Supporting Information

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Investigation of the room temperature flexible fiber shape NH₃ sensor based on PANI-Au-SnO₂ compound

Qiuning Wang,‡^a Yuan Peng,‡^a Bin Guo,^b Jianhai Sun,^c* Yaxia Liu,^d* Yanjun Wang^e and Hongyan Zhang^a*

a. Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile, Nanofiber, Beijing Institute of Fashion Technology, Beijing, 100029, P. R. China.

b. Zhongshan Institute of Changchun University of Science and Technology, P. R. China.

c. State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100194, P. R. China.

- d. School of Fashion, Beijing Institute of Fashion.
- e. Beijing Institute of Fashion Technology School of Fashion Flat Knitting Machine Lab.

‡Both authors contribute equally to this work.

Supporting Information

Fig S1: NH₃ gas sensor detection scheme.

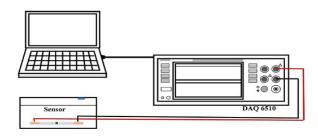


Fig. S1 NH₃ gas sensor detection scheme.

Fig S2: Bending test apparatus.

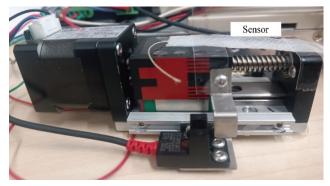


Fig. S2 Bending test apparatus.

Fig S3: NH₃ sensitive material screening: (a-c) 10, 20, 50 nanometers of SnO₂ made of NH₃ sensitive material at 600 ppm responsivity.

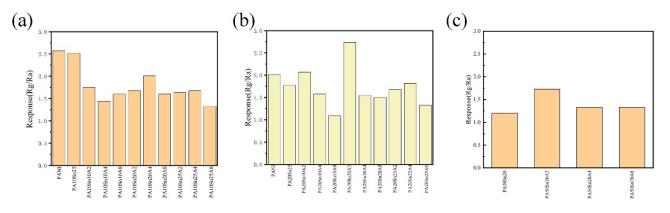


Fig. S3 NH₃ sensitive material screening: (a-c) 10, 20, 50 nanometers of SnO₂ made of NH₃ sensitive material at 600 ppm responsivity.

Fig S4: 20Sn20A2 and PA20Sn20A2 material element analysis.

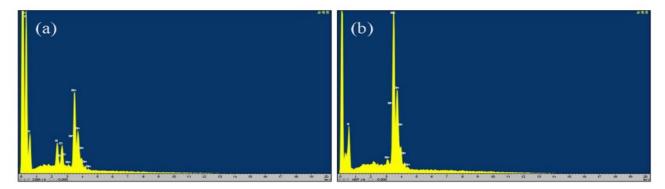
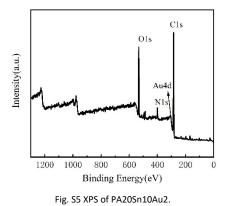



Fig. S 4 20Sn20A2 and PA20Sn20A2 material element analysis.

Fig S5: XPS of PA20Sn10Au2.

Fig S6: SEM of fiber shape NH₃ sensor.

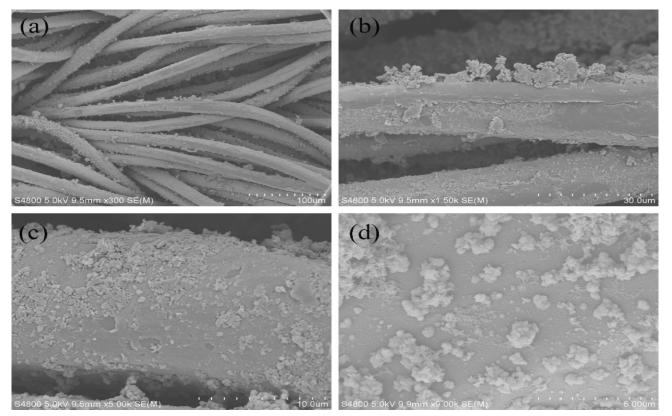


Fig. S6 SEM of fiber shape NH_3 sensor.

Fig S7: SEM of nylon woven fibers.

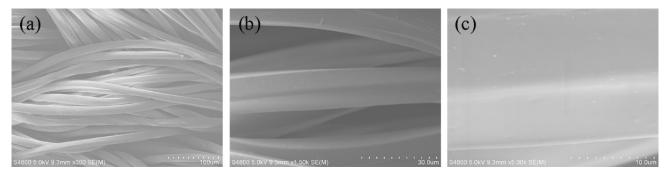


Fig. S7 SEM of nylon woven fibers.

Fig S8: EDS analysis of fiber shape NH₃ sensor.

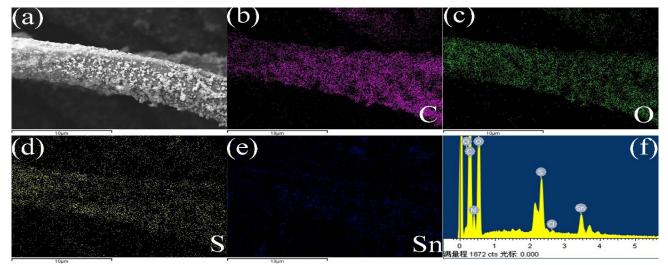


Fig. S8 EDS analysis of fiber shape NH₃ sensor.

Fig S9: (a) Wearable NH₃ monitoring system. (b) The practical application of the hat. (c) Circuit diagram of the hat system.

Fig. S9 (a) Wearable NH₃ monitoring system. (b) The practical application of the hat. (c) Circuit diagram of the hat system.

ARTICLE

Table S1 Elemental energy spectrum analysis of 20Sn20A2.

Table S 1 Elemental energy spectrum analysis of 20Sn20A2.

Elemen	Concentration of	Intensity	Percentage by	Percentage by weight	Atomic percent
t	element	correction	weight	Sigma	ratio
ОК	2.92	0.4260	30.08	0.89	76.14
Sn L	14.20	0.8957	69.92	0.89	23.86
Total			100.00		

Table S2 The content of each element in PA20Sn10Au2.

Table S 2 The content PA20Sn10Au2 of each element in

element type	element content		
C1s	74.196		
O1s	20.835		
N1s	4.91		
Au4d	0.059		

Table S3 The performance comparison between the sensor in this paper and the previous work.

Table S 3 The performance comparison between the sensor in this paper and the previous work.

Materials	Substrates	Conc(pp m)	Temp.(∘C)	Response/Recovery time (s)	The formula of response	Response	Ref
PANI-Au-SnO ₂	The nylon braided line	20	RT	93/168	R _g /R _a	1.68	This work
NiO-CuO	Poly(para- phenyleneterepht halamide) fibers	200	RT	72.5/35	$\triangle R/R_a$	82%	1
CNT-ZnO	commercially available nylon rope	500	RT	-	R_g/R_a	1.2	2
MXene-rGO	MXene/rGO hybrid fibers	100	RT	-	\triangle R/R _a *100%	7.21%	3
PANI- polyethylene oxide (PEO)- ZnO	PANI/PEO nanofibers	250	RT	245/153	\triangle R/R _a *100	60%	4
PANI-WO ₃	cotton thread	100	RT	122/165	R_g/R_a	2.5	5
PANI	Yarn/PS	50	RT	/	$\triangle R/R_a$	57%	6

RT in the table is 25 °C. Rg is the resistance value of the sensor after stable contact with the target gas, Ra is the resistance value of the sensor in the air, and ΔR is the absolute value of the difference between the above two values.

References

- 1 Y. Zhou, J. Wang, X. Li, Flexible room-temperature gas sensor based on poly (para-phenylene terephthalamide) fibers substrate coupled with composite NiO@CuO sensing materials for ammonia detection, Ceram. Int, 2020, 46(9), 13827-13834.
- 2 Z. Gao, Z. Lou, S. Chen, Fiber gas sensor-integrated smart face mask for room-temperature distinguishing of target gases, Nano Res, 2018, 11, 511-519.
- 3 S. Lee, W. Eom, H. Shin, R B. Ambade, J H. Bang, H W. Kim, T H. Han, Room-temperature, highly durable Ti₃C₂T_x MXene/graphene hybrid fibers for NH₃ gas sensing, ACS Appl. Mater. Interfaces, 2020, 12, 10434-10442.
- 4 G. Konuk Ege, Ö. Akay, H. Yüce, A chemosensitive-based ammonia gas sensor with PANI/PEO–ZnO nanofiber composites sensing layer, Microelectron. Int, 2023, ahead-of-print(ahead-of-print). https://doi.org/10.1108/MI-04-2023-0051
- 5 M. He, L. Xie, G. Luo, Flexible fabric gas sensors based on PANI/WO₃ p-n heterojunction for high performance NH₃ detection at room temperature, Sci. China Mater, 2020, 63, 2028–2039.
- 6 N. Indarit, YH. Kim, N. Petchsang, R. Jaisutti, Highly sensitive polyaniline-coated fiber gas sensors for real-time monitoring of ammonia gas, RSC Adv, 2019, 9, 26773-26779.