Supporting Information

Innovative 2D Dioxonium Vanadium Oxide: Enhancing Stability in Aqueous Zinc-Ion Battery Cathodes

Yannis De Luna,¹ Zakiah Mohamed², Abdulilah Dawoud,³ Nasr Bensalah^{3,*}

 ¹ Materials Science and Technology Graduate Program, Department of Physics and Materials Science, Qatar University, Doha 2713, Qatar
² Faculty of Applied Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
³Department of Chemistry and Earth Sciences, College of Arts and Science, Qatar University, PO Box 2713, Doha, Qatar
*Corresponding author: nasr.bensalah@gu.edu.ga

Table S1. The estimated crystallite size of each crystal plane detected in XRD for as-

Crystal plane	2θ (degrees)	D (nm)
(001)	15.97	250.7
(111)	21.51	210.6
(120)	22.38	126.6
(021)	25.55	182.0
(121)	27.57	142.1
(220)	28.24	320.0
(130)	31.82	322.7
(002)	32.17	353.3
(131)	35.76	107.0
(230)	36.71	76.6
(122)	39.53	90.2

prepared $V_3O_8(H_3O)_2$ cathode material.

Figure S1. Raman spectrum of as-prepared VO-H₃O cathode material.

Figure S2. (a) TEM image and (b) SAED pattern of as-prepared layered VO-H₃O cathode material.

Figure S3. (a) GCD curves and (b) cycling performance of VO-H₃O in half-cells against Zn/Zn^{2+} with 3 M ZnSO₄.7H₂O aqueous electrolytes at 0.1 A g⁻¹.

Figure S4. GCD curves and cycling performance of (a,b) V_2O_5 and (c,d) VO-H₃O in half-cells against Zn/Zn²⁺ with 3 $_{\rm M}$ Zn(CF₃SO₃)₂ aqueous electrolyte at 0.05 A g⁻¹.

Figure S5. (a) GITT profile of VO-H₃O in half-cells against Zn/Zn²⁺ with 3 $_{\rm M}$ Zn(CF₃SO₃)₂ aqueous electrolyte at 0.05 A g⁻¹ and (b) plot of diffusion coefficient of Zn²⁺ ions against voltage during discharge and charge.

Figure S6. EIS analysis of VO-H₃O half-cell against Zn/Zn^{2+} in 3 \bowtie $Zn(CF_3SO_3)_2$ electrolyte before and after being discharged/charged.

Figure S7. SEM images of VO-H₃O half-cell with 3 M ZnSO₄.7H₂O electrolyte in the (a) pristine condition, (b) discharged (0.0 V), and (c) charged (2.3 V) states.

Figure S8. XPS analysis of (a) V 2p, (b) Zn 2p, (c) O 1s orbitals for VO-H₃O half-cell with 3 M ZnSO₄.7H₂O electrolyte at pristine, discharged, and charged states.