Supporting Information

Porous CaMnO₃-promoted g-C₃N₄ as an effective photocatalyst for

Tetracycline degradation

Bo Zhang^a, Chaoqi Li^a, Shasha Liu^a, Lixuan Zhuang^a, Weiqi Zhang^a, Limei Huang^a, Zhenzhen Jia^c, Dongdong Chen^{a, *}, Xiang Li^{a, *}

- ^a School of Environmental and Chemical Engineering, Guangdong Provincial Key
 Laboratory of Environmental Health and Land Resource, Zhaoqing University,
 526061 Zhaoqing, China
- ^b School of Environmental Science and Engineering, Sun Yat-Sen University, 510006
 Guangzhou, China
- * Corresponding authors. <u>chendongdong@zqu.edu.cn;</u>

Figure S1. Representative SEM images for the as-prepared CaMnO₃ sample.

Figure S2. Representative SEM images for the as-prepared $CaMnO_3/g-C_3N_4$ sample, 2 µm for a) and b); 1 µm for c) and d).

Figure S3. XPS survey spectrum of the $g-C_3N_4$ (a) and CaMnO₃ (b) photocatalyst.

Figure S4. Photocatalytic performance in the absence of catalyst for TC degradation under the irradiation of visible light.

Figure S5. VB-XPS patterns of a) the pristine $g-C_3N_4$ and b) $CaMnO_3/g-C_3N_4$ photocatalyst.

Table S1 The specifc surface areas, pore volumes, and pore sizes of fabricated $g-C_3N_4$, CaMnO₃ and CaMnO₃/g-C₃N₄ photocatalyst

Sample	Surface area (m ² g ⁻¹)	Pore size (nm)	Pore volume (cm ³ g ⁻¹)
CaMnO ₃	4.07	8.06	0.008
g-C ₃ N ₄	23.07	23.19	0.134
$CaMnO_3/g-C_3N_4$	25.72	16.29	0.105

Material	catalyst dosage (mg)	TC solution (mg/L)	Degradation	Light irradiation	Ref.
g-C ₃ N ₄ /BiVO ₄	50	10	90%	180 min	1
γ -Fe ₂ O ₃ /g-C ₃ N ₄	50	10	73.8%	120 min	2
$MoO_3/g-C_3N_4$	50	10	85.9%	100 min	3
g-C ₃ N ₄ /WO ₃	40	10	79.8%	180 min	4
$WO_3/g-C_3N_4/Bi_2O_3$	100	10	80.2%	60 min	5
$CuBi_2O_4/g\text{-}C_3N_4$	50	10	83%	60 min	6
$CuInS_2/g-C_3N_4$	50	20	83.7%	60 min	7
Bi ₂ O ₃ QDs/g-C ₃ N ₄	50	10	72.9%	120 min	8
$a-MnO_2/B@g-C_3N_4$	50	10	87%	80 min	9
B-TiO ₂	20	10	66.2%	240 min	10
P25	50	20	54%	60 min	11
SrTiO ₃ /TiO ₂	20	30	98.2%	120 min	12
TiO ₂ /BiOCl	50	20	86.9%	100 min	13
Ce-TiO ₂	10	20	77.7%	110 min	14
CaMnO ₃ /g-C ₃ N ₄	50	10	95%	90 min	This work

Table S2 Comparison of the photocatalytic performance of $CaMnO_3/g-C_3N_4$ with other

reported photocatalysts

References

- G. Zhou, L. Meng, X. Ning, W. Yin, J. Hou, Q. Xu, J. Yi, S. Wang and X. Wang, *Int. J. Hydrogen Energ.*, 2022, 47, 8749-8760.
- C. Li, S. Yu, H. Che, X. Zhang, J. Han, Y. Mao, Y. Wang, C. Liu and H. Dong, ACS Sustain. Chem. Eng., 2018, 6, 16437-16447.
- 3 L. Liu, J. Huang, H. Yu, J. Wan, L. Liu, K. Yi, W. Zhang and C. Zhang, *Chemosphere*, 2021, 282, 131049.
- H. Jing, R. Ou, H. Yu, Y. Zhao, Y. Lu, M. Huo, H. Huo and X. Wang, Sep. Purif. Technol., 2021, 255, 117646.
- L. Jiang, X. Yuan, G. Zeng, J. Liang, X. Chen, H. Yu, H. Wang, Z. Wu, J.
 Zhang and T. Xiong, *Appl. Catal. B-Environ.*, 2018, 227, 376-385.
- F. Guo, W. Shi, H. Wang, H. Huang, Y. Liu and Z. Kang, *Inorg. Chem. Front.*, 2017, 4, 1714-1720.
- F. Guo, W. Shi, M. Li, Y. Shi and H. Wen, Sep. Purif. Technol., 2019, 210, 608-615.
- 8 Y. Liang, W. Xu, J. Fang, Z. Liu, D. Chen, T. Pan, Y. Yu and Z. Fang, *Appl. Catal. B-Environ.*, 2021, **295**, 120279.
- D. E. Christy, E. Vijayakumar, A. J. Bosco and P. M. Johnson, *Opt. Mater.*, 2023, 136, 113429.
- 10 S. Wu, X. Li, Y. Tian, Y. Lin and Y. H. Hu, Chem. Eng. J., 2021, 406, 126747.
- P. Lian, A. Qin, Z. Liu, H. Ma, L. Liao, K. Zhang and N. Li, *Nanomaterials*, 2024, 14, 943.
- 12 M. Hu, W. Chen and J. Wang, *Water*, 2024, **16**, 210.
- 13 X. Zou, C. Li, L. Wang, W. Wang, J. Bian, H. Bai and X. Meng, *Appl. Surf. Sci.*, 2023, 630, 157532.
- W. Mei, H. Lu, R. Dong, S. Tang and J. Xu, ACS Appl. Nano Mater., 2024, 7, 1825-1834.