Electronic Supplementary Information (ESI)

Exceptional Water Stable Terbium–Based Metal–Organic

Framework for Selective Detection of Pesticides

Ching-Ping Liu,^{*}^a Ting-En Lin,^a Jung-Chang Chiang,^a Bo-Jhen Chen,^a Po-Hsiu Chien,^a Su-Ying Chien,^b Gene-Hsiang Lee,^b Yen-Hsiang Liu,^{*a} and Kuang-Lieh Lu^{*a,c}

^aDepartment of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan

^bInstrumentation Center, National Taiwan University, Taipei, 10617, Taiwan ^cInstitute of Chemistry, Academia Sinica, Taipei 115, Taiwan

E-mail: <u>129723@mail.fju.edu.tw</u> (C.-P. Liu) <u>056461@gapp.fju.edu.tw</u> (Y.-H. Liu) <u>kllu@gate.sinica.edu.tw</u> (K.-L. Lu)

Fig. S1 PXRD patterns of compound 1 before and after storage in deionized water for several days.

Fig. S2 The time course of the emission decay centered at 545 nm from compound **1** in aqueous solution was obtained before and after the addition of TMX (the red arrow).

Fig. S3 Emission decay profiles of compound **1** before and after the addition of TMX. The red and blue lines represent the fitting results.

Fig. S4 The zeta potential of compound 1 in deionized water (at 25 °C).

Fig. S5 Absorption spectra of various pesticides with equivalent concentrations of 30 μ M compared with the excitation spectrum of compound 1.

Fig. S6 Chemical structures of various pesticides shown in Fig. 4c of the main text.

MOF-based platform	Sensing target	LOD (nM)	Ref.
[Eu(EDTA)(DBM)]	glyphosate	360	21
[Cd(NH ₂ -bdc)(azp)]·DMF	glyphosate	25	22
(UiO-67/Ce-PC)	glyphosate	37	23
N-CDs@PCN-222	glyphosate	54	24
Cd-MOF-1	DCN	360	25
Cd-MOF-2	DCN	120	25
Zn-MOF	DCN	3840	26
$\{[(CH_3)_2NH_2]_2[Pb(TCBPE)($	DCN	260	77
$H_2O)_2]_n$	DCN	200	27
Cd-TM	DCN	7.6	28
mMIP@MOF-76	OPP	9	29
NH ₂ -CuBDC	OPP	7	30
Tb-MOF	OPP	11	31
Z1200 MOF	OPP	0.009	32
RhB@LMOF	parathion-methyl	12000	33
ZnPO-MOF	parathion-methyl	0.456	34
Zr-LMOF	parathion-methyl	19	35
[Cd(1,4-ndc)(DMA)]	parathion-methyl	3	36

Table S1. A summary of MOF-based platform for detection of various pesticides.

$\cdot 12 DMF \cdot 12 H_2 O$	incerpyrani	020	
[In ₃ Tb ₃ O ₃ (TATAB) ₄ (H ₂ O) ₆]	nitennyram	628	40
Zn-CPTA	nitenpyram	625	39
UCNPs-PMOF	nitenpyram	220	38
[Eu(PMBB) _{1.5} (H ₂ O) ₂]	ппепругат	770	57
$[Tb(PMBB)_{1.5}(H_2O)_2]$	nitonnyram	710	27

DCN: 2,6-dichloro-4-nitroaniline

OPP: organophosphate pesticides

Materials	Linear range (µM)	LOD (nM)	Ref.
Tb-MOFs	45-155	7300	41
Tb ³⁺	0.34-17.14	100	64
QDs	0.04-2	12.3	65
B-CDs@MIPs/R-CDs	0.05-25	13.5	66
NH_2 -SiO ₂ @CsPbBr ₃	0.0144-0.0624	4.11	67
Tb-MOFs (compound 1)	0 - 40	30	This work

Table S2. Comparison of other compounds or nanomaterials using thefluorometric method for the detection of TMX with that for compound 1.

X-ray crystallography measurements

A single crystal of 1 suitable for crystallographic analysis was measured at 150K for intensity data collection on a Bruker D8 VENTURE diffractometer fitted with graphite monochromated Mo- $K\alpha$ ($\lambda = 0.71073$ Å) radiation. Data reduction included absorption corrections by the MULTI-SCAN method, using SAINT^[1] and SADABS.^[2] Crystal data and experimental details are given in Table S1. The X-ray structure was determined by direct methods and difference Fourier techniques and were refined by full-matrix least squares, using SHELXT.^[3,4] For 1, all non-hydrogen atoms were refined anisotropically except for the DEF and guest water molecules. The hydrogen atoms of guest water molecules are located in a difference Fourier map. The O-bound H atoms were refined in the riding-model approximation with $U_{iso}(H) = 1.5 U_{eq}(O)$. The C-bound H atoms were placed in calculated positions and refined as riding model with $U_{iso}(H) = 1.2U_{eq}(O)$. The coordinated DEF molecule was observed to present two-site disordered behaviour. The siteoccupancy of the disordered DEF molecule was refined to be 0.55 and 0.45. For guest water molecule, only half occupancy was assigned and was refined anisotropically. Also, due to the disorderness, the H atom position of the guest water molecule was only approximately assigned based on an optimised calculated position. Crystallographic CIF data for Tb-FJU7 have been deposited at the Cambridge Crystallographic Data Center, under the deposition number of CCDC 2378574.

ic22483	
C34 H36 N2 O15 Tb2	
1030.49	
150(2) K	
0.71073 Å	
Monoclinic	
<i>C</i> 2/ <i>c</i>	
a = 17.9401(7) Å	$\alpha = 90^{\circ}$
<i>b</i> = 11.5274(5) Å	$\beta = 109.0656(12)^{\circ}$
c = 18.6602(7) Å	$\gamma=90^{\circ}$
3647.3(3) Å ³	
4	
1.877 Mg/m ³	
3.920 mm^{-1}	
2016	
0.153 x 0.127 x 0.094 mm ³	
2.136 to 30.000°	
-25<=h<=25, -16<=k<=16, -26<=l<=26	
46223	
5309 [R(int) = 0.0574]	
99.9 %	
Semi-empirical from equivalen	ts
0.6042 and 0.5451	
Full-matrix least-squares on F^2	
5309 / 83 / 264	
1.279	
R1 = 0.0307, wR2 = 0.0711	
R1 = 0.0347, wR2 = 0.0738	
n/a	
2.370 and -2.048 e.Å ⁻³	
	ic22483 C34 H36 N2 O15 Tb2 1030.49 150(2) K 0.71073 Å Monoclinic C2/c a = 17.9401(7) Å b = 11.5274(5) Å c = 18.6602(7) Å 3647.3(3) Å ³ 4 1.877 Mg/m ³ 3.920 mm ⁻¹ 2016 0.153 x 0.127 x 0.094 mm ³ 2.136 to 30.000° -25<=h<=25, -16<=k<=16, -26 46223 5309 [R(int) = 0.0574] 99.9 % Semi-empirical from equivalent 0.6042 and 0.5451 Full-matrix least-squares on F^2 5309 / 83 / 264 1.279 R1 = 0.0307, wR2 = 0.0711 R1 = 0.0347, wR2 = 0.0738 n/a 2.370 and -2.048 e.Å ⁻³

Table S3. Crystal data and structure refinement for compound 1.

 $R1 = \sum \|F_o| - |F_c\| / \sum |F_o| \ WR2 = \{\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2] \}^{1/2}$

	2.259(2)	C(1(1) C(17)	1 409(10)
1b(1)-O(1)	2.258(2)	$C(16^{\circ}) - C(17^{\circ})$	1.498(19)
Tb(1)-O(2)#1	2.302(2)	O(1)-Tb(1)-O(2)#1	83.47(8)
Tb(1)-O(3)#2	2.312(3)	O(1)-Tb(1)-O(3)#2	103.11(12)
Tb(1)-O(4)#3	2.325(3)	O(2)#1-Tb(1)-O(3)#2	73.94(11)
Tb(1)-O(5)	2.356(3)	O(1)-Tb(1)-O(4)#3	104.01(9)
Tb(1)-O(6)#4	2.365(2)	O(2)#1-Tb(1)-O(4)#3	145.51(10)
Tb(1)-O(7)	2.411(3)	O(3)#2-Tb(1)-O(4)#3	133.99(11)
Tb(1)-O(5)#4	2.846(3)	O(1)-Tb(1)-O(5)	81.82(9)
Tb(1)-C(12)#4	2.968(3)	O(2)#1-Tb(1)-O(5)	141.77(10)
O(1)-C(7)	1.282(4)	O(3)#2-Tb(1)-O(5)	75.37(12)
O(2)-C(7)	1.233(4)	O(4)#3-Tb(1)-O(5)	72.57(11)
O(3)-C(8)	1.258(5)	O(1)-Tb(1)-O(6)#4	150.57(8)
O(4)-C(8)	1.260(5)	O(2)#1-Tb(1)-O(6)#4	77.41(9)
O(5)-C(12)	1.265(4)	O(3)#2-Tb(1)-O(6)#4	92.93(12)
O(6)-C(12)	1.253(4)	O(4)#3-Tb(1)-O(6)#4	80.84(10)
O(7)-C(13)	1.212(5)	O(5)-Tb(1)-O(6)#4	126.55(9)
C(1)-C(6)	1.393(4)	O(1)-Tb(1)-O(7)	76.09(9)
C(1)-C(2)	1.397(5)	O(2)#1-Tb(1)-O(7)	78.06(9)
C(1)-C(7)	1.496(5)	O(3)#2-Tb(1)-O(7)	151.87(11)
C(2)-C(3)	1.387(5)	O(4)#3-Tb(1)-O(7)	71.47(9)
C(3)-C(4)	1.390(5)	O(5)-Tb(1)-O(7)	131.18(10)
C(4)-C(5)	1.392(5)	O(6)#4-Tb(1)-O(7)	78.18(9)
C(4)-C(8)	1.501(6)	O(1)-Tb(1)-O(5)#4	160.09(8)
C(5)-C(6)	1.385(5)	O(2)#1-Tb(1)-O(5)#4	112.56(9)
C(9)-C(11)	1.393(5)	O(3)#2-Tb(1)-O(5)#4	71.97(11)
C(9)-C(10)	1.394(5)	O(4)#3-Tb(1)-O(5)#4	69.87(9)
C(9)-C(12)	1.505(5)	O(5)-Tb(1)-O(5)#4	78.27(10)
C(10)-C(11)#5	1.387(5)	O(6)#4-Tb(1)-O(5)#4	48.94(8)
N(1)-C(13)	1.312(6)	O(7)-Tb(1)-O(5)#4	117.58(9)
N(1)-C(14')	1.432(11)	O(1)-Tb(1)-C(12)#4	174.09(9)
N(1)-C(14)	1.465(9)	O(2)#1-Tb(1)-C(12)#4	94.38(10)
N(1)-C(16)	1.475(9)	O(3)#2-Tb(1)-C(12)#4	81.50(12)
N(1)-C(16')	1.548(12)	O(4)#3-Tb(1)-C(12)#4	74.72(11)
C(14)-C(15)	1.493(15)	O(5)-Tb(1)-C(12)#4	103.09(10)
C(16)-C(17)	1.496(16)	O(6)#4-Tb(1)-C(12)#4	23.93(9)
C(14')-C(15')	1.480(17)	O(7)-Tb(1)-C(12)#4	98.08(10)

 Table S4. Bond lengths [Å] and angles [°] for compound 1 (ic22483).

O(5)#4-Tb(1)-C(12)#4	25.03(9)	O(3)-C(8)-C(4)	117.4(4)
C(7)-O(1)-Tb(1)	138.0(2)	O(4)-C(8)-C(4)	117.4(4)
C(7)-O(2)-Tb(1)#1	162.9(2)	C(11)-C(9)-C(10)	120.3(3)
C(8)-O(3)-Tb(1)#6	136.5(3)	C(11)-C(9)-C(12)	119.3(3)
C(8)-O(4)-Tb(1)#3	141.1(3)	C(10)-C(9)-C(12)	120.4(3)
C(12)-O(5)-Tb(1)	171.3(3)	C(11)#5-C(10)-C(9)	119.3(3)
C(12)-O(5)-Tb(1)#4	82.9(2)	C(10)#5-C(11)-C(9)	120.4(3)
Tb(1)-O(5)-Tb(1)#4	101.73(10)	O(6)-C(12)-O(5)	121.9(3)
C(12)-O(6)-Tb(1)#4	106.1(2)	O(6)-C(12)-C(9)	117.8(3)
C(13)-O(7)-Tb(1)	126.7(3)	O(5)-C(12)-C(9)	120.2(3)
C(6)-C(1)-C(2)	119.6(3)	O(6)-C(12)-Tb(1)#4	49.94(17)
C(6)-C(1)-C(7)	120.8(3)	O(5)-C(12)-Tb(1)#4	72.1(2)
C(2)-C(1)-C(7)	119.5(3)	C(9)-C(12)-Tb(1)#4	167.3(2)
C(3)-C(2)-C(1)	120.0(3)	C(13)-N(1)-C(14')	119.0(5)
C(2)-C(3)-C(4)	120.2(4)	C(13)-N(1)-C(14)	119.7(5)
C(3)-C(4)-C(5)	119.8(4)	C(13)-N(1)-C(16)	116.6(5)
C(3)-C(4)-C(8)	121.0(4)	C(14)-N(1)-C(16)	116.4(6)
C(5)-C(4)-C(8)	119.0(3)	C(13)-N(1)-C(16')	124.5(6)
C(6)-C(5)-C(4)	120.2(3)	C(14')-N(1)-C(16')	102.0(7)
C(5)-C(6)-C(1)	120.2(3)	O(7)-C(13)-N(1)	127.5(4)
O(2)-C(7)-O(1)	124.3(3)	N(1)-C(14)-C(15)	115.3(9)
O(2)-C(7)-C(1)	118.9(3)	N(1)-C(16)-C(17)	107.5(8)
O(1)-C(7)-C(1)	116.8(3)	N(1)-C(14')-C(15')	114.7(10)
O(3)-C(8)-O(4)	125.2(4)	C(17')-C(16')-N(1)	107.6(10)

Symmetry	transformations	used to	generate	equivalent atoms	:

#1 -x+1, y, -z+1/2	#2 x-1/2, y-1/2, z	#3 -x+3/2, -y+3/2, -z+1
#4 -x+1, -y+1, -z+1	#5 -x+3/2, -y+1/2, -	z+1 #6 x+1/2, y+1/2, z

References

- [1] SAINT, Bruker (2003), Bruker AXS Inc., Madison Wisconsin, USA.
- [2] SADABS, Bruker (2002), Bruker AXS Inc, Madison Wisconsin, USA.
- [3] G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64, 112–122.
- [4] A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7–13.