Supporting information:

Design, Synthesis, Anticancer Activity and Molecular Docking of Quinolinebased Dihydrazone Derivatives

Jia-Xing Lu^[a] · Hai-Rong Lan^[a] · Dai Zeng^[a] · Jun-Ying Song^[b] · Ya-Ting Hao^[a] · Ai-Ping Xing^{*[a]} · Ao Shen^{*[a]} · Juan Yuan^{*[a]}

^[a]School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China.
^[b]Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China.

Table of contents

Scheme S1. Mechanism of NDMA bio-activation leading to its mutagenesis and carcinogenicity.

Figure S1. ¹H NMR spectrum of 3a.

Figure S2. ¹³C NMR spectrum of 3a.

Figure S3. ESI-HRMS spectrum of 3a.

Figure S4. IR spectrum of 3a.

Figure S5. ¹H NMR spectrum of **3b**.

Figure S6. ¹³C NMR spectrum of 3b.

Figure S7. ESI-HRMS spectrum of 3b.

Figure S8. IR spectrum of 3b.

Figure S9. ¹H NMR spectrum of 3c.

Figure S10. ¹³C NMR spectrum of 3c.

Figure S11. ESI-HRMS spectrum of 3c.

Figure S12. IR spectrum of 3c.

Figure S13. ¹H NMR spectrum of 3d.

Figure S14. ¹³C NMR spectrum of 3d.

Figure S15. ESI-HRMS spectrum of 3d.

Figure S16. IR spectrum of 3d.

Figure S17. UV-vis spectra of 3a-3d.

Figure S18. Fluorescence spectra of 3a-3d.

Figure S19. NDMA (a) and NDEA (b) represent the peaks on the chromatogram, as well as

compound 3a (c-d), **3b** (e-f), **3c** (g-h), **3d** (i-j) detection chromatograms. (NDMA: a, c, e, g, i; NDEA: b, d, f, h, j).

Figure S20. UV-vis spectra of 3a in Tris-HCl buffer (pH 7.4).

Figure S21. UV-vis spectra of 3b in Tris-HCl buffer (pH 7.4).

Figure S22. UV-vis spectra of 3c in Tris-HCl buffer (pH 7.4).

Figure S23. UV-vis spectra of 3d in Tris-HCl buffer (pH 7.4).

Figure S24. UV-vis spectra of 3a in PBS (pH 7.4).

Figure S25. UV-vis spectra of 3b in PBS (pH 7.4).

Figure S26. UV-vis spectra of 3c in PBS (pH 7.4).

Figure S27. UV-vis spectra of 3d in PBS (pH 7.4).

Figure S28. IC₅₀ values of 3a-3d against BGC-823, BEL-7402, A549 and MCF-7 cells for 48 h.

Figure S29. The UV-Vis spectra of **3a** in PBS buffer (pH 7.4) at 4°C. **Figure S30.** The UV-Vis spectra of **3b** in PBS buffer (pH 7.4) at 4°C. **Figure S31.** The UV-Vis spectra of **3c** in PBS buffer (pH 7.4) at 4°C. **Figure S32.** The UV-Vis spectra of **3a** in PBS buffer (pH 7.4) at 4°C. **Figure S23.** Stacking-based visualizations of **3b** and **3c** docking with DNA. **Table S1.** Summary of Potential Nitrosamine Impurities Risk Assessment in API. **Table S2.** The ΔG_b^{θ} of **3a-3d** interacting with CDK2 (PDB ID: 4BGH). **Table S3.** The ΔG_b^{θ} of **3a-3d** interacting with CDK1 (PDB ID: 6GU7). **Table S4.** The ΔG_b^{θ} of **3a-3d** interacting with CDK4 (PDB ID: 2W9Z). **Table S5.** The ΔG_b^{θ} of **3a-3d** interacting with CDK8 (PDB ID: 5I5Z).

Scheme S1. Mechanism of NDMA bio-activation leading to its mutagenesis and carcinogenicity.

Figure S2 ¹³C NMR spectrum of 3a in DMSO-d6.

Figure S4 IR spectrum of 3a.

Figure S6 ¹³C NMR spectrum of **3b** in DMSO-d6.

Figure S8 IR spectrum of 3b.

Figure S9 ¹H NMR spectrum of 3c in DMSO-d6.

Figure S10 ¹³C NMR spectrum of 3c in DMSO-d6.

Figure S11 ESI-HRMS of 3c at m/z 495.20236 for $C_{30}H_{22}N_8$ [M+H]⁺.

Figure S12 IR spectrum of 3c.

Figure S14 ¹³C NMR spectrum of 3d in DMSO-d6.

Figure S16 IR spectrum of 3d.

Figure S17 UV-vis spectra of 3a-3d.

Figure S18 Fluorescence spectra of 3a-3d.

Figure S19. NDMA (a) and NDEA (b) represent the peaks on the chromatogram, as well as compound 3a (c-d), 3b (e-f), 3c (g-h), 3d(i-j) detection chromatograms. (NDMA: a, c, e, g, i; NDEA: b, d, f, h, j).

Figure S20 The UV-vis spectra of 3a within 48 h in Tris-HCl buffer (pH 7.4).

Figure S21 The UV-vis spectra of 3b within 48 h in Tris-HCl buffer (pH 7.4).

Figure S22 The UV-vis spectra of 3c within 48 h in Tris-HCl buffer (pH 7.4).

Figure S23 The UV-vis spectra of 3d within 48 h in Tris-HCl buffer (pH 7.4).

Figure S24 The UV-vis spectra of 3a within 48 h in PBS buffer (pH 7.4).

Figure S25 The UV-vis spectra of 3b within 48 h in PBS buffer (pH 7.4).

Figure S26 The UV-vis spectra of 3c within 48 h in PBS buffer (pH 7.4).

Figure S27 The UV-vis spectra of 3d within 48 h in PBS buffer (pH 7.4).

Figure S28 The UV-Vis spectra of 3a in PBS buffer (pH 7.4) at 4°C

Figure S29 The UV-Vis spectra of 3b in PBS buffer (pH 7.4) at 4°C

Figure S30 The UV-Vis spectra of 3c in PBS buffer (pH 7.4) at 4°C

Figure S31 The UV-Vis spectra of 3d in PBS buffer (pH 7.4) at 4°C

Figure S32 IC₅₀ values of 3a-3d against BGC-823, BEL-7402, A549 and MCF-7 cells for 48 h.

Figure S33 Stacking-based visualizations of (a) 3b and (b) 3c docking with DNA (PDB ID: 2MG8).

Number	Impurity Name	Impurity structure	Recommended Daily Allowance(Al Value)	Validation testing (Yes or no)
1	NDMA	_N_N ^{±0}	96 ng/day	Yes
2	NDEA	O _{SN} .N	26.5 ng/day	Yes
3	N-Nitrosodimethylamine 2a and 2b	$\underset{\substack{H_2N^{\prime}}}{\overset{H}{\underset{N}}} \underset{R}{\overset{H}{\underset{N}}} \overset{H}{\underset{N}} \underset{N}{\overset{N}{\underset{N}}} \overset{H}{\underset{N}} \overset{N}{\underset{N}} \overset{O}{\underset{N}}$	1500 ng/day	No
4	Dual N-nitrosyl 2a and 2b	$0_{\sum_{N}}H_{N} = H_{N}$	1500 ng/day	No
5	N-Nitrosamine 3a		1500 ng/day	No
6	Dual N-nitrosyl 3a		1500 ng/day	No

Table S1. Summary of Potential Nitrosamine Impurities Risk Assessment in API.

7	N-Nitrosamine 3b		1500 ng/day	No
8	Dual N-nitrosyl 3b		1500 ng/day	No
9	N-Nitrosamine 3c		1500 ng/day	No
10	Dual N-nitrosyl 3c		1500 ng/day	No
11	N-Nitrosamine 3d	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$	1500 ng/day	No
12	Dual N-nitrosyl 3d		1500 ng/day	No

Table S2. The ΔG_b^{θ} of 3a-3d interacting with CDK2 (PDB ID: 4BGH).

Compound	ΔG_b^{θ} (kcal/mol)		
3 a	-8.0		
3 b	-8.6		
3c	-8.4		
3d	-8.3		

Table S3. The ΔG	θ of 3b and	3c interacting wi	th CDK1 ((PDB ID: 6GU7	1).
--------------------------	--------------------	-------------------	-----------	---------------	-----

Compound	ΔG_b^{θ} (kcal/mol)		
3b	-9.2		
3c	-9.6		

Table S4.The ΔG_b^{θ} of 3b and 3c interacting with CDK4 (PDB ID: 2W9Z).

Compound	$\Delta {G_b}^\theta (\text{kcal/mol})$
3b	-7.3
3c	-7.8

Compound	ΔG_b^{θ} (kcal/mol)		
3b	-9.6		
3c	-10.9		

Table S5. The ΔG_b^{θ} of **3b and 3c** interacting with CDK8 (PDB ID: 5I5Z).