Supplementary Information (SI) for RSC Advances. This journal is © The Royal Society of Chemistry 2025

An integrated theoretical study on natural alkaloids as SARS-CoV-2 main protease inhibitors: A step toward discovery of potential

drug candidate with anti-covid-19 activity

Shagufta Parveen¹, Laiba Shahbaz¹, Nusrat Shafiq^{1*}, Maryam Rashid¹, Mohamed Mohany², Mingkun Zhu^{3,4}

¹Synthetic and Natural Products Discovery (SNPD) Laboratory, Department of Chemistry, Government College Women University Faisalabad-38000, Pakistan

²Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia. mmohany@ksu.edu.sa

³Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China.

mkzhu085@just.edu.cn

⁴Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China

Corresponding Authors: Dr. Nusrat Shafiq, Assistant Professor

Corresponding Address: <u>dr.nusratshafiq@gcwuf.edu.pk; gqumarin@gmail.com</u> ORCID: orcid.org/0000-0002-3270-4227

Table S-1: Dataset of antiparasitic natura	l alkaloids with their IC50 values and their sources
--	--

S No	Name	Formula	Smiles	Activity	Structure	IC50/ EC50 μM / nm / μg/mL / mM	Source	Reference
1	Dicentrinone	C19H13NO5	COC1=C(C=C2 C(=C1)C3=C4 C(=CC5=C3OC O5)C=CN=C4C 2=O)OC	Against free trypomastig otes of the Ystrain of T.cruzi		16.4 μM	fresh leaves of Ocotea puberula	(Fernández <i>et al.</i> , 2021a).

2	Duguetine	C20H21NO5	CN1CCC2=CC	Against free	<u></u>	9.32 μM	fresh leaves of	(Fernández et al.,
			3=C(C4=C2C1	trypomastig			Ocotea puberula	2021a).
			C(C5=CC(=C(otes of the				
			C=C54)OC)OC	Ystrain of				
)O)OCO3	T.cruzi	ОН			
3	Flinderole A	C32H40N4	CC(=CC1CC(N	against P.		0.75	Australian	(Fernandez et al.,
			2C1=C(C3=CC	falciparum		μM	species	2010).
			=CC=C32)CCN	3D7			Flindersia	
			C)(C)C=CC4=	strain			acuminata	
			C(C5=CC=CC=					
			C5N4)CCNC)C					
					NH			
4	Liriodenine	C17H9NO3	C1OC2=C(O1)	against the	<u> </u>	14.5 μM	Annona foetida	(Fernández et al.,
			C3=C4C(=C2)	trypomastig	0			2021a).
			C=CN=C4C(=	ote of				
			O)C5=CC=CC=	T.cruzi				
			C53					
5	0-	C ₁₉ H ₁₅ NO ₄	COc1c2ccnc3c2	against the	0	11.83	Annona foetida	(Fernández et al.,
	methylmoschatolin		c(c(c1OC)OC)-	trypomastig		μM		2021a).
	e		c4cccc4C3=O	ote of				
				T.cruzi				
					Ö			

6	ancistroealaine A	C ₂₆ H ₂₉ NO ₄	Cc1cc2c(ccc(c2 c(c1)OC)OC)c3 c(cc(c4c3CC(N =C4C)C)OC)O C	against trypomastig otes (Tulahuen C4, L6 cells		5.6 μΜ	isolated from lianas from the Ancistrocladus genus	(Fernández <i>et al.</i> , 2021a).
7	6,5 '-O,O- didemethylancistro ealaine A	C24H25NO4	Cc(c1)cc(OC)c2 c1c(c3c(CC(C) N=C4C)c4c(OC)cc3O[H])ccc2 O[H]	against trypomastig otes (Tulahuen C4, L6 cells	H-O O O O H	16.3 μM	isolated from lianas from the Ancistrocladus genus	(Fernández <i>et al.</i> , 2021a).
8	6-O- demethylancistroea laine A	C ₂₅ H ₂₇ NO ₄	OC1=C(C2=C3 C=C(C)C=C(O C)C3=C(OC)C =C2)C(C[C@H](C)N=C4C)=C 4C(OC)=C1	against trypomastig otes (Tulahuen C4, L6 cells		25.9 μΜ	isolated from lianas from the Ancistrocladus genus	(Fernández <i>et al.</i> , 2021a).

9	Flinderole B	C34H44N4	CC(=CC1CC(N 2C1=C(C3=CC =CC=C32)CCN (C)C)(C)C=CC 4=C(C5=CC=C C=C5N4)CCN(C)C)C	against P. falciparum 3D7 strain	0.21 μΜ	F. amboinensis	(Fernandez <i>et al.</i> , 2010).
10	ancistrotanzanine B	C26H29NO4	CC1CC2=C(C(=CC(=C2C(=N 1)C)OC)OC)C3 =C4C=C(C=C(C4=C(C=C3)O C)OC)C	against β-gal Tulahuen trypomastig otes	3.58 µM	isolated from lianas from the Ancistrocladus genus	(Fernández <i>et al.</i> , 2021a).
11	ancistectorine D	C25H27NO4	CC1CC2=C(C3 =C4C=C(C)C= C(OC)C4=C(O[H])C=C3)C(OC)=CC(OC)=C2 C(C)=N1	against T. cruzi	4.439 μΜ	isolated from lianas from the Ancistrocladus genus	(Fernández <i>et al.</i> , 2021a).

12	5-epi-4'-O- demethylancistrobe rtsonine C	C ₂₆ H ₃₁ NO ₄	CC1=CC=C2C(OC)=CC=C(C3 =C(OC)C=C(O C)C4=C3C[C@ H](C)N(C)[C@ @H]4C)C2=C1	against T. cruzi	11.1 μM	isolated from lianas from the Ancistrocladus genus	(Fernández <i>et al.</i> , 2021a).
13	Ancistotectorine	C ₂₆ H ₃₁ NO ₄	COC1=CC=CC 2=CC(C)=C(C(O)=C12)C1=C(OC)C2=C(C[C @@H](C)N(C)[C@@H]2C)C= C1OC	against T. cruzi	10.2 μM	isolated from lianas from the Ancistrocladus genus	(Fernández <i>et al.</i> , 2021a).
14	Ancistrotanzanine	C ₂₅ H ₂₇ NO ₄	[H]OC1=C2C($OC([H])([H])[H]$ $])=C([H])C([H])$ $)=C([H])C2=C($ $[H])C(=C1C1=$ $C(OC([H])([H])$ $[H])C([H])=C($ $OC([H])([H])[H]$ $])C2=C1C([H])($ $[H])[C@@]([H])$ $[D])[C@@]([H])$ $[D])[N=C2C([H])($ $[D])([H])[H])C([H])$ $[D]([H])[H])C([H])$	against T. cruzi	4.20 μΜ	isolated from lianas from the Ancistrocladus genus	(Fernández <i>et al.</i> , 2021a).
15	4'-O- demethylancistrocl	C ₂₅ H ₂₈ NO ₄	[H]OC1=C(C(C ([H])([H])[H])=	against Tulahuen C4	0.03µM	isolated from lianas from the	(Fernández <i>et al.</i> , 2021a).

	adinium A		C(C2=C([N+]3	trypomastig			Ancistrocladus	
			=C(C([H])([H])	otes of T.	H H		genus	
			[H])C4=C(C([H	cruzi				
])([C@@]3(C([H O H			
			H])([H])[H])[H]		H H			
)[H])C([H])=C(
			C([H])=C4OC([
			H])([H])[H])O[
			H])C([H])=C(C					
			(OC([H])([H])[
			H])=C12)[H])[
			H])[H]					
16	6,4'-O-	C24H26NO4+	[H]OC1=C(C(C	against	H H ₃ C	6.0 µM	isolated from	(Fernández et al.,
	didemethylancistro		([H])([H])[H])=	Tulahuen C4			lianas from the	2021a).
	cladinium A		C(C2=C([N+]3	trypomastig			Ancistrocladus	
			=C(C([H])([H])	otes of T.	H O CH ₃ CH ₃ CH ₃		genus	
			[H])C4=C(C([H	cruzi	HUU			
])([C@@]3(C([
			H])([H])[H])[H]					
)[H])C([H])=C(
			C([H])=C4OC([
			H])([H])[H])O[
			H])C([H])=C(C					
			(OC([H])([H])[
			H])=C12)[H])[
			H])[H]					
17	Mbandakamine B2	C49H54N2O8	OC1=CC(C)=C	against		2.98 µM	isolated from	(Fernández et al.,
			(C2=CC(C3=C(Tulahuen C4	он		lianas from the	2021a).
			O)C=C(OC)C4	trypomastig	но-СУ-М-		Ancistrocladus	
			=C3C[C@H](C	otes of T.			genus	

)N(C)[C@@H] 4C)=C(C=CC= C5OC)C5=C2O)C6=C(C7=C(O)C=C(OC)C8= C7C[C@@H](cruzi				
			$\begin{array}{c} C)N(C)[C@@H]\\]8C)C=CC(OC) \end{array}$					
18	γ-fagarine	C ₁₃ H ₁₁ NO ₃	=C61 COC1=CC=CC 2=C1N=C1OC =CC1=C2OC	against epimastigote sof the Y strain of T.cruzi		33.4 μM	isolated from lianas from the Ancistrocladus genus	(Fernández <i>et al.</i> , 2021a).
19	Waltherione G	C ₂₃ H ₃₁ NO ₃	CC1=C(C(=O) C2=C(N1OC)C CCC2CCCCCC 3=CC=CC=C3) OC	against amastigotes (Tuluhaen C2C4 (LacZ))		0.02 μΜ	aerial parts and roots of Waltheria indicas	(Fernández <i>et al.</i> , 2021a).
20	Waltheriones H	C ₂₄ H ₃₃ NO ₄	CC1=C(C(=O) C2=C(N1OC)C (CCC2CCCCC C3=CC=CC=C 3)OC)OC	against amastigotes (Tuluhaen C2C4 (LacZ))		0.04 μΜ	aerial parts and roots of Waltheria indicas	(Fernández <i>et al.</i> , 2021a).
21	Waltheriones K	C ₂₁ H ₃₅ NO ₄	CCCCCCCC1 CCC(C2=C1C(=O)C(=C(N2O C)C)OC)OC	against amastigotes (Tuluhaen C2C4 (LacZ))	$H_3CO_N \rightarrow OCH_3$ $H_3CO_V \rightarrow O$	0.04 μΜ	aerial parts and roots of Waltheria indicas	(Fernández <i>et al.</i> , 2021a).

22	Antidesmone	C19H29NO3	CCCCCCCCC1 CCC(=0)C2=C 1C(=0)C(=C(N 2)C)OC	against amastigotes (Tuluhaen C2C4 (LacZ))		0.062 μΜ	aerial parts and roots of Waltheria indicas	(Fernández <i>et al.</i> , 2021a).
23	Waltherione C	C ₂₂ H ₂₁ NO ₃	CC1=C(C(=O) C2=C(N1)C=C C3=C2C4CCC C3(O4)C5=CC =CC=C5)OC	against amastigotes (Tuluhaen C2C4 (LacZ))	O O NH	1.93 μM	aerial parts and roots of Waltheria indicas	(Fernández <i>et al.</i> , 2021a).
24	3- hydroxyacetylindol e	<u>C₁₀H₉NO₂</u>	C1=CC=C2C(= C1)C(=CN2)C(=O)CO	amastigotes (Tulahuen β- gal)	H N O OH	20.6 µM	black coral Antipathes sp.	(Fernández <i>et al.</i> , 2021a).
25	N-acetyl-β- oxotryptamine	$C_{12}H_{12}N_2O_2$	CC(=0)NCC(= 0)C1=CNC2=C C=CC=C12	amastigotes (Tulahuen β- gal)		19.4 μM	black coral Antipathes sp.	(Fernández <i>et al.</i> , 2021a).
26	3-formylindole	<u>C₉H₇NO</u>	C1=CC=C2C(= C1)C(=CN2)C= O	amastigotes (Tulahuen β- gal)	HN N O	26.9 µM	black coral Antipathes sp.	(Fernández <i>et al.</i> , 2021a).

27	Flinderole C	C34H44N4	CC(=CC1CC(N 2C1=C(C3=CC =CC=C32)CCN (C)C)(C)C=CC 4=C(C5=CC=C C=C5N4)CCN(C)C)C	against P. falciparum FCR3 strain		0.36 μM	F. amboinensis	(Fernández <i>et al.</i> , 2021b).
28	Annomontine	<u>C₁₅H₁₁N₅</u>	C1=CC=C2C(= C1)C3=C(N2)C (=NC=C3)C4= NC(=NC=C4)N	trypomastig otes (Y strain) of T.cruzi	H N N N N N N N N N H ₂	16.08 μΜ	branches of Annona foetida	(Fernández <i>et al.</i> , 2021a).
29	Lycorine	<u>C₁₆H₁₇NO₄</u>	C1CN2CC3=C C4=C(C=C3C5 C2C1=CC(C5O)O)OCO4	anti-T. cruzi activity		0.70 μΜ	isolated from extracts of different Narcissus species	(Fernández <i>et al.</i> , 2021a).
30	Narciclasine	<u>C₁₄H₁₃NO₇</u>	C1OC2=C(O1) C(=C3C(=C2)C 4=CC(C(C(C4N C3=O)O)O)O) O	anti-T. cruzi activity	OH OH OH OH OH	0.49 μΜ	isolated from extracts of different Narcissus species	(Fernández <i>et al.</i> , 2021a).
31	Montanine	<u>C₁₇H₁₉NO₄</u>	COC1C=C2C(C C10)N3CC2C4 =CC5=C(C=C4 C3)OCO5	anti-T. cruzi activity		1.99 μM	isolated from extracts of different Narcissus species	(Fernández <i>et al.</i> , 2021a).

32	Hippeastrine	<u>C₁₇H₁₇NO₅</u>	CN1CCC2=CC(C3C(C21)C4=C C5=C(C=C4C(=O)O3)OCO5) O	anti-T. cruzi activity		3.31 µM	isolated from extracts of different Narcissus species	(Fernández <i>et al.</i> , 2021a).
33	3-O-acetylhamayne	<u>C₁₈H₁₉NO₅</u>	CC(=0)OC1CC 2C3(C=C1)C(C N2CC4=CC5= C(C=C34)OCO 5)O	against the amastigote form (Tulahuen β- gal C2C4 strain)		25.2 μΜ	fresh bulbs of Crinum amabile	(Fernández <i>et al.</i> , 2021a).
34	Batzelladine F	<u>C₃₇H₆₄N₆O₂</u>	CCCCCCCC C1CC2CCC3N 2C(=NC(C3C(= O)OC(C)CCCC CC4CC5CCC6 N5C(=N4)NC(C6)C)C)N1	trypomastig otes(Ystrain) of T.cruzi	N N N N N N N N N N N N N N N N N N N	5 μΜ	marine sponge Monanchora arbuscula	(Fernández <i>et al.</i> , 2021a).
35	Batzelladine L	<u>C₃₉H₆₈N₆O₂</u>	CCCCCCCC C1CC2CCC3N 2C(=NC(C3C(= O)OC(C)CCCC CCCC4CC5CC C6N5C(=N4)N C(C6)C)C)N1	trypomastig otes(Ystrain) of T.cruzi	CN N N N N NH HN	2 μΜ	marine sponge Monanchora arbuscula	(Fernández <i>et al.</i> , 2021a).
36	nor-batzelladine L	$\underline{C_{38}H_{66}N_6O_2}$	CCCCCCCC1 CC2CCC3N2C(=NC(C3C(=O) OC(C)CCCCC CCC4CC5CCC	trypomastig otes(Ystrain) of T.cruzi		7 μΜ	marine sponge Monanchora arbuscula	(Fernández <i>et al.</i> , 2021a).

			6N5C(=N4)NC(C6)C)C)N1					
37	Alternamide A	C12H13NO3	O=C1CC2C3= CC(O)=C(O)C= C3C(CC2)N1	Against free trypomastig otes (Ystrain) of T.cruzi	HO NH HO O	0.61 µM	aerial parts of Alternanthera littoralis	(Fernández <i>et al.</i> , 2021a).
38	Alternamide B	C9H9NO3	O=C1CCC2=C C(O)=C(O)C=C 2N1	Against free trypomastig otes (Ystrain) of T.cruzi	HO HO	10 μM	aerial parts of Alternanthera littoralis	(Fernández <i>et al.</i> , 2021a).
39	Alternamine A	C15H15NO4	OC1=C(O)C=C ([C@](C2=CC(O)=C(O)C=C2) ([H])NCC3)C3 =C1	Against free trypomastig otes (Ystrain) of T.cruzi	HO HO HO HO OH	0.23 μΜ	aerial parts of Alternanthera littoralis	(Fernández <i>et al.</i> , 2021a).
40	Alternamine B	C14H21NO7	OC1=CC(CCN[C@@H]2O[C @H](CO)[C@ @H](O)C(O)[C @H]2O)=CC= C1O	Against free trypomastig otes (Ystrain) of T.cruzi	он но он но он он он он	0.82 μΜ	aerial parts of Alternanthera littoralis	(Fernández <i>et al.</i> , 2021a).

41	Polyalthenol	<u>C₂₃H₃₁NO</u>	CC1CCC2C(=C	against	A X LOH	8.4 µM	Root bark of	(Fernández et al.,
			CC(C2(C)C)O)	trypomastig			Greenwayodendr	2021a).
			C1(C)CC3=CN	otes			on suaveolens	
			C4=CC=CC=C	(Tulahuen				
			43	strain) of	HN			
				T.cruzi				
42	N-acetyl-	C26H37NO	CC1(C)[C@@	against	0	8.4 µM	Root bark of	(Fernández et al.,
	polyveoline		H](C)CC[C@@	trypomastig	N_		Greenwayodendr	2021a).
]2(C)C1CC[C@	otes			on suaveolens	
]3(C)C2CC4C3	(Tulahuen				
			C(C=CC=C5)=	strain)				
			C5N4C(C)=O					
43	Solamargine	<u>C₄₅H₇₃NO₁₅</u>	CC1CCC2(C(C	against		17.63µ	isolated from	(Fernández et al.,
			3C(O2)CC4C3(epimastigote	он он он но уну он он	М	Solanum	2021a).
			CCC5C4CC=C	s of the Y			palinacanthum	
			6C5(CCC(C6)O	strain of	но то			
			C7C(C(C(O7	T.cruzi				
)CO)OC8C(C(C					
			(C(O8)C)O)O)					
			0)0)0C9C(C(
			C(C(O9)C)O)O					
)O)C)C)C)NC1					
44	Ilicifoliunines A	C41H47NO17	CC1C(C(=O)O	against the		27.7 μM	root bark of	(Fernández et al.,
			C2C(C(C3(C(C	epimastigote	НО У		Maytenus	2021a).
			(C4C(C3(C2(C)	s (Y strain)			ilicifolia	
			0)0C4(COC(=	of T.cruzi	0 0 0 0			
			= (5)(2)(-1)(-1)(-1)(-1)(-1)(-1)(-1)(-1)(-1)(-1		HO HO N			
			-0.00000000000000000000000000000000000					
			$\begin{array}{c} C(0) C(0) C(0) C(0) C(0) C(0) C(0) C(0)$					
			OC(=0)C)OC(,			

			=O)C)OC(=O) C)C				
45	Aquifoliunine E-I	C ₄₃ H ₄₉ NO ₁₈	$\begin{array}{c} C[C@@H]1[C\\ @@H](C)C(=O\\)O[C@@H]2[C\\ @@H](OC(C)=\\ O)[C@H](OC(\\ C)=O)[C@@]3(\\ COC(C)=O)[C\\ @@H](OC(C)=\\ O)[C@@H](O\\ C(=O)C4=CC=\\ CC=C4)[C@H]\\ 4[C@H](OC(C)\\ =O)[C@@]3(O\\ [C@]4(C)COC(\\ =O)C3=C1N=C\\ C=C3)[C@@]2\\ (C)O\\ \end{array}$	against the epimastigote s (Y strain) of T.cruzi	41.9 μM	root bark of Maytenus ilicifolia	(Fernández <i>et al.</i> , 2021a).
46	Monalidine A	$\underline{C_{16}H_{27}N_3}$	CCCCCCCCC C1=NC(=N)N2 CCCC2=C1	against free trypomastig otes (Y strain) of T.cruzi	8 μΜ	isolated from the marine sponge Monanchora arbuscula	(Fernández <i>et al.</i> , 2021a).
47	Catharoseumine	<u>C₂₁H₂₂N₂O₄</u>	CC1C23CC(=C 4C5(C2(N(CC5)CC=C3)OO1) C6=CC=CC=C 6N4)C(=O)OC	against protozoan parasite falcipain-2	4.06 μΜ	whole plant of C. roseus	(Almagro <i>et al.</i> , 2015).

48	Vinblastine	$\underline{C}_{46}\underline{H}_{58}\underline{N}_4\underline{O}_9$	CCC1(CC2CC(against		15 μM	whole plant of C.	(Dey et al., 2020).
			C3=C(CCN(C2))	Trypanosom	NH _{OCH3}		roseus	
			C1)C4=CC=CC	a cruzi	N CN 2			
			=C4N3)(C5=C(HO H3CO NOH			
			C=C6C(=C5)C		OCH3			
			78CCN9C7C(C					
			=CC9)(C(C(C8					
			N6C)(C(=O)OC					
)O)OC(=O)C)C					
			C)OC)C(=O)O					
			C)O					
49	ancistrobenomine	C ₂₅ H ₂₅ NO ₅	COC1=CC=CC	against T.	он о	11.45	isolated from	(Dey <i>et al.</i> , 2020).
	А		2=C(C(C)=CC(cruzi		μM	lianas from the	
			O)=C12)C1=C2				Ancistrocladus	
			C=C(CO)N=C(HO		genus	
			C)C2=C(OC)C		N N			
			=C1OC					
50	Isoborreverine	C32H40N4	CC1=CC2C(C(against P.		0.24	Australian	(Fernandez et al.,
			N3C2=C(C4=C	falciparum		μM	species	2010).
			C=CC=C43)CC	3D7	N NH		Flindersia	
			NC)C5=C(C6=	strain			acuminata	
			CC=CC=C6N5)					
			CCNC)C(C1)(C					
)C					
					NH			
				· -				
51	psammaplysin F	C22H25Br4N	CNCCC1=CC(against T.		5.6 μM	Hyatella sp.	(Tempone <i>et al.</i> ,
		305	=C(C(=C1)Br)	cruz1				2021).
			OCCCNC(=O)					

			C2=NOC3(C2) CC(=C(C(=CO 3)Br)OC)Br)Br		Br O-N Br O Br O Br Br Br			
52	Psammaplysin H	C26H30Br4F3 N3O8	C[N+](C)(C)CC C1=CC(=C(C(= C1)Br)OCCCN C(=O)C2=NOC 3(C2O)C=C(C(C(=CO3)Br)OC)Br)Br.C(=O)(C (F)(F)F)[O-]	against the P. falciparum strain 3D7	$Br \qquad O - N \qquad H \\ Br \qquad O \\ Br \qquad O \\ F \\$	0.4 μM	Pseudoceratina sp.	(Tempone <i>et al.</i> , 2021).
53	psammaplysins G	C23H26Br4N 4O7	CN(CCC1=CC(=C(C(=C1)Br) OCCCNC(=O) C2=NOC3(C2O) C=C(C(C(=CO 3)Br)OC)Br)Br) C(=O)N	against the P. falciparum strain 3D7	$Br \qquad O-N \qquad H \\ Br \qquad O \qquad O \qquad H_2N \qquad N \qquad H_2N \qquad Br \qquad Br \\ H_2N \qquad H_3P \qquad Br \qquad B$	5.2 μΜ	Pseudoceratina sp.	(Tempone <i>et al.</i> , 2021).
54	Palauamine	C17H22CIN9 O2	C1C2C(C(C3(C 2C45N1C(=O) C6=CC=CN6C 4N=C(N5)N)C(N=C(N3)N)O)C l)CN	against T. b. rhodesiense and L. donovani	H_2N H_2N H_2N OH OH CI NH OH CI NH OH OH CI NH OH OH	0.4 μg/mL 1.1 μg/mL	sponges of the Agelas and Axinella genera	(Tempone <i>et al.</i> , 2021).

55	longamide B dispacamide B	C9H8Br2N2O 3 C11H12BrN5	C1C(N2C(=CC(=C2Br)Br)C(= O)N1)CC(=O)O C1=C(NC=C1B	against T. b. rhodesiense and L. donovani against P.	HN HO HO Br Br	1.5 μg/mL 3.8 μg/mL 1.3 μM	sponges of the Agelas and Axinella genera	(Tempone <i>et al.</i> , 2021).
	Ĩ	02	r)C(=O)NCCC= C2C(=O)NC(= N2)N	falciparum	Br NH O NH		Agelas and Axinella genera	2021).
57	spongiacidin B	C11H12BrN5 O2	C1CNC(=O)C2 =C(C1=C3C(= O)NC(N3)N)C(=CN2)Br	against P. falciparum	O H H H H H H H H H H H H H H H H H H H	1.1 μM	sponges of the Agelas and Axinella genera	(Tempone <i>et al.</i> , 2021).
58	Oroidin	C11H11Br2N 5O	C1=C(NC(=C1 Br)Br)C(=O)N CC=CC2=CN= C(N2)N	inhibition of the P. falciparum enoyl-ACP reductase (PfFabI) enzyme	$Br H N H O H_2 N N N$	0.77 μΜ	sponges of the Agelas and Axinella genera	(Tempone <i>et al.</i> , 2021).
59	Fascaplysin	C18H11CIN2 O	C1=CC=C2C(= C1)C3=C(N2)C 4=[N+](C=C3) C5=CC=CC=C	against T. b. rhodesiense		0.17 μg/mL	sponge Hyrtios cf. erecta	(Tempone <i>et al.</i> , 2021).

			5C4=O.[Cl-]					
60	Staurosporine	C28H26N4O3	CC12C(C(CC(against L.	HN-	5.3 μM	sponge associated	(Tempone et al.,
			O1)N3C4=CC=	major		20 nM	actinomycetes	2021).
			CC=C4C5=C6	promastigote			Streptomyces sp.	
			C(=C7C8=CC=	s,	N N			
			CC=C8N2C7=	against T. b.				
			C53)CNC6=O)	brucei				
			NC)OC		HŇ—			
61	Tryptophol	C10H11NO	C1=CC=C2C(=	against L.	H N	9.6	Spongia sp.,	(Tempone <i>et al.</i> ,
			C1)C(=CN2)CC	donovani		µg/mL	Ircinia sp.	2021).
			0	amastigotes				
					он			
62	Diazepinomicin	C28H34N2O4	CC(=CCCC(=C	against T. b.	\prec	13.6 µM	Micromonospora	(Tempone <i>et al.</i> ,
			CCC(=CCN1C2	brucei			sp.	2021).
			=C(C(=CC(=C2))	trypomastig				
)O)O)NC3=C(C	otes	HO			
			1=O)C=CC=C3	inhibit the T.	OH HO			
			O)C)C)C	b. brucei				
				protease				
				rhodesain				

63	paenidigyamycin A	C36H52N4+2	CC1=C([N+](=	Against (T.		0.78 μM	mangrove	(Tempone et al.,
			C(N1CCC2=CC	b. brucei		9.1 μM	rhizosphere soils	2021).
			=CC=C2)C3=[trypomastig	$\langle \rangle$			
			N+](C(=C(N3C)))	otes	N-			
			CC4=CC=CC=	Against P.				
			C4)C)C)CCC(C	falciparum	Ň Î I			
)C)CCC(C)C)C					
64	Ptilomycalin A	C45H83ClN6	CCC1CCCC2	against P.		0.1 µM	sponge	(Tempone et al.,
		05	(O1)CC3CCC4[falciparum			Monanchora	2021).
			N+]3=C(N2)N				arbuscula	
			C5(C4C(=O)O					
			CCCCCCCCC		NH ₂			
			CCCCCCC(=O)					
			N(CCCCN)CC					
			CN)CCCC(O5)					
			C.[Cl-]					
65	2-n-	C12H13N	CCCC1=NC2=	against the	N	0.29	Galipea longiflora	(Osorio et al.,
	propylquinoline		CC=CC=C2C=	promastigote		mM	K. Krause	2008).
			C1	forms of L.				
				braziliensis				
				and the				
				epimastigote				
				forms of T.				
				cruzi				
66	Galipinine	C19H21NO2	CN1C(CCC2=C	Against		6.12 μM	Galipea	(Osorio <i>et al.</i> ,
			C=CC=C21)CC	chloroquine-			officinalis	2008).
			C3=CC4=C(C=	resistant			Hancock	
			C3)OCO4	strains of P.				

				falciparum				
67	Normelicopicine	C17H17NO5	CN1C2=CC=C	against both		14.7 μM	Teclea	(Osorio et al.,
			C=C2C(=O)C3	chloroquine-	о он		trichocarpas	2008).
			=C1C(=C(C(=C	sensitive				
			30)OC)OC)OC	(HB3) and				
				chloroquine-				
				resistant	0			
				(K1) strains				
				of P.				
				falciparum				
68	Quinine	C20H24N2O2	COC1=CC2=C(Against T. b.	\wedge	4.9 µM	cinchona bark	(Osorio et al.,
			C=CN=C2C=C	brucei	L L L LOH			2008).
			1)C(C3CC4CC					
			N3CC4C=C)O					
60	Quinidine	C20H24N2O2	COC1=CC2=C(Against T b		0.8 µM	cinchona bark	(Osorio <i>et al</i>
07	Quimaine	020112411202	$C=CN=C^2C=C$	hrucei		0.0 µW	cincilona bark	2008)
			1)C(C3CC4CC	brucer				2000).
			1)C(C)C+CC					
			NJCC4C-CJO					
					N N			
70	Cinchonine	C19H22N2O	C=CC1CN2CC	Against T. b.		1.2 μM	cinchona bark	(Osorio et al.,
			C1CC2C(C3=C	brucei				2008).
			C=NC4=CC=C					
			C=C34)O		N N			
					ОН			

71	Crotsparine	C18H19NO3	CN1CCC2=CC(=C(C3=C2C1C C34C=CC(=O) C=C4)O)OC	against the chloroquine- resistant FcB1 strain		7.41 μM	Uvaria klaineana	(Osorio <i>et al.</i> , 2008).
72	isoguattouregidine	C19H19NO5	CC1(C2=C(C= CC(=C2)O)C3= C(C(=C(C4=C3 C1=NCC4)OC) O)OC)O	against the promastigote forms of L. donovani and L. amazonensis	HO OH HO OH	0.29 mM	genus Guatteria	(Osorio <i>et al.</i> , 2008).
73	Liriodenine	C17H9NO3	C1OC2=C(O1) C3=C4C(=C2) C=CN=C4C(= O)C5=CC=CC= C53	Against P. falciparum		26.2 μM	Stephania dinklagei	(Osorio <i>et al.</i> , 2008).
74	Stephanine	C19H19NO3	CN1CCC2=CC 3=C(C4=C2C1 CC5=C4C=CC =C5OC)OCO3	against the T9/94 strain of P. falciparum		0.38 μΜ	Stephania venosa	(Osorio <i>et al.</i> , 2008).
75	Atherosperminine	C20H23NO2	CN(C)CCC1=C C(=C(C2=C1C =CC3=CC=CC =C32)OC)OC	against a chloroquine- resistant strain of P. falciparum		5.80 μM	stem bark of Cryptocarya nigra	(Uzor, 2020b).

				(K1 strain)				
76	(+)-N-	C18H21NO3	CN1CCC2=CC(against a	OH	5.40 µM	stem bark of	(Uzor, 2020b).
	methylisococlaurin		=C(C=C2C1CC)	chloroquine-			Cryptocarya nigra	
	e		3=CC=C(C=C3	resistant				
)O)OC)O	strain of P.				
				falciparum	HO. ~ ~			
				(K1 strain)				
77	Palmatine	C21H22NO4+	COC1=C(C2=C	against P.	0	0.080	leaves of	(Uzor, 2020b).
			[N+]3=C(C=C2	falciparum		µg/mL	Annickia	
			C=C1)C4=CC(K1 strain			kummeriae	
			=C(C=C4CC3)		N ⁺			
			OC)OC)OC		_0			
78	Dihydronitidine	C21H19NO4	CN1CC2=CC(=	antiparasitic		25 nM	Zanthoxylum	(Uzor, 2020b).
			C(C=C2C3=C1	activity			heitzii (Rutaceae)	
			C4=CC5=C(C=				bark	
			C4C=C3)OCO5					
)OC)OC					
79	Pellitorine	C14H25NO	CCCCCC=CC=	antiparasitic		9.7 μM	Zanthoxylum	(Uzor, 2020b).
			CC(=O)NCC(C	activity			heitzii (Rutaceae)	
)C				bark	
80	Roemerine	C18H17NO2	CN1CCC2=CC	inhibitory	<u> </u>	1.49	leaves of	(Uzor, 2020b).
			3=C(C4=C2C1	activity	O C	µg/mL	Phoebe	
			CC5=CC=CC=	against the			tavoyana	
			C54)OCO3	growth of P.			(Meissn.) Hook	
				falciparum			f. (Lauraceae)	
				3D7 clone				

81	Laurolitsine	C18H19NO4	COC1=C(C=C2 CC3C4=C(C2= C1)C(=C(C=C4 CCN3)O)OC)O	inhibitory activity against the growth of P. falciparum 3D7 clone	OH O HO N H	1.65 μg/mL	leaves of Phoebe tavoyana (Meissn.) Hook f. (Lauraceae)	(Uzor, 2020b).
82	boldine	C19H21NO4	CN1CCC2=CC(=C(C3=C2C1C C4=CC(=C(C= C43)OC)O)OC) O	inhibitory activity against the growth of P. falciparum 3D7 clone	OH HO N	2.76 μg/ml	leaves of Phoebe tavoyana (Meissn.) Hook f. (Lauraceae)	(Uzor, 2020b).a
83	Sebiferine	C20H23NO4	CN1CCC23C= C(C(=0)C=C2 C1CC4=CC(=C (C=C34)OC)O C)OC	against P. falciparum KI strain		22.46 μΜ	Dehaasia longipedicellata	(Uzor, 2020b).
84	Coptisine	C19H14NO4+	C1C[N+]2=C(C =C3C=CC4=C(C3=C2)OCO4) C5=CC6=C(C= C51)OCO6	inhibitor of Plasmodium falciparum dihydroorota te dehydrogena se		1.83 μΜ	Coptidis rhizoma	(Uzor, 2020b).
85	cripowellin A	C25H31NO12	COC1C(OC(C2 C1OCOCO2)O C3CC(=O)C4C CN(CC5=CC6= C(C=C45)OCO	antiplasmodi al activity		30 nM	swamp lily Crinum erubescens	(Uzor, 2020b).

			6)C(=O)C3O)C O					
86	Cripowellin C	C25H31NO11	CC1C(C2C(C(O1)OC3CC(=O))C4CCN(CC5= CC6=C(C=C45))OCO6)C(=O)C 3O)OCOCO2)O C	antiplasmodi al activity		26 nM	swamp lily Crinum erubescens	(Uzor, 2020b).
87	Sauristolactam	C17H13NO3	CN1C2=CC3= CC=CC=C3C4 =C2C(=CC(=C 4OC)O)C1=O	Against a chloroquine- sensitive P.falciparum line(3D7)		9.0 μM	aerial parts of Goniothalamus australis	(Uzor, 2020b).
88	(-)-anonaine	C17H15NO2	C1CNC2CC3= CC=CC=C3C4 =C2C1=CC5=C 4OCO5	Against a chloroquine- sensitive P.falciparum line 3D7	O O N H	7.0 μM	aerial parts of Goniothalamus australis	(Uzor, 2020b).
89	Normelicopidine	C16H13NO5	CN1C2=CC=C C=C2C(=O)C3 =C1C(=C4C(= C3O)OCO4)OC	parasite P. falciparum Dd ₂		18.9 ug/mL	root bark of Zanthoxylum simullans	(Uzor, 2020b).

90	Carpaine	C28H50N2O4	CC1C2CCC(N1)CCCCCCCC(= O)OC3CCC(CC CCCCCC(=O) O2)NC3C	strains of P. falciparum 3D7		4.21 μM	Carica papaya L	(Uzor, 2020b).
91	hymenocardine-H	C34H51N7O6	CCC(C)C(C(=O)NC1C(OC2=C C=C(C=C2)C(= O)CNC(=O)C(NC1=O)CC3=C N=CN3)C(C)C) NC(=O)C(C(C) CC)N(C)C	antiplasmodi al activity		27.9 μΜ	root barkofHymenoc ardiaacida	(Uzor, 2020b).
92	O- desmethylnummu larine-R	C32H39N5O5	CCC(C)C1C(= O)NC=CC2=C(C=CC(=C2)OC 3CCN(C3C(=O)N1)C(=O)C(C C4=CNC5=CC =CC=C54)N(C) C)O	antiplasmodi al activity against P. falciparum K1	HN O NH HO O NN	3.2 μM	Roots of Ziziphus oxyphylla	(Uzor, 2020b).
93	simplicifolianine	C21H18NO6+	COC1=C2C(=C C3=C1OCO3)C C[N+]4=CC5= CC6=C(C(=C5 C=C24)CO)OC O6	antiplasmodi al activity against the P. falciparum strains, TM4/8.2		0.78 µg/mL 1.29 µg/mL	aerial parts of Meconopsis simplicifolia (D. Don) Walpers (Papaveraceae)	(Uzor, 2020b).

				(chloroquine -antifolate- sensitive strain) and K1CB1 (multidrug- resistant strain)			
94	(+)-laurotetanine	C19H21NO4	COC1=C(C2=C 3C(CC4=CC(= C(C=C42)OC) O)NCCC3=C1) OC	Antiplasmod ialactivity	0.189 μM	Alseodaphne corneri.	(Uzor, 2020b).
95	Sternbergine	C18H21NO5	CC(=O)OC1C(C=C2CCN3C2 C1C4=CC(=C(C=C4C3)O)OC)O	Against P. falciparum strain D10	3.9 μg/mL	B. radulosa	(Nair and van Staden, 2019).
96	1-O- Acetylnorpluviine	C18H21NO4	CC(=0)OC1CC =C2CCN3C2C1 C4=CC(=C(C= C4C3)O)OC	Against P. falciparum strain D10	28.3 μg/mL	B. radulosa	(Nair and van Staden, 2019).

97	Acetylcaranine	C18H19NO4	CC(=O)OC1CC	Against P.	0	1.1	A. belladonna	(Nair and van
			=C2CCN3C2C1	falciparum		µg/mL		Staden, 2019).
			C4=CC5=C(C=	strain Dd2				
			C4C3)OCO5					
98	Ungeremine	C16H12NO3+	C1C[N+]2=CC	Against P.	ОН	0.088	Phaedranassa	(Nair and van
			3=CC4=C(C=C	falciparum		µg/mL	dubia	Staden, 2019).
			3C5=CC(=CC1	strain K1				
			=C52)O)OCO4					
					N ⁺ -/			
99	Pseudolycorine	C16H19NO4	COC1=C(C=C2	Against P.	ŎН	0.24	P. dubia	(Nair and van
			C3C(C(C=C4C	falciparum	HO	µg/mL		Staden, 2019).
			3N(CC4)CC2=	strain K1				
			C1)O)O)O					
100	Galanthine	C18H23NO4	COC1C=C2CC	Against P.	0 0	0.2	Z. citrina	(Nair and van
			N3C2C(C10)C	falciparum	HO	µg/mL		Staden, 2019).
			4=CC(=C(C=C	strain K1				
			4C3)OC)OC		$ \checkmark \uparrow \land \rangle$			

Table S-2: Visualization of Contour Maps from the Field-Based QSAR Study.

Compound	Gaussian	Gaussian	Gaussian	Gaussian	Gaussian

	H-bond acceptor	H-bond donor	Hydrophobic	Steric	Electrostatic
(+)-N- methylisococlau rine					
Boldine					
Carpaine					0

diazepinomicin			
hymenocardine- H			•
longamide B			
O- desmethylnumm ularine-R			•

paenidigyamyci n A			
Palauamine			
sponglacidin B			

Table S-3: Atom-Based QSAR Contour Map Visualization

Compound	Electron withdrawing	H-bond donor	Hydrophobic	Positive ionic
(+)-N- methylisococlaurine				

Table S-4: Ramachandran Plot Statistics

Ramachandra n Plot						PD	B ID					
Plot statistics	7AVT	6SFR	6YNE	6W8H	7JX2	7JWR	7JVY	7JZ5	7JWD	6W81	6VF1	6UX9
Residues in	778=93.8%	770=93.0	1049=91.1	335=93.1%	112=90.3%	232=92.4%	228=91.9%	229=92.3%	230=92.0%	479=92.1%	267=94.3%	519=92.0%
most		%	%									
favored												
regions						1 - 6 00 /		1- 6004				
Residues in	51 = 6.2%	58=7.0%	95=8.2%	23=6.4%	11=8.9%	17=6.8%	18=7.3%	17=6.9%	18=7.2%	38=7.3%	16=5.7%	43=7.6%
Additional												
Allowed												
regions	0.000/		4 0 20/	2 0 (0/	1 0 00/	2 0 00/	2 0 00/	2 0 00/	2 0 00/	1 0 20/	0.000/	2 0 40/
Residues in	0=0.0%	0=0.0%	4=0.3%	2=0.6%	1=0.8%	2=0.8%	2=0.8%	2=0.8%	2=0.8%	1=0.2%	0=0.0%	2=0.4%
generously												
allowed												
regions									/			
Residues in	0=0.0%	0=0.0%	4=0.3%	0=0.0%	0=0.0%	0=0.0%	0=0.0%	0=0.0%	0=0.0%	2=0.4%	0=0.0%	0=0.0%
disallowed												
regions												

Number of	829=100.0%	828=100.	1152=100.0	360=100.0	124=100.0	251=100.0	248=100.0	248=100.0	250=100.0	520=100.0	283=100.0	564=100.0%
non-glycine		0%	%	%	%	%	%	%	%	%	%	
and non-												
proline												
residues												
Number of	7	7	4	3	2	4	3	3	4	4	22	13
end-residues												
Number of	29	29	132	14	9	18	18	18	18	66	26	24
glycine												
residues												
Number of	64	64	48	20	0	1	1	1	1	12	18	27
proline												
residues												
Total number	929	928	1336	397	135	274	270	270	273	602	349	628
of residues												

Table S-5: Docking score and interactions of compounds with their respective proteins

Protein	Compounds name	No. of interactions	Residues	Types of protein-ligand interaction by	Distance	Docking score	H-bond
6UX9	(+)-N-	1	ASP 359	H-bonding	2.14	-7.727	1
	methylisococlaurine	1	PHE 134	Pi-pi stacking	4.29		
	spongiacidin B	1	ASN 198	H-Bonding	1.92	-6.736	2
		1	ASN 124	H-bonding	1.85		
	Diazepinomicin	1	LYS 228	Pi-cation	4.46	-6.431	3
	_	1	ASP 211	H-bonding	1.71		
		1	LYS 234	H-bonding	2.35		
		1	GLU 225	H-bonding	1.72		
	Boldine	1	ASN 198	H-bonding	2.02	-5.972	1
	longamide B	1	VAL 199	Halogen bond	2.46	-5.279	1
	_	1	PHE 200	Pi-pi stacking			
		1	LYS 209	H-bonding	1.84		
	Palauamine	1	ASP 359	H-bonding	2.13	-4.455	3
		1	ALA 132	H-bonding	1.95		
		1	GLU 225	H-bonding	1.65		

	Oseltamivir	1	VAL-199	H-bonding	1.69	-7.119	3
		1	ASP-359	H-bonding	2.47		
		1	LYS—145	H-bonding	2.68		
6VF1	(+)-N-	1	GOA 506	H-bonding	1.58	-8.672	1
	methylisococlaurine	2	MG 502	Metal-coordination	2.10		
			MG 502	Metal-coordination	2.38		
	Palauamine	1	ASP 418	H-bonding	2.46	-8.258	1
		1	MG 502	Metal coordination	2.06		
		1	MG 501	Metal coordination	2.22		
	longamide B	1	GOA 506	H-bonding	2.00	-7.86	1
		2	MG 502	Metal coordination	1.99		
			MG 502	Metal coordination	2.36		
		1	MG 501	Metal coordination	2.25		
	Boldine	1	MG 502	Metal coordination	2.24	-7.588	0
		1	MG 501	Metal coordination	2.07		
	spongiacidin B	1	GOA 506	H-bonding	2.50	-7.087	1
		1	MG 502	Metal coordination	2.06		
		1	MG 501	Metal coordination	2.27		
	Diazepinomicin	1	MG 501	Metal coordination	2.28	-6.499	0
		1	TRP 434	Pi-pi stacking	3.96		
	Carpaine	1	MG 502	Metal coordination	2.13	-6.238	0
	hymenocardine-H	1	MG 501	Metal coordination	2.42	-5.898	0
		1	MG 502	Metal coordination	2.04		
	Oseltamivir	1	GOA 506	H-bonding	1.79	-7.833	2
		1	GLY 433	H-bonding	1.89		
		1	MG 501	Metal coordination	2.27		
		1	MG 502	Metal coordination	2.06		
6W81	hymenocardine-H	2	GLU 165	H-bonding	2.29	-7.635	3
			GLU 165	H-bonding	1.60		
		1	HIE 162	H-bonding	1.91		
	(+)-N-	1	GLN 191	H-bonding	1.90	-7.043	1
	methylisococlaurine						
	Palauamine	1	PRO 188	H-bonding	2.73	-6.988	4
		2	GLN 191	H-bonding	1.96		
			GLN 191	H-bonding	2.05		
		1	GLU 165	H-bonding	2.12		
	Boldine	1	GLU 165	H-bonding	1.81	-6.764	1

	spongiacidin B	1	HIE 162	H-bonding	1.99	-6.698	3
		1	ILE 140	H-bonding	1.93		
		1	GLY 142	H-bonding	2.14		
	Diazepinomicin	1	GLU 165	H-bonding	2.52	-6.332	2
	-	1	THR 189	H-bonding	1.81		
	paenidigyamycin A	1	HIE 41	Pi-pi stacking	5.36	-5.766	0
	longamide B	1	GLU 165	Halogen bond	3.22	-5.543	0
	0-	1	GLU 165	H-bonding	2.71	-5.355	3
	desmethylnummularine-	1	ALA 143	H-bonding	2.68		
	R	1	GLY 142	H-bonding	2.36		
	Carpaine	1	GLY 142	H-bonding	2.33	-5.053	1
	Oseltamivir	1	GLN 187	H-bonding	1.99	-5.131	2
		1	GLY 167	H-bonding	2.51		
7JWD	Diazepinomicin	1	GLU 72	H-bonding	1.69	-8.068	2
	1	1	ASP 78	H-bonding	2.43		
		1	TYR 19	Pi-pi stacking	5.03		
	Boldine	1	ASP 78	H-bonding	2.13	-7.823	1
		1	PHE 16	Pi-pi stacking	5.01		
	(+)-N-	1	PHE 16	Pi-pi stacking	5.35	-7.512	0
	methylisococlaurine						
	spongiacidin B	-	-	-	-	-7.262	0
	longamide B	1	THR 53	H-bonding	2.04	-6.897	1
		1	PHE 16	Pi-pi stacking	5.15		
	Oseltamivir	-	-	-	-	-5.591	0
7JZ5	Boldine	1	TYR 19	H-bonding	1.98	-9	1
	Diazepinomicin	1	THR 51	H-bonding	2.51	-8.623	2
	_	1	ARG 104	H-bonding	2.25		
		1	TYR 60	Pi-pi stacking	5.20		
		1	TYR 19	Pi-pi stacking	5.18		
	(+)-N-	1	LYS 40	H-bonding	2.37	-7.467	1
	methylisococlaurine	1	PHE 16	Pi-pi stacking	5.11		
	spongiacidin B	-	-	-	-	-7.252	0
	longamide B	1	GLN 38	Halogen bond	2.76	-6.936	4
	_	1	GLN 108	H-bonding	2.06		
		1	GLN 97	H-bonding	1.79		
		1	LYS 40	H-bonding	1.95		
		1	GLU 72	H-bonding	2.58		

	Oseltamivir	1	LYS 40	H-bonding	2.02	-6.632	2
		1	ARG 104	H-bonding	2.39		
7JVY	Diazepinomicin	1	ASP 78	H-bonding	1.80	-8.351	1
	Boldine	1	PHE 16	Pi-pi stacking	5.45	-8.117	0
	(+)-N-	1	PHE 16	Pi-pi stacking	5.49	-7.982	0
	methylisococlaurine						
	spongiacidin B	-	-	-	-	-7.081	0
	longamide B	1	GLN 97	H-bonding	1.94	-7.08	4
	_	1	GLU 72	H-bonding	2.27		
		1	GLN 108	H-bonding	2.42		
		1	LYS 40	H-bonding	1.83		
		1	LYS 40	Halogen bond	2.69		
		1	GLN 38	Halogen bond	2.87		
	Oseltamivir	1	GLN 38	H-bonding	2.63	-6.355	1
7JWR	Diazepinomicin	-	-	-	-	-9.417	0
	Boldine	1	TYR 19	H-bonding	2.13	-9.152	1
	(+)-N-	1	TYR 19	H-bonding	2.15	-8.091	1
	methylisococlaurine						
	spongiacidin B	1	TYR 19	H-bonding	2.10	-7.317	1
	longamide B	1	THR 53	H-bonding	1.88	-6.932	1
	_	1	PHE 16	Pi-pi stacking	5.32		
	Oseltamivir	-	-	-	-	-6.329	0
7jx2	(+)-N-	1	TYR 19	H-bonding	2.68	-7.607	1
	methylisococlaurine						
	Diazepinomicin	1	THR 53	H-bonding	2.20	-7.384	1
	_	1	PHE 16	Pi-pi stacking	5.14		
	longamide B	1	GLN 108	H-bonding	2.14	-7.217	4
	_	1	LYS 40	H-bonding	2.00		
		1	GLU 72	H-bonding	2.49		
		1	GLN 97	H-bonding	1.78		
		1	LYS 40	Halogen bond	2.48		
		1	GLN 38	Halogen bond	3.11		
	spongiacidin B	1	GLN 38	H-bonding	2.26	-6.953	1
		1	PHE 16	Pi-pi stacking	5.08		
	Boldine	1	PHE 16	Pi-pi stacking	4.73	-6.824	0
	Oseltamivir	1	ARG 58	H-bonding	2.41	-6.674	2
		1	THR 53	H-bonding	1.90		

6W8H	Diazepinomicin	3	GSH 201	H-bonding	1.88	-7.948	3
	1		GSH 201	H-bonding	1.90		
			GSH 201	H-bonding	1.67		
	Boldine	1	GSH 201	H-bonding	1.97	-7.192	1
	(+)-N-	2	TRP 104	Pi-pi stacking	4.30	-6.339	0
	methylisococlaurine		TRP 104	Pi-pi stacking	4.33		
	Palauamine 2	1	TRP 104	H-bonding	1.80	-5.485	1
		1	GLN 36	Halogen bond	2.20		
	spongiacidin B	1	ARG 14	Halogen bond	2.72	-5.482	0
	paenidigyamycin A	2	TRP 104	Pi-pi stacking	3.73	-4.785	0
	1 00 0		TRP 104	Pi-pi stacking	3.93		
		1	PHE 16	Pi-pi stacking	5.17		
		2	LYS 112	Pi-cation	3.44		
			LYS 112	Pi-cation	6.45		
	longamide B	-	-	_	-	-4.341	0
	Oseltamivir	1	GLN 36	H-bonding	2.02	-4.229	1
6YNE	Diazepinomicin	1	ASN 136	H-bonding	2.15	-5.664	1
	1	1	PHE 131	Pi-pi stacking	5.03		
	Palauamine	1	LYS 219	H-bonding	2.15	-4.958	2
		1	MET 130	H-bonding	2.03		
	(+)-N-	1	SER 125	H-bonding	2.20	-4.921	1
	methylisococlaurine			C			
	spongiacidin B	1	ASN 136	H-bonding	2.08	-4.913	2
	1 0	1	LYS 139	H-bonding	2.66		
	Boldine	1	ASN 136	H-bonding	2.32	-4.781	3
		1	LYS 219	H-bonding	2.19		
		1	ASP 127	H-bonding	1.79		
	longamide B	1	LYS 219	H-bonding	1.60	-4.521	3
	C	1	LYS 139	H-bonding	2.61		
		1	LYS 139	H-bonding	2.58		
	Oseltamivir	1	ASN 136	H-bonding	2.30	-3.941	1
6SFR	(+)-N-	1	GLU 909	H-bonding	1.66	-6.181	1
	methylisococlaurine						_
	spongiacidin B	1	TYR 884	Pi-pi stacking	4.93	-5.906	1
	1 0	1	ASN 879	H-bonding	1.94	• •	
	Boldine	1	ASN 879	H-bonding	1.79	-5.767	1
		1	TYR 884	Pi-pi stacking	5.36		
		1	IMD 1102	Pi-pi stacking	5.08		

	longamide B	1	LEU 901	H-bonding	1.70	-5.616	1
		1	IMD 1102	Pi-pi stacking	5.30		
	O-	1	TYR 884	Pi-pi stacking	5.47	-5.179	3
	desmethylnummularine-	1	TYR 884	H-bonding	2.39		
	R	1	ASN 879	H-bonding	1.94		
		1	GLU 902	H-bonding	2.22		
	Palauamine	1	GLU 906	H-bonding	2.28	-4.942	2
		1	GLU 902	H-bonding	2.70		
		1	HIE 905	Pi-pi stacking	5.28		
		1	TYR 884	Pi-pi stacking	5.46		
	Diazepinomicin	1	ASN 879	H-bonding	1.67	-4.747	1
	_	1	HIE 905	Pi-pi stacking	3.92		
	paenidigyamycin A	1	GLU 909	Salt-bridge	4.86	-4.66	0
		1	GLU 906	Salt-bridge	3.99		
		1	HIE 905	Pi-pi stacking	4.08		
		1	IMD 1102	Pi-pi stacking	4.83		
		1	IMD 1102	Pi-pi stacking	4.99		
	Oseltamivir	1	TYR 884	H-bonding	2.11	-4.764	1
7AVT	hymenocardine-H	1	ASP 887	H-bonding	1.51	-5.866	2
		1	TYR 884	H-bonding	2.04		
	Boldine	1	ASN 879	H-bonding	1.79	-5.364	2
		1	TYR 884	Pi-pi stacking	5.25		
	(+)-N-	1	GLU 906	H-bonding	1.79	-5.244	
	methylisococlaurine						
	Diazepinomicin	1	GLU 909	H-bonding	2.25	-5.102	3
	1	2	GLU 906	H-bonding	1.61		
			GLU 906	H-bonding	1.69		
	Spongiacidin B	1	TYR 884	Pi-pi stacking	5.13	-5.095	1
	Longamide B	1	TYR 884	Pi-pi stacking	5.46	-4.915	1
	C C	1	LEU 901	H-bonding	1.60		
	O-	1	TYR 884	Pi-pi stacking	5.50	-4.793	2
	desmethylnummularine-	1	ASN 879	H-bonding	1.89		
	R	1	TYR 884	H-bonding	2.57		
	Palauamine	1	IMD 1102	Pi-pi stacking	5.05	-4.593	2
		1	GLU 909	H-bonding	1.80		
		1	GLU 902	H-bonding	2.23		
	Oseltamivir	1	GLU 902	H-bonding	2.09	-3.773	1

Table S-6: Binding free energies of all docked complexes
--

Proteins	Compounds	MM-GBSA	MM-GBSA dG	MMGBSA dG	MMGBSA dG
		dG Bind	Bind Coulomb	Bind vdW	Bind Lipo
6UX9	(+)-N-methylisococlaurine	-69.99	-20.77	-41.78	-29.15
-	oseltamivir	-66.66	-12.51	-49.61	-20.82
-	spongiacidin B	-49.15	-23.68	-36.2	-11.08
-	diazepinomicin	-76.73	-22.14	-58.29	-29.3
-	Boldine	-66.4	-19.52	-40.59	-28.21
-	longamide B	-52.04	-14.7	-35.81	-10.49
-	palauamine	-50.67	-28.05	-40.04	-14.9
-	Carpaine	-35.97	-2.29	-47.29	-15.29
7JX2	(+)-N-methylisococlaurine	-70.2	-0.14	-43.66	-32.72
	diazepinomicin	-80.96	-6.92	-63.82	-41.21
	Longamide B	-42.81	-20.46	-32.42	-9.18
	Spongiacidin B	-36.37	-1.07	-32.32	-11.38
	Boldine	-71.42	4.45	-56.34	-36.8
	oseltamivir	-54.32	0.58	-50.06	-20.26
6SFR	(+)-N-methylisococlaurine	-34.89	-4.1	-25.72	-16
	Spongiacidin B	-26.51	-0.55	-32.61	-9.39
	Boldine	-37.41	6.95	-36.56	-21.15
	Longamide B	-36.03	-7.81	-31.27	-6.57
	O-desmethylnummularine-R	-35.37	-7.83	-47	-17.02
	palauamine	-8.73	-11.96	-35.03	-11.01
	oseltamivir	-35.22	-9.58	-30.66	-11.13
	diazepinomicin	-26.83	4.13	-37.67	-16.7
	paenidigyamycin A	-60.21	-4.13	-45.9	-22.64
_	hymenocardine-H	-26.48	-35.14	-34.46	-8.71
	Carpaine	-24.89	-14.29	-35.61	-12.94
6W81	hymenocardine-H	-72.59	-49.52	-55.22	-18.27
	(+)-N-methylisococlaurine	-51.04	-23.72	-30.75	-14.91

	palauamine	-57.48	-34	-24.74	-9.24
	Boldine	-51.9	-17.83	-39.46	-14.46
	spongiacidin B	-45.22	-39.16	-46.28	-5.07
	Diazepinomicin	-44.6	-9.68	-45.96	-11.23
	paenidigyamycin A	-66.97	-67.5	-56.87	-20.51
	longamide B	-30.37	-28	-19.14	-3.13
	O-desmethylnummularine-R	-57.79	-14.7	-57.81	-20.47
	oseltamivir	-45.46	-28.73	-22.36	-7.07
	Carpaine	-53.52	-15.97	-57.61	-13.45
7AVT	hymenocardine-H	-34.93	-11.49	-45.02	-15.48
	Boldine	-44.27	-18.45	-35.48	-19.24
	(+)-N-methylisococlaurine	-37.42	-20.09	-28.63	-15.67
	diazepinomicin	-35.34	-9.9	-35.07	-13.26
	Spongiacidin B	-30.89	-2.5	-34.18	-9.37
	Longamide B	-35.38	-15.9	-33.84	-6.08
	O-desmethylnummularine-R	-46.9	-17.78	-44.33	-16.49
	palauamine	-24.5	-15.04	-33.79	-9.94
	paenidigyamycin A	-63.86	-1.99	-44.68	-24.34
	oseltamivir	-37.82	-15.55	-34.24	-12.43
6W8H	Diazepinomicin	-69.55	-21.57	-50.64	-19.84
	Boldine	-67.73	-19.07	-37.23	-26.06
	(+)-N-methylisococlaurine	-62	-19.18	-35.87	-23.65
	palauamine	-56.84	-29.8	-40.38	-13.48
	spongiacidin B	-43.16	-32.55	-43.44	-12.61
	paenidigyamycin A	-64.33	42.83	-51.82	-31.39
	longamide B	-39.52	-0.95	-33.67	-8.1
	oseltamivir	-39.85	-13.44	-35.58	-16.51
	O-desmethylnummularine-R	-57.96	-3.62	-54.34	-22.26
	hymenocardine-H	-55.53	-8.24	-53.3	-20.84
	Carpaine	-48.85	9.19	-45.77	-17.43
6YNE	diazepinomicin	-71.21	-34.78	-21.03	-37.66

	palauamine	-43.83	-21.13	-7.96	-33.61
	(+)-N-methylisococlaurine	-42.87	-27.05	-14.99	-27.25
	spongiacidin B	-31.4	-17.19	-6.3	-25.02
	Boldine	-46.89	-17.36	-13.93	-27.83
	longamide B	-33.73	-19.62	-4.21	-22.53
	oseltamivir	-40.27	-18.83	-9.35	-31.26
	hymenocardine-H	-49.46	-25.18	-12.46	-44.83
	paenidigyamycin A	-46.35	63.19	-17.05	-38.19
	Carpaine	-35.69	-6.93	-8.71	-31.9
	O-desmethylnummularine-R	-23.78	7.61	-8.59	-34.51
7JVY	Diazepinomicin	-70.98	-3.51	-52.13	-38.75
	Boldine	-47.49	14.22	-36.44	-25.09
	(+)-N-methylisococlaurine	-41.19	14.45	-32.16	-24.12
	spongiacidin B	-25.99	-0.97	-25.93	-2.2
	longamide B	-25.68	-15.88	-10.3	0.82
	oseltamivir	-38.17	-3.27	-27.9	-10.43
7JWD	Diazepinomicin	-68.22	3.69	-56.3	-35.85
	Boldine	-64.23	-12.84	-47.01	-32.3
	(+)-N-methylisococlaurine	-58.51	2.69	-50.06	-31.52
	spongiacidin B	-43.11	-4.68	-41.35	-10.45
	longamide B	-50.73	4.63	-47.27	-10.2
	oseltamivir	-60.98	-8.77	-49.02	-18.57
6VF1	(+)-N-methylisococlaurine	1641.94	-4.31	462.43	-22.64
	boldine	125.75	5.16	9.08	-21.17
	carpaine	1389.57	77.14	426.37	-3.16
	diazepinomicin	91.49	20.42	1.64	-17.97
	hymenocardine-H	439.83	28.98	127.17	-18.54
	longamide B	78.69	10.16	-7.91	-6.62
	O-desmethylnummularine-R	85.46	-0.6	14.64	-28.38
	oseltamivir	46.24	46.05	-8.71	-12.79
	paenidigyamycin A	3293.07	216.57	1011.98	-24.2

	palauamine	2155.23	12.36	593.8	-10.78
	spongiacidin B	20.97	-9.98	3.07	-5.18
7JWR	Diazepinomicin	-67.53	0.2	-54.92	-31.57
	Boldine	-74.74	-6.01	-45.14	-33.36
	(+)-N-methylisococlaurine	-69.66	-11.13	-40.87	-33.02
	spongiacidin B	-44.14	-22.01	-35.27	-12.63
	longamide B	-52.3	-14.33	-43.73	-11.14
	oseltamivir	-58.5	-3.43	-49.87	-21.18

Table S-7: ADMET Pharmacokinetic Properties of the top three compounds

Variant	CNS	mol MW	Donor	Accpt	logP	logS	QPPCaco	QPlogBB	QPPMDCK	logKp	QPlogKhsa	Percent	Rule
			HB	HB	_	_		-			-	Human Oral	Of
												Absorption	Five
(+)-N-	1	299.369	2	4.25	32.19	-2.912	244.511	-0.312	119.413	-4.353	0.238	84.536	0
methylisoc													
oclaurine													
Diazepino	-2	462.588	4	5.75	50.627	-7.244	209.925	-2.13	91.534	-2.957	0.943	100	0
micin													
hymenocar	-2	653.82	2.75	14	65.658	-3.908	96.477	-1.057	71.97	-4.162	-0.703	46.753	2
dine-H													

60.0

50.0

40.0

30.0

20.0

10.0

0.0

Figure S1: results of MD stimulation (A) Deformability and B-factor, (B) Eigenvalue and variance, (C) residue index, (D) atom index of 7JWR-diazepinomicin

Figure S2: results of MD stimulation (A) Deformability and B-factor, (B) Eigenvalue and variance, (C) residue index, (D) atom index of 7JX2-(+)-N-methylisococlaurine

Figure S3: results of MD stimulation (A) Deformability and B-factor, (B) Eigenvalue and variance, (C) residue index, (D) atom index of 6W81- hymenocardine-H