Graphene-Supported Organoiridium Clusters Catalyze N-alkylation of Amines via Hydrogen Borrowing Reaction

Supporting Information

Graphene-Supported Organoiridium Clusters Catalyze N-

alkylation of Amines via Hydrogen Borrowing Reaction

Tsun-Ren Chen,*^a Siang-Yu Chiu,^a Wen-Jen Lee,^b Yi-Siou Tsai^a and Yu-

Sheng Huang^a

^aDepartment of Applied Chemistry, National Pingtung University, Pingtung City, Taiwan.

^bDepartment of Applied Physics, National Pingtung University, Pingtung City, Taiwan

*Corresponding Author: Tsun-Ren Chen E-mail: <u>trchen@mail.nptu.edu.tw</u>

Characterization of the Catalyzed Products

N-benzylaniline (*2a*). ¹H NMR (CDCl₃, 600MHz) δ (ppm) = 7.33-7.36 (m, Ar, 4H), 7.17-7.24 (m, Ar, 1H), 7.15-7.16 (m, Ar, 2H), 6.70 (t, Ar, 1H), 6.62-6.63 (d, Ar, 2H, JHH = 7.8Hz), 4.32 (s, CH2, 2H), 4.02 (br. s, NH, 1H). ¹³C NMR (CDCl₃, 150MHz) δ (ppm) = 148.1, 139.3, 129.2, 128.6, 127.5, 127.2, 117.5, 112.8, 48.2. HRMS (ESI/APCI): *m/z* =184.1124 g/mol, calc'd. for C₁₃H₁₄N: 184.1121 g/mol. FTIR IR (ATR): v = 3418(w), 3030 (w), 1597 (s), 1500 (s), 1455 (s), 1262 (m), 746(s), 693(s) cm⁻¹

N-(4-methoxybenzyl)aniline (*2b*). ¹H NMR (CDCl₃, 600MHz) δ (ppm) = 7.26-7.28 (d, JHH = 8.4Hz, 2H, Ar), 7.15-7.24 (m, 2H, Ar), 6.85-6.87 (m, 2H, Ar), 6.62 (t, 1H, Ar), 6.61 (d, 2H, Ar), 4.23 (s, NH, 1H), 3.77(s, 3H). .¹³C NMR (CDCl₃, 150MHz) δ (ppm) = 158.8, 148.1, 131.3, 129.2, 128.7, 117.4, 113.9, 112.8, 55.3, 47.8. HRMS (ESI/APCI): *m/z* = 214.1225 g/mol, calc'd. for C₁₄H₁₆NO [M]⁺ : 214.1226 g/mol. FTIR IR (ATR): v = 3395 (w), 3000 (w), 2836 (w), 1604(m), 1507 (s), 1463(m), 1239(s), 1172(m), 1030(m), 820(m), 746(m) cm⁻¹.

N-(4-chlorobenzyl)aniline (2c). ¹H NMR (CDCl₃, 600MHz) δ (ppm) = 7.28 (s, 3H, Ar), 7.14-7.16 (m, 2H, Ar), 6.59-6.70 (m, 1H, Ar), 6.58-6.59 (m, 2H, Ar), 4.29 (d, 2H, JHH = 5.4Hz), 4.03 (br. s, NH, 1H). ¹³C NMR (CDCl₃, 150MHz) δ (ppm) = 147.7, 137.9, 132.8, 129.2, 128.7, 128.6, 117.7, 112.8, 47.5. HRMS (ESI/APCI): *m/z* = 218.0736 g/mol, calc'd. for C₁₃H₁₃NCl [M]⁺: 218.0731 g/mol. FTIR IR (ATR): v = 3418 (w), 3022 (w), 2813 (w), 1604(m), 1515 (s),1463(m),805(m),738 (s), 686(s) cm⁻¹.

N-benzyl, *N*-(4-chlorophenyl)amine (2d) : ¹H NMR (d-chloroform, 600MHz) = 7.24-7.33 (m, Ar, 4H), 7.08-7.09 (m, Ar, 2H), 6.52-6.53 (m, Ar, 2H), 4.61 (s, 1H), 4.28-4.29 (d, CH2 ,2H, JHH = 6.0Hz), 4.05(br. s, NH, 1H). ¹³C NMR (d-Chloroform, 150MHz) = 146.6, 138.9, 129.0, 128.9, 128.6, 127.5, 127.3, 127.0, 126.5, 122.0, 113.8, 54.4, 48.3. HRMS (ESI/APCI) m/z = 217.6898, Calculated for $C_{13}H_{12}NCl^+$ [M]⁺: 217.6929g/mol. FTIR IR (ATR): v = 3388(w), 3030 (w), 2850 (w), 1597(m), 1492 (s), 1455(m), 813(s), 731 (m), 694 (m) cm⁻¹.

N-(4-methoxybenzyl), *N*-(4-chlorophenyl)amine (2e)

¹H NMR (d-chloroform, 600MHz) =7.23-7.30 (m, 2H, Ar), 7.17-7.22 (m, 4H, Ar), 6.70-6.76 (m, 2H, Ar),, 4.51 (s, 2H), 3.00 (s, -OCH₃, 3H). ¹³C NMR (d-Chloroform, 150MHz) = 149.7, 139.0 129.1, 128.5, 126.8, 126.6, 116.4, 112.2, 56.5, 38.4. HRMS (ESI/APCI): m/z = 247.7092, Calculated for C₁₄H₁₄NOCl⁺ [M]⁺ : 247.7183 g/mol. FTIR IR (ATR): v = 3388 (w), 3007 (w), 2836 (w), 1604(m), 1500 (s),1463(m),1239(s),1172 (m), 813 (s) cm⁻¹.

N-(4-chlorobenzyl), *N*-(4-chlorophenyl)amine (2f)

¹H NMR (d-chloroform, 600MHz) = 7.33-7.35 (m, 2H, Ar), 7.22-7.25 (m, 2H, Ar), 6.92-6.98 (m, 2H, Ar), 6.61-6.69 (m, 2H, Ar), 4.35-4.36 (d, JHH = 9Hz, 2H), 4.33 (s, 1H,NH).
¹³C NMR (d-Chloroform, 150MHz) = 152.2, 150.6 138.9, 136.5, 128.6, 127.3, 124.5, 116.7,

114.4, 112.2, 47.8. HRMS (ESI/APCI): m/z = 252.28,08 Calculated for $C_{13}H_{11}NCl_2^+$ [M]⁺: 252.1380 g/mol. FTIR IR (ATR): v = 3388 (w), 3022 (w), 2858 (w), 1597(m), 1500 (s),1089(m), 806 (s) cm⁻¹.

N-benzyl, *N*-(4-methoxyphenyl)amine (2g): ¹H NMR (d-chloroform, 600MHz) = 7.31-7.33 (m, Ar, 4H), 7.23-7.25 (m, Ar, 1H), 6.75-6.76 (d, Ar, 2H), 6.58-6.59 (d, Ar, 2H), 4.26 (s, CH2, 2H), 3.72 (s, -OCH₃, 3H).¹³C NMR (CDCl₃, 150MHz) δ (ppm) = 152.1, 142.4, 139.6, 128.5, 127.5, 127.1, 114.8, 114.0, 55.8, 49.2. HRMS (ESI/APCI): m/z = 213.1598, Calculated for C₁₄H₁₅NO⁺ [M]⁺: 213.2731g/mol. FTIR IR (ATR): v = 3321 (w), 3030 (w), 2836 (w), 1604(m), 1507 (s), 1455(m), 1231(m), 1030 (m), 820 (m), 731 (m), 701 (m) cm⁻¹.

N-(4-methoxybenzyl), *N*-(4-methoxyphenyl)amine (2h)

¹H NMR (d-chloroform, 600MHz) =7.23-7.25 (m, 4H, Ar), 7.10-7.22 (m, 1H, Ar), 5.89 (s, 1H, Ar), 5.81(s, 2H, Ar), 4.30 (s, 2H), 4.05 (br. s, NH, 1H),3.71 (s, -OCH₃, 6H). ¹³C NMR (d-Chloroform, 150MHz) = 161.6, 150.0, 139.1, 128.6, 127.5, 127.2, 91.6, 89.8, 55.1, 48.3. HRMS (ESI/APCI): m/z = 243.2897, Calculated for $C_{15}H_{17}NO_2^+$ [M]⁺ : 243.2984g/mol. FTIR IR (ATR): v = 3365 (w), 3000 (w), 2836 (w), 1612(m), 1507 (s),1463(m),1239(s), 1030(s), 813(m) cm⁻¹.

N-(4-chlorobenzyl), N-(4-methoxyphenyl)amine (2i)

¹H NMR (d-chloroform, 600MHz) =8.24-8.25(m, 2H, Ar), 7.31-7.34(m, 4H, Ar), 7.24-7.30

(m, 2H, Ar), 6.51-6.52 (2H, -NCH₂Ar), 5.55 (br. s, NH, 1H), 4.52 (s, ArOCH₃, 3H). ¹³C NMR (d-Chloroform, 150MHz) = 162.2, 158.0, 139.0, 128.5, 127.4, 127.2, 110.8, 45.4. HRMS (ESI/APCI): m/z = 247.6919, Calculated for $C_{14}H_{14}NOCl^+$ [M]⁺ : 247.7182 g/mol. FTIR IR (ATR): v = 3373 (w), 3000 (w), 2836 (w), 1612(m), 1507 (s),1463(m),1231(s) , 1030 (m), 813 (m) cm⁻¹.

N-benzylindole (2j)

¹H NMR (d-chloroform, 600MHz) = 8.05 (s, Ar, 1H), 7.30-7.35 (m, Ar, 5H), 7.23-7.25 (m, Ar, 2H), 6.58-6.60 (m, Ar, 1H), 6.34-6.36 (m, Ar, 1H), 4.48 (benzylic, 2H). ¹³C NMR (d-Chloroform, 150MHz) = 158.6, 148.2, 139.1, 137.4, 128.6, 127.3, 127.2, 113.1, 106.7, 46.3. HRMS (ESI/APCI): m/z = 207.2751, Calculated for $C_{15}H_{13}N$ [M]⁺ : 207.2691g/mol. FTIR IR (ATR): v = 3410(m), 3030 (w), 1612 (w), 1492 (m), 1455 (m), 1336(m) , 1007(m) , 738(s) , 693(s) cm⁻¹

N-(4-methoxybenzyl)indole (2k)

¹H NMR (d-chloroform, 600MHz) =7.32-7.34 (m, Ar, 2H), 7.23-7.25 (m, Ar, 2H), 7.08-7.14 (m, Ar, 2H), 6.60-6.75 (m, Ar, 2H), 6.81-6.95 (m, Ar, 2H), 6.43-6.46 (m, Ar, 2H), 4.40 (s, 1H), 4.45 (s, 1H) , 3.73 (s, 1H), 3.67 (s, 3H). ¹³C NMR (d-Chloroform, 150MHz) = 151.8, 145.4, 141.5, 128.5, 126.7, 125.8, 116.4, 114.7, 114.4 55.7, 54.2. MS HRMS (ESI/APCI): m/z = 237.1148, Calculated for C16H15NO [M]⁺ : 237.1153 g/mol. FTIR IR (ATR): v = 3410(m), 3000 (w), 2836 (w), 1612 (m), 1507 (s), 1455 (m), 1239(s), 1179 (m),

1030 (m), 813(m), 738(s) cm⁻¹

N-phenylpyrrolidine (2*l***).** ¹H NMR (CDCl₃, 600MHz) δ (ppm) = 7.12-7.36 (m, 5H), 3.58 (s, 2H), 2.46-2.49 (m, 4H), 1.74-1.76 (m, 4H). ¹³C NMR (CDCl₃, 150MHz) δ (ppm) = 140.9, 139.1, 128.9, 128.5, 128.1, 127.5, 126.9, 126.8, 65.2, 54.1, 23.3. HRMS (ESI/APCI): *m/z* =148.2232 g/mol, calc'd. for C₁₃H₁₄N: 148.2234 g/mol. FTIR IR (ATR): v = 3358 (w), 3030 (w), 2925 (m), 1649(m), 1455(m), 1201(m), 1022(s), 738 (s), 701 (s) cm⁻¹

N-(4-methoxyphenyl) pyrrolidine (2m). ¹H NMR (CDCl₃, 600MHz) δ (ppm) = 7.22 (d, Ar, 1H, JHH = 7.8Hz), 7.19 (d, Ar, 1H, JHH = 7.8Hz), 7.17 (d, Ar, 1H, JHH = 7.8Hz), 7.12 (d, Ar, 1H, JHH = 7.8Hz), 4.62 (s, 3H), 3.35(s, 2H), 2.22-2.24 (m, 4H), 1.74–1.77 (m, 4H). ¹³C NMR (CDCl₃, 150MHz) δ (ppm) = 137.9, 137.3, 129.1, 128.8, 127.0, 65.1, 60.3, 54.1, 23.3. HRMS (ESI/APCI): m/z = 178.2486 g/mol, calc'd. for C₁₁H₁₆NO⁺ [M]⁺: 178.2488 g/mol. FTIR (ATR): v = 3380(w), 2955(m), 1612(m), 1515(s), 1463 (m), 1246(s), 1179(s), 1029(s), 813(m), 731(w) cm⁻¹.

Benzylpiperazine (2n). ¹H NMR (CDCl₃, 600MHz) δ (ppm) = 7.23 (d, Ar, 2H, JHH = 8.0Hz), 7.29 (d, Ar, 2H, JHH = 8.0Hz), 7.17 (s, Ar, 1H), 3.71 (s, 2H), 2.65-2.69 (m, 4H), 1.84–1.77 (m, 4H). ¹³C NMR (CDCl₃, 150MHz) δ (ppm) = 133.5, 130.6, 128.6, 59.2, 53.7, 23.3. HRMS (ESI/APCI): m/z = 176.2545 g/mol, calc'd. for C₁₁H₁₆N₂⁺ [M]⁺: 176.2565g/mol. FTIR (ATR): v = 3291(m), 3030(w), 2858(m), 1649 (m), 1455(m), 1201(w), 1015(s), 731(s), 693(s) cm⁻¹.

(4-Methoxybenzyl) piperazine (20)

¹H NMR (d-chloroform, 600MHz) = 7.17-7.39 (m, 4H, Ar), 3.79 (s,3H), 3.35-3.60 (m, 1H), 2.42-2.48 (m, 1H), 1.43-1.93 (m, 4H), 0.98-1.30 (m, 4H). ¹³C NMR (d-Chloroform, 150MHz) = 142.7, 137.7, 130.0, 128.3, 127.9, 127.7, 126.8, 126.4, 63.0,53.3, 51.8. HRMS (ESI/APCI): m/z = 206.2760, Calculated for $C_{12}H_{18}N_2O^+$ [M]⁺ : 206.2819g/mol. FTIR (ATR): v = 3462(w), 2940(m), 2798(m), 1612(m), 1515(s), 1440(m), 1246(s), 1179(s), 1030(s), 835(s), 813(s) cm⁻¹.

N-phenylpyrrolidine (*2p*): ¹H NMR (d-chloroform, 600MHz) = 7.15-7.23 (m, 5H, Ar), 2.42-2.44 (m, 2H), 2.15-2.17 (m, 4H), 1.72-1.76 (m, 2H). ¹³C NMR (d-Chloroform, 150MHz) = 148.5, 129.1, 117.0, 112.6, 43.6, 31.6, 20.2, 13.9. HRMS (ESI/APCI): m/z =147.1395, Calculated for C13H13N: 147.2169 g/mol. FTIR (ATR): *v* = 3350(s), 3037(w), 1604(s), 1500(s), 1366(w), 1276(s),1172(m), 746(s), 686(s) cm⁻¹.

N-phenylpiperidine (*2q*): ¹H NMR (d-chloroform, 600MHz) = 7.13-7.24 (m, Ar, 2H), 6.59-6.67 (m, Ar, 1H), 6.57-6.58 (m, Ar, 2H), 3.06-3.09(m, 2H), 1.54-1.61(m, 2H), 1.31-1.32(m, 2H), 1.28-1.30(m, 2H), 0.86-0.89(m, 2H). ¹³C NMR (CDCl₃, 150MHz) δ (ppm) = 148.5, 129.2, 129.1, 117.0, 112.6, 31.6, 29.5, 26.8, 22.6, 14.0. HRMS (ESI/APCI): m/z = 161.2345, Calculated for C₁₁H₁₅N⁺ [M]⁺: 161.2435 g/mol. FTIR (ATR): v = 3343(s), 2933(s), 2858(s), 1604(s), 1500(s), 1455(s), 1030(s), 746(s), 693(s) cm⁻¹.

1-methyl-4-phenyl piperazine (2r). ¹H NMR (CDCl₃, 600MHz) δ (ppm) = 7.10-7.31 (m, Ar, 2H), 7.06-7.09 (m, Ar, 1H), 6.92-6.99 (m, Ar, 2H), 3.62-3.64(m, 4H), 2.85-2.87(m, 7H). ¹³C NMR (CDCl₃, 150MHz) δ (ppm) = 139.4, 137.4, 130.2, 128.2, 128.1, 64.3, 59.8, 54.0, 23.3. HRMS (ESI/APCI): *m/z* = 177.2645 g/mol, calc'd. for C₁₁H₁₇N₂⁺ [M]⁺: 177.2644 g/mol. FTIR (ATR): *v* = 3343(s), 2940(m), 2843(m, 1604(s), 1500(s), 1463(m), 1269(m), 1030(s), 753(s), 693(s) cm⁻¹.

1-methyl-4-(pyridin-2-yl) piperazine (2s). ¹H NMR (CDCl₃, 600MHz) δ (ppm) =7.50 (dd, 1H), 7.45 (ddd, 1H), 7.17 – 7.25 (m, 2H), 3.98-3.99 (m, 4H), 2.35-2.37 (m, 4H), 1.97-2.00(m, 2H). ¹³C NMR (CDCl₃, 150MHz) δ (ppm) = 142.6, 128.3, 127.9, 126.7, 53.3, 46.2. HRMS (ESI/APCI): m/z = 178.2524g/mol, calc'd. for C₁₀H₁₆N₃⁺ [M]⁺: 178.2525 g/mol. IR(ATR) : v = 3321(s), 3186(s), 2917(m), 1604(s), 1567(s), 1485(s), 1440(s), 1321(m), 1149(m), 768(s), 738(s) cm⁻¹.

Cyclizine. ¹H NMR (CDCl₃, 600MHz) δ (ppm) = 7.17-7.44 (m, 10H, Ph), 4.25 (s, 1H, N-CH), 3.33 (s, 8H, N-CH), 2.32 (s, 3H, N-CH3). ¹³C NMR (CDCl₃, 150MHz) δ (ppm) = 143.9, 143.8, 128.9, 128.5, 128.9, 128.1, 77.5, 56.5, 54.5, 52.3, 45.6. HRMS (ESI/APCI): *m/z* =267.3862 g/mol, calc'd. for C₁₈H₂₃N₂ [M]⁺: 267.3863 g/mol. FTIR (ATR): *v* = 3022(w), 2925(s), 2805(s), 1678(m), 1611(m), 1492(m), 1455(s), 1343(m), 1305(m), 1283(m), 1164(s), 1134(s), 1007(s), 776(s), 746(s), 693(s) cm⁻¹.

Figure S1. Infrared spectrum of 2a

Figure S2. Infrared spectrum of 2b

Figure S3. Infrared spectrum of 2c

Figure S4. Infrared spectrum of 2d

Figure S5. Infrared spectrum of 2e

Figure S6. Infrared spectrum of 2f

Figure S7. Infrared spectrum of 2g

Figure S8. Infrared spectrum of 2h

Figure S9. Infrared spectrum of 2i

Figure S10. Infrared spectrum of 2j

Figure S11. Infrared spectrum of 2k

Figure S12. Infrared spectrum of 21

Figure S13. Infrared spectrum of 2m

Figure S14. Infrared spectrum of 2n

Figure S15. Infrared spectrum of 20

Figure S16. Infrared spectrum of 2p

Figure S17. Infrared spectrum of 2q

Figure S18. Infrared spectrum of 2r

Figure S19. Infrared spectrum of 2s

Figure S20. Infrared spectrum of cyclizine

Figure S22. ¹H spectrum of 2b

Figure S23. ¹H spectrum of 2c

Figure S24. ¹H spectrum of 2d

Figure S26. ¹H spectrum of 2f

Figure S28. ¹H spectrum of 2h

Figure S30. ¹H spectrum of 2j

Figure S32. ¹H spectrum of 21

Figure S34. ¹H spectrum of 2n

Figure S36. ¹H spectrum of 2p

Figure S42. ¹³C spectrum of 2b

Figure S44. ¹³C spectrum of 2d

Figure S46. ¹³C spectrum of 2f

Figure S48. ¹³C spectrum of 2h

Figure S50. ¹³C spectrum of 2j

Figure S52. ¹³C spectrum of 21

Figure S54. ¹³C spectrum of 2n

Figure S56. ¹³C spectrum of 2p

Figure S58. ¹³C spectrum of 2r

Figure S60. ¹³C spectrum of cyclizine

Figure S61. Mass spectrum of 2a

Figure S62. Mass spectrum of 2b

Figure S64. Mass spectrum of 2d

Figure S65. Mass spectrum of 2e

Figure S66. Mass spectrum of 2f

Figure S67. Mass spectrum of 2g

Figure S68. Mass spectrum of 2h

Figure S70. Mass spectrum of 2j

Figure S71. Mass spectrum of 2k

Figure S72. Mass spectrum of 21

Figure S73. Mass spectrum of 2m

Figure S74. Mass spectrum of 2n

Figure S75. Mass spectrum of 20

Figure S76. Mass spectrum of 2p

Figure S77. Mass spectrum of 2q

Figure S78. Mass spectrum of 2r

Figure S79. Mass spectrum of 2s

Figure S80. Mass spectrum of cyclizine