Supporting Information

Catalyst-free regioselective sulfonylation of phenoxazine with

sulfonyl hydrazides in H₂O/HFIP

Yanan Li^{1*}, Lin Li¹, Jing Tan¹, Chenpei Yang¹, Yifei Wang¹, Feiyang Li², Chenyu Liu², Xiaohui Wu^{3*} and

Jianan Sun²*

¹ School of Chemical and Blasting Engineering, Anhui Province Key Laboratory of Specialty

Polymers, Anhui University of Science and Technology, Huainan 232001, China

² School of Biomedical Engineering, School of Health Management, Anhui Medical University,

Hefei 230032, China

³ Henan Key Laboratory of Rare Earth Functional Materials, Zhoukou Normal University, Zhoukou

466001, China

E-mail: liyanan@mail.ustc.edu.cn; jnsun@ahmu.edu.cn;

wuxiaohuixinyi@163.com

Table of contents

Part I Experimental Section	S2
1.1 General information	S2
1.2 General procedure for the preparation of substrates	S2
1.3 General procedure for the sulfonylation reaction	S3
1.4 Procedure for the gram-scale synthesis experiment	S3
1.5 Substrates not compatible for the reaction system	S4
1.6 Characterization data for the products	S4

II NN	MR spectra	S
II NN	VIR spectra	

4

Part I Experimental Section

1.1 General information

All reagents and solvents were purchased from commercial sources and used without further purification. Analytical TLC was performed with silica gel GF254 plates. Visualization was accomplished by UV light. Products were purified by flash column chromatography on 200–300 mesh silica gel. Flash chromatography was conducted eluting with PE/EA, and they were listed as volume/volume ratios. ¹H NMR and ¹³C NMR were recorded on a 400 MHz nuclear magnetic resonance spectrometer (400 MHz for ¹H NMR and 100 MHz for ¹³C NMR). Chemical shifts (δ) are reported in ppm, using the residual solvent peak in (CD₃)₂SO (¹H: δ = 2.50 and ¹³C{¹H}: δ = 39.52 ppm) as internal standard, and coupling constants (*J*) are given in Hz. Oil baths were used as the heat source. High resolution mass spectra (HRMS) were measured on a Thermo Scientific-Orbitrap Exploris 120 mass spectrometer. The sulfonyl hydrazides **2** were synthesized according to the known literature procedures.¹

1.2 General procedure for the preparation of substrates

$$R = aryl, alkyl$$

To a chilled (0 °C) solution of substituted sulfonyl chloride (2.5 mmol) in CH₂Cl₂ (20 mL) was added hydrazine hydrate 99% (12.5 mmol) dropwise. The reaction mixture was stirred for 30 min, then the PH was adjusted to approximately 11 by using 10% aqueous Na₂CO₃. The solution was extracted with CH₂Cl₂ (3×20 mL) and washed with water and saturated brine, respectively. Then the combined organic phases were dried over anhydrous sodium sulfate and filtered. The filtrate was evaporated under reduced pressure and purified by column chromatography (petroleum ether/ethyl acetate = 4:1) to afford the pure products.

Sulfonylhydrazide derivatives

1.3 General procedure for the sulfonylation reaction (**3a** as an example)

A solution of 10*H*-phenoxazine **1a** (0.2 mmol, 36.61 mg), 4methylbenzenesulfonohydrazide **2a** (0.5 mmol, 93.02 mg) in 1.5 mL H₂O and 0.5 mL HFIP were stirred in air atmosphere at 100 °C in a Schlenk tube for 24 h in an oil bath. After completion of the reaction, the solvent was removed under reduced pressure by rotary evaporation. Then, the product was obtained by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 3:1) as a light-yellow solid.

1.4 Procedure for the gram-scale synthesis experiment

A solution of 10*H*-phenoxazine **1a** (10 mmol, 1.83 g), 4methylbenzenesulfonohydrazide **2a** (25 mmol, 4.65 g) in 75 mL H₂O and 25 mL HFIP were stirred in air atmosphere at 100 °C in a Schlenk tube for 40 h in an oil bath. After completion of the reaction, the solvent was removed under reduced pressure by rotary evaporation. Then, the product **3a** was obtained by flash column chromatography on silica gel (petroleum ether / ethyl acetate = 3:1) as a light-yellow solid.

1.5 Substrates not compatible for the reaction system

1.6 Characterization data for the products

3-tosyl-10*H*-phenoxazine (3a)

The product was prepared according to the general working procedure (24 h) and purified by silica gel column chromatography with petroleum ether/ethyl acetate (3/1, v/v), light yellow solid; 57.3 mg, 85% yield; ¹H NMR [400 MHz, CDCl₃] δ 7.75 (d, *J* = 8.4 Hz, 2H), 7.27–7.24 (m, 3H), 7.02 (d, *J* = 2.0 Hz, 1H), 6.72–6.68 (m, 1H), 6.64 (t, *J* = 7.6 Hz, 1H), 6.58–6.55 (m, 1H), 6.35 (t, *J* = 8.4 Hz, 2H), 5.97 (s, 1H), 2.38 (s, 3H); ¹³C{¹H} NMR [100 MHz, CDCl₃] δ 143.9, 143.6, 143.0, 139.1, 136.8, 132.8, 129.9, 129.6, 127.2, 124.2, 124.1, 122.5, 115.7, 114.5, 113.8, 112.8, 21.5. HRMS (ESI) *m/z* calcd for C₁₉H₁₅NO₃S [M-H]⁻ 336.0695, found 336.0703.

3-((4-(*tert*-butyl)phenyl)sulfonyl)-10*H*-phenoxazine (**3b**)

The product was prepared according to the general working procedure (24 h) and purified by silica gel column chromatography with petroleum ether/ethyl acetate (4/1, v/v), light yellow solid; 63.6 mg, 84% yield; ¹H NMR [400 MHz, (CD₃)₂SO] δ 8.92 (s, 1H), 7.79 (d, J = 8.4 Hz, 2H), 7.57 (d, J = 8.8 Hz, 2H), 7.29–7.27 (m, 1H), 6.97 (d, J = 2.0 Hz, 1H), 6.75–6.71 (m, 1H), 6.64–6.57 (m, 2H), 6.51 (d, J = 8.0 Hz, 1H), 6.46 (d, J = 7.6 Hz, 1H), 1.23 (s, 9H); ¹³C{¹H} NMR [100 MHz, (CD₃)₂SO] δ 156.7, 143.3, 142.8, 139.7, 138.1, 132.0, 130.8, 127.2, 126.9, 125.1, 124.9, 122.2, 115.7, 114.3, 113.9, 113.4, 35.3, 31.1. HRMS (ESI) *m/z* calcd for C₂₂H₂₁NO₃S [M-H]⁻ 378.1164, found 378.1168.

3-([1,1'-biphenyl]-4-ylsulfonyl)-10*H*-phenoxazine (**3c**)

The product was prepared according to the general working procedure (24 h) and purified by silica gel column chromatography with petroleum ether/ethyl acetate (4/1, v/v), light yellow solid; 58.2 mg, 73% yield; ¹H NMR [400 MHz, (CD₃)₂SO] δ 8.96 (s, 1H), 7.96 (d, *J* = 8.4 Hz, 2H), 7.85 (d, *J* = 8.4 Hz, 2H), 7.70–7.68 (m, 2H), 7.50–7.46 (m, 2H), 7.44–7.39 (m, 1H), 7.34–7.32 (m, 1H), 7.04 (d, *J* = 2.0 Hz, 1H), 6.76–6.72 (m, 1H), 6.65–6.58 (m, 2H), 6.53 (d, *J* = 8.0 Hz, 1H), 6.47–6.45 (m, 1H); ¹³C{¹H} NMR [100 MHz, (CD₃)₂SO] δ 145.2, 143.3, 142.8, 141.2, 138.8, 138.2, 131.7, 130.7, 129.6, 129.1, 128.3, 128.0, 127.6, 125.3, 124.9, 122.3, 115.7, 114.4, 114.0, 113.4. HRMS (ESI) *m/z* calcd for C₂₄H₁₇NO₃S [M-H]⁻ 398.0851, found 398.0858.

3-(phenylsulfonyl)-10*H*-phenoxazine (3d)

The product was prepared according to the general working procedure (24 h) and purified by silica gel column chromatography with petroleum ether/ethyl acetate (4/1, v/v), light yellow solid; 55.5 mg, 86% yield; ¹H NMR [400 MHz, (CD₃)₂SO] δ 8.93 (s, 1H), 7.90–7.88 (m, 2H), 7.67–7.63 (m, 1H), 7.60–7.56 (m, 2H), 7.30–7.28 (m, 1H), 6.99 (d, *J* = 2.0 Hz, 1H), 6.76–6.72 (m, 1H), 6.64–6.58 (m, 2H), 6.51 (d, *J* = 8.0 Hz,

1H), 6.47–6.45 (m, 1H); ¹³C{¹H} NMR [100 MHz, (CD₃)₂SO] δ 143.3, 142.8, 142.5, 138.2, 133.6, 131.6, 130.7, 130.0, 127.3, 125.3, 124.9, 122.3, 115.7, 114.4, 114.0, 113.4. HRMS (ESI) *m*/*z* calcd for C₁₈H₁₃NO₃S [M-H]⁻ 322.0538, found 322.0543.

3-((4-methoxyphenyl)sulfonyl)-10*H*-phenoxazine (3e)

The product was prepared according to the general working procedure (24 h) and purified by silica gel column chromatography with petroleum ether/ethyl acetate (4/1, v/v), light yellow solid; 60.7 mg, 86% yield; ¹H NMR [400 MHz, (CD₃)₂SO] δ 8.89 (s, 1H), 7.81 (d, *J* = 8.8 Hz, 2H), 7.26–7.24 (m, 1H), 7.09 (d, *J* = 8.8 Hz, 2H), 6.95 (d, *J* = 2.4 Hz, 1H), 6.76–6.72 (m, 1H), 6.64–6.58 (m, 2H), 6.50 (d, *J* = 8.0 Hz, 1H), 6.46 (d, *J* = 7.6 Hz, 1H), 3.81 (s, 3H); ¹³C{¹H} NMR [100 MHz, (CD₃)₂SO] δ 163.2, 143.2, 142.8, 137.8, 134.0, 132.6, 130.8, 129.6, 124.9, 124.8, 122.2, 115.7, 115.2, 114.3, 113.7, 113.3, 56.2. HRMS (ESI) *m/z* calcd for C₁₉H₁₅NO4S [M-H]⁻ 352.0644, found 352.0651.

3-((4-fluorophenyl)sulfonyl)-10H-phenoxazine (3f)

The product was prepared according to the general working procedure (24 h) and purified by silica gel column chromatography with petroleum ether/ethyl acetate (4/1, v/v), light yellow solid; 56.6 mg, 83% yield; ¹H NMR [400 MHz, (CD₃)₂SO] δ 8.94 (s, 1H), 7.98–7.95 (m, 2H), 7.41 (t, *J* = 8.8 Hz, 2H), 7.30–7.28 (m, 1H), 7.01 (d, *J* = 2.0 Hz, 1H), 6.76–6.71 (m, 1H), 6.64–6.57 (m, 2H), 6.51 (d, *J* = 8.4 Hz, 1H), 6.46 (d, *J* = 7.6 Hz, 1H); ¹³C{¹H} NMR [100 MHz, (CD₃)₂SO] δ 166.3, 163.8, 143.3, 142.8, 138.94, 138.91, 138.3, 131.4, 130.7, 130.6, 130.5, 125.3, 124.9, 122.3, 117.3, 117.1, 115.6, 114.4, 114.0, 113.4. HRMS (ESI) *m/z* calcd for C₁₈H₁₂FNO₃S [M-H]⁻ 340.0444, found 340.0447.

3-((4-chlorophenyl)sulfonyl)-10H-phenoxazine (3g)

The product was prepared according to the general working procedure (24 h) and purified by silica gel column chromatography with petroleum ether/ethyl acetate (4/1,

v/v), light yellow solid; 60.6 mg, 85% yield; ¹H NMR [400 MHz, (CD₃)₂SO] δ 8.96 (s, 1H), 7.89 (d, *J* = 8.8 Hz, 2H), 7.63 (d, *J* = 8.4 Hz, 2H), 7.30–7.28 (m, 1H), 7.00 (d, *J* = 2.4 Hz, 1H), 6.76–6.71 (m, 1H), 6.64–6.57 (m, 2H), 6.51 (d, *J* = 8.4 Hz, 1H), 6.47–6.45 (m, 1H); ¹³C{¹H} NMR [100 MHz, (CD₃)₂SO] δ 143.3, 142.8, 141.3, 138.7, 138.4, 131.0, 130.7, 130.1, 129.3, 125.4, 124.9, 122.3, 115.6, 114.4, 114.0, 113.4. HRMS (ESI) *m/z* calcd for C₁₈H₁₂ClNO₃S [M-H]⁻ 356.0148, found 356.0151.

3-((4-bromophenyl)sulfonyl)-10*H*-phenoxazine (**3h**)

The product was prepared according to the general working procedure (24 h) and purified by silica gel column chromatography with petroleum ether/ethyl acetate (4/1, v/v), light yellow solid; 64.9 mg, 81% yield; ¹H NMR [400 MHz, (CD₃)₂SO] δ 8.97 (s, 1H), 7.83–7.77 (m, 4H), 7.30–7.27 (m, 1H), 7.00 (d, *J* = 2.0 Hz, 1H), 6.76–6.72 (m, 1H), 6.65–6.58 (m, 2H), 6.51 (d, *J* = 8.4 Hz, 1H), 6.47–6.45 (m, 1H); ¹³C{¹H} NMR [100 MHz, (CD₃)₂SO] δ 143.3, 142.8, 141.8, 138.4, 133.1, 130.9, 130.6, 129.4, 127.7, 125.5, 124.9, 122.4, 115.7, 114.4, 114.0, 113.4. HRMS (ESI) *m/z* calcd for C₁₈H₁₂BrNO₃S [M-H]⁻ 399.9643, found 399.9651.

3-((4-(trifluoromethyl)phenyl)sulfonyl)-10*H*-phenoxazine (3i)

The product was prepared according to the general working procedure (24 h) and purified by silica gel column chromatography with petroleum ether/ethyl acetate (4/1, v/v), light yellow solid; 68.8 mg, 88% yield; ¹H NMR [400 MHz, (CD₃)₂SO] δ 9.00 (s, 1H), 8.11 (d, *J* = 8.4 Hz, 2H), 7.93 (d, *J* = 8.4 Hz, 2H), 7.34–7.32 (m, 1H), 7.04 (d, *J* = 2.0 Hz, 1H), 6.75–6.71 (m, 1H), 6.64–6.57 (m, 2H), 6.53 (d, *J* = 8.0 Hz, 1H), 6.48–6.45 (m, 1H); ¹³C{¹H} NMR [100 MHz, (CD₃)₂SO] δ 146.4, 143.4, 142.9, 138.8, 133.7, 133.4, 133.1, 132.7, 130.6, 130.2, 128.3, 127.8, 127.29, 127.25, 127.21, 127.1, 125.8, 125.1, 124.9, 122.4, 119.7, 115.6, 114.4, 114.2, 113.5. HRMS (ESI) *m/z* calcd for C₁₉H₁₂F₃NO₃S [M-H]⁻ 390.0412, found 390.0417.

3-((4-nitrophenyl)sulfonyl)-10*H*-phenoxazine (**3j**)

The product was prepared according to the general working procedure (24 h) and purified by silica gel column chromatography with petroleum ether/ethyl acetate (4/1, v/v), red solid; 63.3 mg, 86% yield; ¹H NMR [400 MHz, (CD₃)₂SO] δ 9.03 (s, 1H), 8.35 (d, *J* = 8.8 Hz, 2H), 8.15 (d, *J* = 8.8 Hz, 2H), 7.35–7.32 (m, 1H), 7.04 (d, *J* = 2.0 Hz, 1H), 6.73 (t, *J* = 7.6 Hz, 1H), 6.64–6.57 (m, 2H), 6.53 (d, *J* = 8.0 Hz, 1H), 6.46 (d, *J* = 7.6 Hz, 1H); ¹³C{¹H} NMR [100 MHz, (CD₃)₂SO] δ 150.4, 147.8, 143.4, 142.9, 138.9, 130.5, 129.7, 128.9, 126.0, 125.3, 124.9, 122.5, 115.7, 114.5, 114.2, 113.5. HRMS (ESI) *m/z* calcd for C₁₈H₁₂N₂O₅S [M-H]⁻ 367.0389, found 367.0393.

4-((10*H*-phenoxazin-3-yl)sulfonyl)benzonitrile (3k)

The product was prepared according to the general working procedure (24 h) and purified by silica gel column chromatography with petroleum ether/ethyl acetate (4/1, v/v), light yellow solid; 55.6 mg, 80% yield; ¹H NMR [400 MHz, (CD₃)₂SO] δ 9.02 (s, 1H), 8.08–8.04 (m, 4H), 7.33–7.31 (m, 1H), 7.04 (d, *J* = 2.0 Hz, 1H), 6.76–6.72 (m, 1H), 6.65–6.57 (m, 2H), 6.52 (d, *J* = 8.4 Hz, 1H), 6.47–6.45 (m, 1H); ¹³C{¹H} NMR [100 MHz, (CD₃)₂SO] δ 146.4, 143.4, 142.9, 138.8, 134.2, 130.5, 129.9, 128.1, 125.9, 124.9, 122.5, 118.0, 116.0, 115.7, 114.4, 114.3, 113.5. HRMS (ESI) *m/z* calcd for C₁₉H₁₂N₂O₃S [M-H]⁻ 347.0491, found 347.0494.

3-((3-chlorophenyl)sulfonyl)-10*H*-phenoxazine (31)

The product was prepared according to the general working procedure (24 h) and purified by silica gel column chromatography with petroleum ether/ethyl acetate (4/1, v/v), light yellow solid; 59.9 mg, 84% yield; ¹H NMR [400 MHz, (CD₃)₂SO] δ 8.98 (s, 1H), 7.94 (t, *J* = 2.0 Hz, 1H), 7.87–7.85 (m, 1H), 7.74–7.71 (m, 1H), 7.61 (t, *J* = 8.0 Hz, 1H), 7.34–7.31 (m, 1H), 7.07 (d, *J* = 2.4 Hz, 1H), 6.76–6.72 (m, 1H), 6.65–6.58 (m, 2H), 6.51 (d, *J* = 8.4 Hz, 1H), 6.47–6.45 (m, 1H); ¹³C{¹H} NMR [100 MHz, (CD₃)₂SO] δ 144.4, 143.3, 142.9, 138.6, 134.7, 133.6, 132.1, 130.6, 126.9, 126.1, 125.7,

124.9, 122.4, 115.6, 114.4, 114.2, 113.4. HRMS (ESI) *m*/*z* calcd for C₁₈H₁₂ClNO₃S [M-H]⁻ 356.0148, found 356.0154.

3-((2-chlorophenyl)sulfonyl)-10*H*-phenoxazine (**3m**)

The product was prepared according to the general working procedure (24 h) and purified by silica gel column chromatography with petroleum ether/ethyl acetate (4/1, v/v), light yellow solid; 58.5 mg, 82% yield; ¹H NMR [400 MHz, (CD₃)₂SO] δ 9.00 (s, 1H), 8.20–8.17 (m, 1H), 7.69–7.65 (m, 1H), 7.62–7.58 (m, 2H), 7.31–7.28 (m, 1H), 6.92 (d, *J* = 2.0 Hz, 1H), 6.76–6.72 (m, 1H), 6.64–6.57 (m, 2H), 6.53 (d, *J* = 8.4 Hz, 1H), 6.48–6.46 (m, 1H); ¹³C{¹H} NMR [100 MHz, (CD₃)₂SO] δ 142.9, 138.8, 138.5, 135.6, 132.5, 131.6, 131.0, 130.6, 129.7, 128.6, 126.5, 124.9, 122.4, 115.7, 114.6, 114.4, 113.1. HRMS (ESI) *m/z* calcd for C₁₈H₁₂ClNO₃S [M-H]⁻ 356.0148, found 356.0153.

3-(mesitylsulfonyl)-10*H*-phenoxazine (3n)

The product was prepared according to the general working procedure (24 h) and purified by silica gel column chromatography with petroleum ether/ethyl acetate (4/1, v/v), light yellow solid; 61.3 mg, 84% yield; ¹H NMR [400 MHz, (CD₃)₂SO] δ 8.90 (s, 1H), 7.19–7.16 (m, 1H), 7.05 (s, 2H), 6.77–6.73 (m, 2H), 6.65–6.58 (m, 2H), 6.53 (d, J = 8.4 Hz, 1H), 6.48 (d, J = 7.2 Hz, 1H), 2.52 (s, 6H), 2.26 (s, 3H); ¹³C{¹H} NMR [100 MHz, (CD₃)₂SO] δ 143.4, 142.9, 142.8, 139.3, 137.7, 134.8, 133.6, 132.6, 130.9, 124.9, 123.9, 122.2, 115.7, 114.3, 113.1, 112.7, 22.7, 20.9. HRMS (ESI) *m/z* calcd for C₂₁H₁₉NO₃S [M-H]⁻ 364.1008, found 364.1014.

3-((2,4,6-triisopropylphenyl)sulfonyl)-10*H*-phenoxazine (**30**)

The product was prepared according to the general working procedure (24 h) and

purified by silica gel column chromatography with petroleum ether/ethyl acetate (4/1, v/v), light yellow oil; 55.7 mg, 62% yield; ¹H NMR [400 MHz, (CD₃)₂SO] δ 8.89 (s, 1H), 7.26 (s, 2H), 7.10–7.08 (m, 1H), 6.76–6.72 (m, 1H), 6.70 (d, *J* = 2.0 Hz, 1H), 6.63–6.58 (m, 2H), 6.55 (d, *J* = 8.4 Hz, 1H), 6.47–6.45 (m, 1H), 4.13–4.07 (m, 2H), 2.95–2.88 (m, 1H), 1.19 (d, *J* = 6.8 Hz, 6H), 1.11 (d, *J* = 6.8 Hz, 12H); ¹³C{¹H} NMR [100 MHz, (CD₃)₂SO] δ 153.9, 150.7, 143.0, 142.7, 137.2, 135.3, 133.3, 130.9, 124.9, 124.5, 123.1, 122.1, 115.7, 114.3, 113.3, 112.0, 33.8, 29.2, 24.8. 23.8. HRMS (ESI) *m/z* calcd for C₂₇H₃₁NO₃S [M-H]⁻ 448.1947, found 448.1956.

3-(naphthalen-2-ylsulfonyl)-10*H*-phenoxazine (**3p**)

The product was prepared according to the general working procedure (24 h) and purified by silica gel column chromatography with petroleum ether/ethyl acetate (4/1, v/v), light yellow solid; 61.1 mg, 82% yield; ¹H NMR [400 MHz, (CD₃)₂SO] δ 8.93 (s, 1H), 8.61 (d, *J* = 2.0 Hz, 1H), 8.17 (d, *J* = 7.6 Hz, 1H), 8.09 (d, *J* = 8.8 Hz, 1H), 8.00 (d, *J* = 8.0 Hz, 1H), 7.87–7.84 (m, 1H), 7.70–7.62 (m, 2H), 7.37–7.34 (m, 1H), 7.07 (d, *J* = 2.0 Hz, 1H), 6.74–6.70 (m, 1H), 6.63–6.56 (m, 2H), 6.52 (d, *J* = 8.4 Hz, 1H), 6.46–6.44 (m, 1H); ¹³C {¹H} NMR [100 MHz, (CD₃)₂SO] δ 143.3, 142.8, 139.4, 138.2, 134.8, 132.3, 131.6, 130.7, 130.2, 129.8, 129.6, 128.4, 128.3, 128.2, 125.4, 124.9, 122.8, 122.3, 115.6, 114.4, 114.1, 113.4. HRMS (ESI) *m*/*z* calcd for C₂₂H₁₅NO₃S [M-H]⁻ 372.0695, found 372.0702.

3-(naphthalen-1-ylsulfonyl)-10H-phenoxazine (3q)

The product was prepared according to the general working procedure (24 h) and purified by silica gel column chromatography with petroleum ether/ethyl acetate (4/1, v/v), light yellow solid; 59.6 mg, 80% yield; ¹H NMR [400 MHz, (CD₃)₂SO] δ 8.92 (s, 1H), 8.57 (d, *J* = 8.4 Hz, 1H), 8.37 (d, *J* = 7.2 Hz, 1H), 8.26 (d, *J* = 8.0 Hz, 1H), 8.07 (d, *J* = 8.4 Hz, 1H), 7.73–7.68 (m, 2H), 7.62 (t, *J* = 8.0 Hz, 1H), 7.39–7.37 (m, 1H), 6.98 (d, *J* = 2.0 Hz, 1H), 6.73–6.69 (m, 1H), 6.61–6.54 (m, 2H), 6.51 (d, *J* = 8.4 Hz, 1H), 6.43 (d, *J* = 7.6 Hz, 1H); ¹³C{¹H} NMR [100 MHz, (CD₃)₂SO] δ 143.1, 142.8, 138.1, 136.5, 135.4, 134.3, 131.5, 130.7, 129.8, 129.7, 128.9, 127.8, 127.5, 125.4, 125.3,

124.9, 124.2, 122.3, 115.6, 114.3, 113.8, 113.3. HRMS (ESI) *m*/*z* calcd for C₂₂H₁₅NO₃S [M-H]⁻ 372.0695, found 372.0699.

5-((10*H*-phenoxazin-3-yl)sulfonyl)-*N*,*N*-dimethylnaphthalen-1-amine (**3r**)

The product was prepared according to the general working procedure (24 h) and purified by silica gel column chromatography with petroleum ether/ethyl acetate (4/1, v/v), light yellow solid; 59.9 mg, 72% yield; ¹H NMR [400 MHz, (CD₃)₂SO] δ 8.91 (s, 1H), 8.48 (d, *J* = 8.4 Hz, 1H), 8.35 (d, *J* = 7.6 Hz, 1H), 8.20 (d, *J* = 8.8 Hz, 1H), 7.68 (t, *J* = 8.4 Hz, 1H), 7.55 (t, *J* = 8.8 Hz, 1H), 7.37–7.35 (m, 1H), 7.17 (d, *J* = 7.6 Hz, 1H), 6.95 (d, *J* = 2.0 Hz, 1H), 6.73–6.69 (m, 1H), 6.60–6.53 (m, 2H), 6.50 (d, *J* = 8.4 Hz, 1H), 6.43 (d, *J* = 7.6 Hz, 1H), 2.75 (s, 6H); ¹³C{¹H} NMR [100 MHz, (CD₃)₂SO] δ 152.1, 143.1, 142.8, 138.0, 136.8, 131.7, 131.1, 130.7, 129.7, 129.4, 128.9, 125.3, 124.9, 124.4, 122.2, 118.5, 115.7, 115.6, 114.3, 113.8, 113.2, 45.4. HRMS (ESI) *m/z* calcd for C₂₄H₂₀N₂O₃S [M-H]⁻ 415.1117, found 415.1122.

3-(propylsulfonyl)-10*H*-phenoxazine (3s)

The product was prepared according to the general working procedure (24 h) and purified by silica gel column chromatography with petroleum ether/ethyl acetate (4/1, v/v), light gray solid; 29.4 mg, 51% yield; ¹H NMR [400 MHz, (CD₃)₂SO] δ 8.90 (s, 1H), 7.21–7.18 (m, 1H), 6.93 (d, J = 2.0 Hz, 1H), 6.79–6.75 (m, 1H), 6.67–6.62 (m, 2H), 6.55 (d, J = 8.4 Hz, 1H), 6.49 (d, J = 7.6 Hz, 1H), 3.15 (t, J = 8.0 Hz, 2H), 1.58–1.48 (m, 2H), 0.91 (t, J = 7.2 Hz, 3H); ¹³C {¹H} NMR [100 MHz, (CD₃)₂SO] δ 143.0, 142.9, 138.1, 131.0, 129.9, 125.4, 124.9, 122.2, 115.7, 114.4, 114.3, 113.1, 56.9, 16.8, 13.0. HRMS (ESI) *m/z* calcd for C₁₅H₁₅NO₃S [M-H]⁻ 288.0695, found 288.0700.

3-tosyl-10*H*-phenothiazine (**3t**)

The product was prepared according to the general working procedure (24 h) and purified by silica gel column chromatography with petroleum ether/ethyl acetate (4/1,

v/v), light yellow solid; 37.4 mg, 53% yield; ¹H NMR [400 MHz, $(CD_3)_2SO$] δ 9.16 (s, 1H), 7.76 (d, J = 8.0 Hz, 2H), 7.49–7.46 (m, 1H), 7.38 (s, 1H), 7.36 (s, 2H), 6.99 (t, J = 7.6 Hz, 1H), 6.88 (d, J = 7.6 Hz, 1H), 6.78 (t, J = 7.6 Hz, 1H), 6.72 (d, J = 8.4 Hz, 1H), 6.66 (d, J = 8.0 Hz, 1H), 2.33 (s, 3H); ¹³C{¹H} NMR [100 MHz, $(CD_3)_2SO$] δ 146.8, 144.2, 140.3, 139.5, 133.9, 130.5, 128.4, 128.1, 127.4, 126.7, 125.5, 123.6, 117.9, 115.9, 115.5, 114.6, 21.4. HRMS (ESI) *m*/*z* calcd for C₁₉H₁₅NO₂S₂ [M-H]⁻ 352.0466, found 352.0474.

S-phenyl benzenesulfonothioate (4)

The product was prepared according to the general working procedure (24 h) and purified by silica gel column chromatography with petroleum ether/ethyl acetate (20/1, v/v), white solid; 40.6 mg, 65% yield; ¹H NMR [400 MHz, CDCl₃] δ 7.59–7.54 (m, 3H), 7.49–7.45 (m, 1H), 7.44–7.39 (m, 2H), 7.37–7.31 (m, 4H).

1,2-diphenyldisulfane (5)

The product was prepared according to the general working procedure (24 h) and purified by silica gel column chromatography with petroleum ether/ethyl acetate (40/1, v/v), white solid; 10.9 mg, 20% yield; ¹H NMR [400 MHz, CDCl₃] δ 7.48–7.45 (m, 4H), 7.29–7.25 (m, 4H), 7.22–7.17 (m, 2H).

4-((10*H*-phenoxazin-10-yl)methyl)-2,6-di-*tert*-butylphenol (6)

The product was prepared according to the general working procedure (24 h) and purified by silica gel column chromatography with petroleum ether/ethyl acetate (30/1, v/v), light yellow solid; 28.7 mg, 35% yield; ¹H NMR [400 MHz, (CD₃)₂SO] δ 7.04 (s, 2H), δ 6.84 (s, 1H), 6.77–6.73 (m, 2H), 6.69–6.62 (m, 4H), 6.54–6.51 (m, 2H), 4.74 (s, 2H), 1.29 (s, 18H).

References:

1. M. M. Shaaban, H. M. Ragab, K. Akaji, R. P. McGeary, A. E. A. Bekhit, W. M. Hussein, J. L.

Kurz, B. H. Elwakil, S. A. Bekhit, T. M. Ibrahim, M. A. Mahran, A. A. Bekhit, *Bioorg. Chem.* **2020**, *105*, 104386.

Part II NMR spectra

 1H NMR (400 MHz, CDCl₃) and $^{13}C\{^1H\}$ NMR (100 MHz, CDCl₃) of ${\bf 3a}$

(143.387
(141.387
(141.387
(141.387
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055
(131.055

40.621 DMS0 40.413 DMS0 40.205 DMS0 39.579 DMS0 39.579 DMS0 39.371 DMS0

¹H NMR (400 MHz, DMSO- d_6) and ¹³C{¹H} NMR (100 MHz, DMSO- d_6) of **3i**

¹H NMR (400 MHz, DMSO- d_6) and ¹³C{¹H} NMR (100 MHz, DMSO- d_6) of **3j**

¹H NMR (400 MHz, DMSO- d_6) and ¹³C{¹H} NMR (100 MHz, DMSO- d_6) of **3**k

40.624 40.208 39.999 39.790 39.730 39.730 39.372

¹H NMR (400 MHz, DMSO- d_6) and ¹³C{¹H} NMR (100 MHz, DMSO- d_6) of **3**

80 70 f1 (ppm) -10

¹H NMR (400 MHz, DMSO- d_6) and ¹³C{¹H} NMR (100 MHz, DMSO- d_6) of **30**

¹H NMR (400 MHz, DMSO- d_6) and ¹³C{¹H} NMR (100 MHz, DMSO- d_6) of **3p**

¹H NMR (400 MHz, DMSO- d_6) and ¹³C{¹H} NMR (100 MHz, DMSO- d_6) of **3r**

¹H NMR (400 MHz, DMSO- d_6) and ¹³C{¹H} NMR (100 MHz, DMSO- d_6) of **3s**

¹H NMR (400 MHz, CDCl₃) of **4**

 1 H NMR (400 MHz, CDCl₃) of **5**

¹H NMR (400 MHz, DMSO- d_6) of **6**

