Preparation of Epoxy-Multiwalled CNT Nano-Composites and the enhancement of thermomechanical properties by incorporating modified MWCNT as reinforcing material.

Abdullah Alhendal^{1*}

¹Department of Chemistry, Kuwait University, P. O. Box 5969, Safat, 13060, Kuwait.

Table 1S. FT-IR frequency of epoxy vs cured epoxy.

Table 2. FTIR frequency of epoxy vs cured epoxy

Wavenumber cm-1	Assignments
3437	N–H stretching
3057	C-H stretching
3037	C-H stretching
2966	Asymmetrical C-H stretching CH3
2928	Asymmetrical C-H stretching CH2
2882	Aldehyde C–H stretching
2872	CH2 sym. & asym stretching
1740	C=O stretching
1610	N–H bending
1582	N–H bending
1513	Deformation vibration mode of CH3
1460	C-H deformation, CH2
1385	Symmetrical C-H deformation, CH3
1362	C-O stretching
1298	C–H in plane bending
1246	C–H in plane bending
1084	C–H in plane bending
1035	C—H in plane bending
975	C-H out of plane deformation
914	Epoxide ring
832	C-H out of plane deformation
560	O-H out of plane vibration

^{*}Corresponding author Email: Abdullah.alhendal@ku.edu.kw.