3).

i.

Bonneau, G., Peru, A. A. M., Flourat, A. L. and Allais, F. Green Chemistry 2018, 20, 2455–2458.

1.2. Synthesis of oxidation of 2H-HBO (3) towards carboxylic acid 4

The synthesis of carboxylic acid **4** from 2H-HBO (**3**) was performed by a previously established method.ⁱⁱ

The synthesis of **4** was carried out in a 50 mL round bottom flask, containing 4 mL of distilled water and 232 mg of 2H-HBO (2 mmol, 1 Eq.), to this solution were added 312 mg of 2,2,6 ,6-tetramethylpiperidine 1-oxy (TEMPO, 2 mmol, 1 Eq.), 82 mg of sodium bromide (0.8 mmol, 0.4 Eq.), and 550 mL of 10 % sodium hypochlorite solution (8 mmol, 4 Eq.). The pH of the solution was adjusted to 10 with 1 M sodium hydroxide and then stirred for two hours, monitored by thin layer chromatography (ethyl acetate/cyclohexane 8:2). After the total consumption of 2H-HBO (**3**), the reaction was quenched with 1 mL of ethanol. The pH was then reduced to 1 by a 6 M hydrochloric acid solution. For purification, a liquid-liquid extraction was carried out with dichloromethane, followed by rotary evaporation of the aqueous phase. The solid obtained was then resuspended with hot ethanol and subsequently filtered through a sintered funnel to remove inorganic salts. Obtaining the product in the form of 0.403g g of mass with an isolated yield of 82 % (Conv.: 82 %, Select.: 95 %). IR ν_{max} (KBr) cm⁻¹: 3550-3200, 1775, 1723, 1175. ¹H NMR (400 MHz, D₂O) δ (ppm) δ 2.4-2.6 (4H, m,-CH₂-CH₂), 4.85-5.15 (H, m, ring-H), 5.1 (H, s, -COOH).

Kraus, T., Buděšínský, M., Z., Jiří. J. Org. Chem. 2001, 66, 4595–4600.

Figure S1. H-Cube® Mini Plus continuous flow hydrogenation reactor (ThalesNano).

2. Chomatographic Analysis

2.1. Gas Chromatography-Mass Spectrometry (GC-MS): Continuousflow hydrogenation of LGO (1) for the production of CyreneTM(2).

Figure S3. GC−MS chromatograms of standard CyreneTM (2) (3.2 min).

Figure S4. GC–MS chromatograms of continuous-flow hydrogenation of LGO (1) using Pd/C 10% (Table 1, entry 1).

Figure S5. GC–MS chromatograms of continuous-flow hydrogenation of LGO (1) using Pd/C 10% (Table 1, entry 2).

Figure S6. GC–MS chromatograms of continuous-flow hydrogenation of LGO (1) using Pd/C 10% (Table 1, entry 3).

Figure S7. GC–MS chromatograms of continuous-flow hydrogenation of LGO (1) using Pd/C 10% (Table 1, entry 4).

Figure S8. GC–MS chromatograms of continuous-flow hydrogenation of LGO (1) using Pd/C 10% (Table 1, entry 5).

Figure S9. GC–MS chromatograms of continuous-flow hydrogenation of LGO (1) using Pd/C 10% (Table 1, entry 6).

2.2. Gas Chromatography-FID Spectrometry (GC-FID): Continuous-flow Baeyer-Villiger oxidation of CyreneTM (2) towards 2H-HBO (3).

Figure S10. GC-FID standard CyreneTM (2).

Figure S11. GC-FID chromatograms of continuous-flow Baeyer-Villiger oxidation of CyreneTM (2) towards 2H-HBO (3) (Table 2, entry 1).

Figure S12. GC-FID chromatograms of continuous-flow Baeyer-Villiger oxidation of CyreneTM (2) towards 2H-HBO (3) (Table 2, entry 2).

Figure S13. GC-FID chromatograms of continuous-flow Baeyer-Villiger oxidation of CyreneTM (2) towards 2H-HBO (3) (Table 2, entry 3).

Figure S14. GC–FID chromatograms of continuous-flow Baeyer-Villiger oxidation of CyreneTM (2) towards 2H-HBO (3) (Table 2, entry 4).

Figure S15. GC-FID chromatograms of continuous-flow Baeyer-Villiger oxidation of CyreneTM (2) towards 2H-HBO (3) (Table 2, entry 5).

Figure S16. GC-FID chromatograms of continuous-flow Baeyer-Villiger oxidation of CyreneTM (2) towards 2H-HBO (3) (Table 2, entry 6).

Figure S17. GC–FID chromatograms of continuous-flow Baeyer-Villiger oxidation of CyreneTM (2) towards 2H-HBO (3) (Table 2, entry 7).

Figure S18. GC-FID chromatograms of continuous-flow Baeyer-Villiger oxidation of CyreneTM (2) towards 2H-HBO (3) (Table 2, entry 8).

Figure S19. Chromatogram for batch oxidation of 2H-HBO (3) towards carboxylic acid 4.

2.4. Gas Chromatography-FID Spectrometry (GC-FID): Continuous-flow oxidation of 2H-HBO (3) towards carboxylic acid 4.

Figure S20. Chromatogram for Continuous-flow oxidation of 2H-HBO (3) towards carboxylic acid 4 (Table 3, entry 1).

Figure S21. Chromatogram for Continuous-flow oxidation of 2H-HBO (3) towards carboxylic acid 4 (Table 3, entry 2).

Figure S22. Chromatogram for Continuous-flow oxidation of 2H-HBO (3) towards carboxylic acid 4 (Table 3, entry 3).

Figure S23. Chromatogram for Continuous-flow oxidation of 2H-HBO (3) towards carboxylic acid 4 (Table 3, entry 4).

Figure S24. Chromatogram for Continuous-flow oxidation of 2H-HBO (3) towards carboxylic acid 4 (Table 3, entry 5).

Figure S25. Chromatogram for Continuous-flow oxidation of 2H-HBO (3) towards carboxylic acid 4 (Table 4, entry 1).

Figure S26. Chromatogram for Continuous-flow oxidation of 2H-HBO (3) towards carboxylic acid 4 (Table 4, entry 2).

Figure S27. Chromatogram for Continuous-flow oxidation of 2H-HBO (3) towards carboxylic acid 5 (Table 4, entry 3).

Figure S28. Chromatogram for Continuous-flow oxidation of 2H-HBO (3) towards carboxylic acid 4 (Table 4, entry 4).

Figure S29. Chromatogram for Continuous-flow oxidation of 2H-HBO (3) towards carboxylic acid 4 (Table 4, entry 5).

Figure S30. Chromatogram for Continuous-flow oxidation of 2H-HBO (3) towards carboxylic acid 4 (Table 4, entry 6).

Figure S31. Chromatogram for Continuous-flow oxidation of 2H-HBO (**3**) towards carboxylic acid **4** (Table 4, entry 7).

3. Spectral data

Figure S32. ¹H NMR spectrum of Levoglucosenone (LGO, 1) in CDCl₃.

Figure S33. ¹³C NMR spectrum of Levoglucosenone (LGO, 1) in CDCl₃.

Figure S34. Infrared spectrum Cyrene[™] (2).

S17

Figure S37. ¹H NMR spectra of the 1,4-addition product 5 (500 MHz, CDCl₃).

Figure S38. ¹³C NMR spectra of the 1,4-addition product 5 (500 MHz, CDCl₃).

Figure S39. Expansion of H-H COSY spectra of the 1,4-addition product **5** (500 MHz, CDCl₃).

Figure S40. Expansion of HMBC H-C (J_2 - J_3) spectra of the 1,4-addition product **5** (500 MHz, CDCl₃).

Figure S41. Infrared spectrum 2H-HBO (3).

Figure S43. ¹³C NMR spectrum of 2H-HBO (3) in CDCl₃.

Figure S44. ¹H NMR spectrum showing FBO (3) evidence in CDCl₃.