Supplementary information

Bioactive Secondary Metabolites from Fungal Endophytes, *Penicillium oxalicum* and *Phoma herbarum*, Associated with *Morus nigra* and *Ficus sycomorus*: Supported with *In Silico* Study

Mohamed M.M. AbdelRazek ¹, Ahmed M.Elissawy ^{2,3}, Nada M. Mostafa ², Ashaimaa Y. Moussa ²,

Mohamed A. Elshanawany¹, Abdel Nasser B. Singab^{2,3*}

¹ Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo 11829, Egypt.

² Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt.

³ Center of Drug Discovery Research and Development, Ain Shams University, Cairo 11566, Egypt.

* Correspondence: vpr.nassersingab@asu.edu.eg

Table of Contents:

Fig. S1: Macro and micromorphological features of the endophytic fungi MN14 isolate associated with <i>Morus nigra</i>	4
Fig. S2: Macro and micromorphological features of the endophytic fungi FS12 isolate associated w <i>Ficus sycomorus</i>	ith 4
Fig. S3: Evolutionary relationships of taxa phylogenetic tree of <i>P. herbarum</i> MN14 associated with <i>Morus nigra</i>	5
Fig. S4: Evolutionary relationships of taxa phylogenetic tree of <i>P. oxalicum</i> FS12 associated with <i>Fig. sycomorus</i>	cus 6
Table S1: DPPH and FRAP assays results for P. herbarum and P. oxalicum total extracts and their fractions.	7
Table S2: IC ₅₀ values of SRB viability assay of <i>P. herbarum</i> and <i>P. oxalicum</i> total extracts and their fractions.	8
Table S3: Nitric oxide inhibition for the anti-inflammatory activity of <i>P. herbarum</i> and <i>P. oxalicum</i> total extracts and their fractions.	9
Table S4: Antimicrobial and antibiofilm screening of P. herbarum and P. oxalicum total extracts and their fractions.	d .10
Table S5: In vitro α-glucosidase inhibitory activity of <i>P. herbarum</i> and <i>P. oxalicum</i> total extracts and their fractions.	d .11
Table S6: Identified compounds of <i>P. herbarum</i> chloroform fraction (PH2) using LC-MS	.12
Table S7: Identified compounds of <i>P. oxalicum</i> chloroform fraction (PO2) using LC-MS	.13
Fig. S5: LC/MS Positive-ESI spectra of <i>P. herbarum</i> chloroform fraction (a) and <i>P. oxalicum</i> chloroform fraction (b)	.14
Fig. S6: ¹ H-NMR spectrum of mevalonolactone (1)	.15
Fig. S7: APT NMR spectrum of mevalonolactone (1)	.15
Fig. S8: H-H COSY spectrum of mevalonolactone (1)	.16
Fig. S9: HMBC spectrum of mevalonolactone (1)	.16
Fig. S10: ¹ H-NMR spectrum of barcelonyl acetate (2)	.17
Fig. S11: APT spectrum of barcelonyl acetate (2)	.17
Fig. S12: COSY spectrum of barcelonyl acetate (2)	.18
Fig. S13: HSQC spectrum of barcelonyl acetate (2)	.18
Fig. S14: HMBC spectrum of barcelonyl acetate (2)	.19
Fig. S15: ¹ H-NMR spectrum of glycerol monolinoleate (3)	.20
Fig. S16: APT spectrum of glycerol monolinoleate (3)	.20
Fig. S17: HMBC spectrum of glycerol monolinoleate (3)	.21
Fig. S18: HSQC spectrum of glycerol monolinoleate (3)	.21

Fig. S19: H-H COSY spectrum of glycerol monolinoleate (3)	22
Fig. S20: ¹ H-NMR spectrum of 4-hydroxyphenyl acetic acid (4)	22
Fig. S21: APT spectrum of 4-hydroxyphenyl acetic acid (4)	23
Fig. S22: HMBC spectrum of 4-hydroxyphenyl acetic acid (4)	23
Fig. S23: HSQC spectrum of 4-hydroxyphenyl acetic acid (4)	24
Fig. S24: H-H COSY spectrum of 4-hydroxyphenyl acetic acid (4)	24
Fig. S25: ¹ H-NMR spectrum of secalonic acid D (5)	25
Fig. S26: APT spectrum of secalonic acid D (5)	25
Fig. S27: HSQC spectrum of secalonic acid D (5)	26
Fig. S28: HMBC spectrum of secalonic acid D (5)	26
Fig. S29: H-H COSY spectrum of secalonic acid D (5)	27
Fig. S30: ¹ H-NMR spectrum of altersolanol A (6)	27
Fig. S31: APT spectrum of altersolanol A (6)	
Fig. S32: HSQC spectrum of altersolanol A (6)	
Fig. S33: HMBC spectrum of altersolanol A (6)	29
Fig. S34: H-H COSY spectrum of altersolanol A (6)	29
Fig. S35: ¹ H-NMR spectrum of ergosterol (7)	
Fig. S36: APT spectrum of ergosterol (7)	
Table S8: In silico 2D and 3D interaction of the isolated compounds	31

Fig. S1: Macro and micromorphological features of the endophytic fungi MN14 isolate associated with *Morus nigra*.

The isolated fungal strain MN14 macromorphological features as front and back side of petri dish: **(A1-A2):** stem part inoculated in petri dish containing nutrient agar with gentamycin as a source of isolated fungal strain; **(B1-B2):** isolated pure fungal strain on malt extract agar (MAE). **(C1-C2):** isolated pure fungal strain MN14 on potato dextrose agar (PAD); (D1-D2)= isolated fungal strain MN14 on Czapek-dox agar (CZA); **(E)**: Micromorphological features using microscopic examination of the isolated fungal strain MN14 showed *Phoma* sp. microscopic features.

Fig. S2: Macro and micromorphological features of the endophytic fungi FS12 isolate associated with *Ficus sycomorus*.

The isolated fungal strain FS12 macromorphological features as front and back side of petri dish: **(A1-A2)**: stem part inoculated in petri dish containing nutrient agar with gentamycin as a source of isolated fungal strain; **(B1-B2)**: isolated pure fungal strain on malt extract agar (MAE). **(C1-C2)**: isolated pure fungal strain FS12 on potato dextrose agar (PAD); **(D1-D2)**: isolated fungal strain FS12 on Czapek-dox agar (CZA); **(E)**: Micromorphological features using microscopic examination of the isolated fungal strain FS12 showed *Penicillium* sp. hyphae and spores in *Penicillium* type conidia.

Fig. S3: Evolutionary relationships of taxa phylogenetic tree of *P. herbarum* MN14 associated with *Morus nigra*

0.250 0.200 0.150 0.100 0.050 0.000

Fig. S4: Evolutionary relationships of taxa phylogenetic tree of *P. oxalicum* FS12 associated with *Ficus sycomorus*

Comple		FRAP			
Sample	DPPH IC ₅₀ (µg/mi)	(µM Trolox equivalent /ml)			
PHT	109.5 ± 6.44	438.611 ± 1.434			
PH1	>500	126.296 ± 19.950			
PH2	5.649 ± 0.47	2926.48 ± 142.654			
PH3	38.95 ± 1.79	1275.93 ± 17.599			
POT	307.2 ± 20.90	154.861 ± 1.145			
PO1	>500	169.259 ± 42.375			
PO2	198 ± 7.76	633.241 ± 65.5			
PO3	486.6 ± 30.44	195.648 ± 40.307			
Trolox	7.217 ± 0.309	-			

Table S1: DPPH and FRAP assays results for *P. herbarum* and *P. oxalicum* total extracts and their fractions.

DPPH: 2,2-Diphenyl-1-picrylhydrazyl, **FRAP:** Ferrous reducing activity power, **PHT**: *Phoma herbarum* total extract, **PH1**: *P. herbarum n*-hexane fraction, **PH2**: *P. herbarum* chloroform fraction, **PH3**: *P. herbarum* ethyl acetate fraction, **POT**: *Penicillium* oxalicum total extract, **PO1**: *P. oxalicum n*-hexane fraction, **PO2**: *P. oxalicum* chloroform fraction, **PO3**: *P. oxalicum* ethyl acetate fraction. **Trolox** was used as a positive control.

sample	HepG2 (IC ₅₀ μg/ml)
PHT	528.9
PH1	198.53
PH2	77.8
PH3	188.29
РОТ	340.4
PO1	343.4
PO2	7.695
PO3	499.8
Dox.	0.87

Table S2: IC₅₀ values of SRB viability assay of *P. herbarum* and *P. oxalicum* total extracts and their fractions.

HepG2: Hepatocellular carcinoma cell line, **Dox**.: Doxorubicin as positive control drug, **PHT**: *Phoma herbarum* total extract, **PH1**: *P. herbarum n*-hexane fraction, **PH2**: *P. herbarum* chloroform fraction, **PH3**: *P. herbarum* ethyl acetate fraction, **POT**: *Penicillium* oxalicum total extract, **PO1**: *P. oxalicum n*-hexane fraction, **PO2**: *P. oxalicum* chloroform fraction, **PO3**: *P. oxalicum* ethyl acetate fraction.

sample	IC₅₀ µg/ml	
PHT	>1000	
PH1	17.82	
PH2	26.51	
PH3	76.09	
POT	390.2	
PO1	65.99	
PO2	14.68	
PO3	317.0	
L-NAME	7.316	

Table S3: Nitric oxide inhibition for the anti-inflammatory activity of *P. herbarum* and *P. oxalicum* total extracts and their fractions.

PHT: *Phoma herbarum* total extract, **PH1**: *P. herbarum n*-hexane fraction, **PH2**: *P. herbarum* chloroform fraction, **PH3**: *P. herbarum* ethyl acetate fraction, **POT**: *Penicillium* oxalicum total extract, **PO1**: *P. oxalicum n*-hexane fraction, **PO2**: *P. oxalicum* chloroform fraction, **PO3**: *P. oxalicum* ethyl acetate fraction, Nitro-L-arginine methyl ester hydrochloride (L-NAME) positive control.

Comple	Inhibit	ion zone	in mm		MIC mg/ml			
Sample	PA	SA	СА	ΡΑ	SA	СА	ΡΑ	
PHT	25	23	24	3	3	2	10	
PH1	12	15	15	8	3	3	1.25	
PH2	35	31	32	4	3	2	5	
PH3	22	26	23	3	3	2	10	
POT	14	18	14	6	3	4	20	
PO1	10	17	11	12	3	4	2.5	
PO2	10	19	10	12	4	3	20	
PO3	16	29	11	12	6	4	5	
-ve control	10	10	10	16	6	4	20	
Gentamvcin	34	40	36	0.0125	0.00625	0.003125	-	

Table S4: Antimicrobial and antibiofilm screening of *P. herbarum* and *P. oxalicum* total extracts and their fractions.

MIC: Minimum Inhibitory Concentration, **MBIC**: Minimum Biofilm Inhibitory Concentration, **SA**: Staphylococcus aureus ATCC-6538, **PA**: Pseudomonas aeruginosa ATCC-9027, **CA**: Candida albicans ATCC-10231, **PHT**: Phoma herbarum total extract, **PH1**: P. herbarum n-hexane fraction, **PH2**: P. herbarum chloroform fraction, **PH3**: P. herbarum ethyl acetate fraction, **POT**: Penicillium oxalicum total extract, **PO1**: P. oxalicum n-hexane fraction, **PO2**: P. oxalicum chloroform fraction, **PO3**: P. oxalicum ethyl acetate fraction, Gentamycin was used as a positive control. The zone diameter for the agar well diffusion method is 10 mm.

Sample	IC50 (μg/ml)	Inhibition 1000 (μg/ml)	
PHT	79.17	95.43 ± 1.47	
PH1	>1000	0.40 ± 0.26	
PH2	14.91	100 ± 0.06	
PH3	148.5	95.43 ± 1.47	
PO	>1000	36.51 ± 0.99	
PO1	>1000	27.07 ± 1.09	
PO2	>1000	46.16 ± 1.32	
PO3	>1000	37.15 ± 1.55	
Acarbose	224.0	77.16 ± 2.98	

Table S5: In vitro α -glucosidase inhibitory activity of *P. herbarum* and *P. oxalicum* total extracts and their fractions.

PHT: *Phoma herbarum* total extract, **PH1**: *P. herbarum n*-hexane fraction, **PH2**: *P. herbarum* chloroform fraction, **PH3**: *P. herbarum* ethyl acetate fraction, **POT**: *Penicillium* oxalicum total extract, **PO1**: *P. oxalicum n*-hexane fraction, **PO2**: *P. oxalicum* chloroform fraction, **PO3**: *P. oxalicum* ethyl acetate fraction., Acarbose reference as a positive control.

SN	Compound Name	Rt	M+H (<i>m/z</i>)	MF	Exact Mass	Reported Source	Class	Ref.
1	Mevalonolactone (1)	1.05	131.0782	$C_{6}H_{10}O_{3}$	130.06	Pestalotiopsis sp. & Penicillium solitum	Lactone	1,2
2	Phomasparapyrone A	2.11	213.1650	$C_{10}H_{12}O_5$	212.06	Phomopsis asparagi	pyrone derivative	3
3	8-hydroxy- Pregaliellalactone B	3.13	197.1197	$C_{11}H_{16}O_3$	196.11	Phoma sp.	polyketide	4
4	Phomactin B	6.6	321.1858	$C_{19}H_{28}O_4$	320.2	<i>Phoma</i> sp.	Diterpenes	5–7
5	Tersone F	7.2	344.1830	$C_{19}H_{21}NO_5$	343.14	Phomopsis tersa	pyridine alkaloid	8
6	Phomaether A	8.2	423.2958	$C_{21}H_{26}O_9$	422.16	<i>Phoma</i> sp.	diphenyl ether	9
7	Barcelonyl acetate (2)	8.4	335.0775	$C_{17}H_{18}O_7$	334.33	New	diphenyl	-
8	Barceloneic acid C	8.5	303.1201	$C_{16}H_{14}O_{6}$	302.08	Phoma sp.	polyketide	10
9	Terezine N	9.2	291.1367	$C_{15}H_{18}N_2O_4$	290.12	P. herbarum	terezine derivative	11
10	Terezine L	10.5	451.3011	$C_{21}H_{26}N_2O_9$	450.16	P. herbarum	Pyrazine derivative	12
11	Alterporriol S	14.10	613.3747	$C_{31}H_{32}O_{13}$	612.18	Alternaria sp.	anthraquinone derivatives	13
12	Phomalide	15.4	558.4356	$C_{30}H_{43}N_3O_7$	557.31	Phoma sp.	Cyclic polypeptide derivatives	14
13	Glycerol monolinoleate (3)	22.78	355.3488	$C_{21}H_{38}O_4$	354.28	Saposhnikovia divaricate plant root	glycerides	15
14	Ergosterol (7)	27.4	397.4515	C ₂₈ H ₄₄ O	396.34	P. oxalicum	Sterol	16

Table S6: Identified compounds of *P. herbarum* chloroform fraction (PH2) using LC-MS.

Rt: Retention time, MF: Molecular Formula

SN	Compound Name	Rt	M+H (<i>m/z</i>)	MF	Exact Mass	Reported Source	Class	Ref.
1	Mevalonolactone (1)	1.0	131.0062	$C_{6}H_{10}O_{3}$	130.06	Pestalotiopsis sp., P. solitum	Pyrone derivative	1,2
2	4-Hydroxyphenyl acetic acid (4)	1.0	153.0181	$C_8H_8O_3$	152.05	Gaeumannomyces sp.	Phenolic acid	17
3	1,3-Dihydroxypropan-2- yl 2,4-dihydroxy-6- methylbenzoate	4.5	243.1353	C ₁₁ H ₁₄ O ₆	242.08	P. chrysogenum	Phenolic acid	18
4	2-(4-Hydroxybenzyl) guinazolin-4(3H)-one	6.5	253.1020	$C_{15}H_{12}N_2O_2$	252.09	P. oxalicum	Alkaloid	19
5	Penipanoid A	6.6	296.1747	$C_{16}H_{13}N_3O_3$	295.1	P. oxalicum	Alkaloid	20
6	2,5-dimethyl-7- Hydroxychromone	7.0	191.0760	$C_{11}H_{10}O_3$	190.06	P. oxalicum	Chromanone derivatives	21
7	Coniochaetone J	7.5	263.0691	$C_{14}H_{14}O_5$	262.08	P. oxalicum	Chromone derivatives	22
8	Meleagrin	7.9	434.2026	$C_{23}H_{23}N_5O_4$	433.17	P. oxalicum	Alkaloid	23
9	Meleagrin A; Me ether	8.4	448.2773	$C_{24}H_{25}N_5O_4$	447.19	P. oxalicum	Alkaloid	20
10	Penioxamide A	10.3	418.3284	$C_{27}H_{35}N_3O$	417.28	P. oxalicum	Alkaloid	20
11	Altersolanol A (6)	12.9	337.3809	$C_{16}H_{16}O_8$	336.29	Stemphylium globuliferum	Anthraquinone derivative	24,25
12	Secalonic acid D (5)	13.3	639.2608	$C_{32}H_{30}O_{14}$	638.16	P. oxalicum	Xanthone derivative	26,27
13	Ergosterol (7)	27.4	397.4515	C ₂₈ H ₄₄ O	396.34	P. oxalicum	Sterol	16

Table S7: Identified compounds of *P. oxalicum* chloroform fraction (PO2) using LC-MS.

Rt: Retention time, MF: Molecular Formula

Fig. S5: LC/MS Positive-ESI spectra of *P. herbarum* chloroform fraction (a) and *P. oxalicum* chloroform fraction (b)

Fig. S6: ¹H-NMR spectrum of mevalonolactone (1)

Fig. S7: APT NMR spectrum of mevalonolactone (1)

Fig. S8: H-H COSY spectrum of mevalonolactone (1)

Fig. S9: HMBC spectrum of mevalonolactone (1)

Fig. S10: ¹H-NMR spectrum of barcelonyl acetate (2)

Fig. S11: APT spectrum of barcelonyl acetate (2)

Fig. S12: COSY spectrum of barcelonyl acetate (2)

Fig. S13: HSQC spectrum of barcelonyl acetate (2)

Fig. S14: HMBC spectrum of barcelonyl acetate (2)

Fig. S15: ¹H-NMR spectrum of glycerol monolinoleate (3)

Fig. S16: APT spectrum of glycerol monolinoleate (3)

Fig. S17: HMBC spectrum of glycerol monolinoleate (3)

Fig. S18: HSQC spectrum of glycerol monolinoleate (3)

Fig. S19: H-H COSY spectrum of glycerol monolinoleate (3)

Fig. S20: ¹H-NMR spectrum of 4-hydroxyphenyl acetic acid (4)

Fig. S21: APT spectrum of 4-hydroxyphenyl acetic acid (4)

Fig. S22: HMBC spectrum of 4-hydroxyphenyl acetic acid (4)

Fig. S23: HSQC spectrum of 4-hydroxyphenyl acetic acid (4)

Fig. S24: H-H COSY spectrum of 4-hydroxyphenyl acetic acid (4)

Fig. S25: ¹H-NMR spectrum of secalonic acid D (5)

Fig. S26: APT spectrum of secalonic acid D (5)

Fig. S27: HSQC spectrum of secalonic acid D (5)

Fig. S28: HMBC spectrum of secalonic acid D (5)

Fig. S29: H-H COSY spectrum of secalonic acid D (5)

Fig. S30: ¹H-NMR spectrum of altersolanol A (6)

Fig. S31: APT spectrum of altersolanol A (6)

Fig. S32: HSQC spectrum of altersolanol A (6)

Fig. S34: H-H COSY spectrum of altersolanol A (6)

Fig. S35: ¹H-NMR spectrum of ergosterol (7)

Fig. S36: APT spectrum of ergosterol (7)

Table S8: (Cont.)

References

- 1 Z. Xu, X. Wu, G. Li, Z. Feng and J. Xu, *Nat. Prod. Res.*, 2020, **34**, 1002–1007.
- 2 Z.-H. He, J. Wu, L. Xu, M.-Y. Hu, M.-M. Xie, Y.-J. Hao, S.-J. Li, Z.-Z. Shao and X.-W. Yang, *Mar. Drugs*, 2021, **19**, 580.
- 3 Y. Liu, W. Yang, Q. Liao and Z. She, *Chem. Biodivers.*, 2022, **19**, 1–8.
- 4 Y. Chen, W. Yang, G. Zou, S. Chen, J. Pang and Z. She, *Fitoterapia*, 2019, **139**, 104369.
- 5 M. Sugano, T. Oshima, K. Furuya, H. Kuwano, T. Hata and H. Hanzawal, *J. Am. Chem. Soc.*, 1991, **7**, 5463–5464.
- 6 M. Sugano, Y. Iijima, H. Haruyama, K. Yoda and T. Hatal, *J. Org. Chem.*, 1994, 564–569.
- 7 M. Sugano, A. Sato, Y. Iijima, K. Furuya, H. Kuwano and T. Hata, *J. Antibiot. (Tokyo).*, 1995, **48**, 1188–1190.
- 8 S. Chen, Z. Liu, H. Tan, Y. Chen, S. Li, H. Li, H. Guo, S. Zhu, H. Liu and W. Zhang, *Mar. Drugs*, 2019, **17**, 1–14.
- T. Shi, J. Qi, C.-L. Shao, D.-L. Zhao, X.-M. Hou and C.-Y. Wang, *Mar. Drugs*, 2017, 15, 1–7.
- 10 X. Xia, S. Kim, S. Bang, H. Lee, C. Liu and C. Park, *J. Antibiot. (Tokyo).*, 2015, **68**, 139–141.
- 11 Z. Hu, J. V. Gopal, L. Liu and Z. Gao, *Nat. Prod. Res.*, 2021, 1–6.
- A. Maha, V. Rukachaisirikul, S. Saithong, S. Phongpaichit, W. Poonsuwan, J. Sakayaroj, P. Saparpakorn and S. Hannongbua, *Phytochemistry*, 2016, **122**, 223–229.
- 13 G. Xia, J. Li, H. Li, Y. Long, S. Lin, Y. Lu, L. He, Y. Lin, L. Liu and Z. She, *Mar. Drugs*, 2014, **12**, 2953–2969.
- 14 M. S. C. Pedras, J. L. Taylor and V. M. Morales, *Phytochemistry*.
- 15 E. Okuyama, T. H. Asegawa, T. M. Atsushita, H. F. Ujimoto and M. I. Shibashi, *Chem. Pharm. Bull.*, 2001, **49**, 154–160.
- 16 Y. Wang, W. Chen, Z. Xu, Q. Bai, X. Zhou, C. Zheng, M. Bai and G. Chen, *Mar. Drugs*, 2023, **21**, 2–13.
- 17 C. Lee, S. Kim, W. Li, S. Bang, H. Lee, H. J. Lee, E. Y. Noh, J. E. Park, W. Y. Bang and S. H. Shim, *J. Antibiot. (Tokyo).*, 2017, **70**, 737–742.
- 18 S.-S. Gao, X.-M. Li, F.-Y. Du, C.-S. Li, P. Proksch and B.-G. Wang, *Mar. Drugs*, 2011, **9**, 59–70.
- 19 S. Shen, W. Li and J. Wang, *Nat. Prod. Res.*, 2013, 37–41.
- V. Abrol, M. Kushwaha, D. Arora, S. Mallubhotla and S. Jaglan, ACS Omega, 2021, 6, 16266–16272.
- 21 W. Weng, R. Li, Y. Zhang, X. Pan, S. Jiang, C. Sun, C. Zhang and X. Lu, *Front. Microbiol.*, 2022, **13**, 1–9.
- 22 J. Bao, X. Y. Zhang, J. J. Dong, X. Y. Xu, X. H. Nong and S. H. Qi, *Chem. Lett.*, 2014, **43**, 837–839.

- 23 H. Y. Kim, H. M. Park and C. H. Lee, J. Microbiol. Methods, 2012, 90, 327–335.
- A. Aly, A. Debbab, R. Edrada-Ebel, W. Muller, M. Kubbutat, V. Wray, R. Ebel and P. Proksch, *Mycosphere*, 2010, **1**, 153–162.
- 25 M. Teiten, F. Mack, A. Debbab, A. H. Aly, M. Dicato, P. Proksch and M. Diederich, *Bioorg. Med. Chem.*, 2013, **21**, 3850–3858.
- 26 B. Liu, H. Wang, L. Zhang, F. Liu, F. He, J. Bai, H. Hua, G. Chen and Y. Pei, *Nat. Prod. Res.*, 2015, 4–9.
- L. Chen, Y. X. Bi, Y. P. Li, X. X. Li, Q. Y. Liu, M. G. Ying, Q. H. Zheng, L. Du and Q.
 Q. Zhang, *Heterocycles*, 2017, **94**, 1766–1774.