Supporting Information

Electrophilic Aromatic Substitution of Electron-rich Arenes with *N*-Fluorobenzenesulfonimide (NFSI) as Electrophile

Lina Bai,[†] Dewei Tu,[†] Ping Deng, Yongjie Chen, and Qiang Tang*

Table of Contents

1. General Information	83
2. Procedure for the preparation of product 7	S4
3. Density Functional Theory (DFT) calculations	S8
4. References	\$32
5. Spectra of NMR	S33

1. General Information

Materials: Unless otherwise specified, the chemicals were obtained commercially and used without further purification. All solvents were of ACS reagent grade or better unless otherwise noted. Flash column chromatography was performed on silica gel (300-400 mesh) or aluminum oxide (pore size 60 Å, activated, neutral) with freshly distilled solvents. TLC analyses were performed on commercial glass plates bearing a 0.25-mm layer of Silica gel GF_{254} . Visualization was performed using a UV lamp or chemical stains like KMnO₄ and I₂.

NMR Spectroscopy: ¹H and ¹³C NMR spectra for all compounds were acquired in DMSO- d_6 or CDCl₃ solution on a Bruker Avance III HD -600 MHz or JEOL ECA400 (400 MHz), Spectrometer. The splitting patterns are designated as singlet (s), doublet (d), triplet (t), quartet (q), dd (doublet of doublets); m (multiplets), and etc. All first-order splitting patterns were assigned on the basis of the appearance of the multiplet. Splitting patterns that could not be easily interpreted are designated as multiplet (m) or broad (br).

Mass Spectrometry: High resolution mass spectral analysis (HRMS) was performed on ESI-QTOP massspectrometer. LC-MS was performed on a Shimadzu LCMS-IT-TOF under the conditions of electrospray ionization (ESI) in both positive and negative mode.

Melting points: Melting points (mp) were measured in open glass capillaries on a YIDIAN WUGUANG WRS-2C melting point apparatus and are uncorrected.

2. Procedure for the preparation of product 7

Method A: To a round bottom flask equipped with a reflux condenser, was added arene 6 (1.0 mmol), NFSI (2.0 mmol) and 5 mL of DCE. The resulting solution was stirred under argon at 80 $^{\circ}$ C for 1-10 hours until complete consumption of the arene, as monitored by TLC. The reaction mixture was concentrated under reduced pressure. Then, the residue was purified by flash column chromatography using a mixture of hexane and EtOAc as eluent to obtain the desired product.

Method B: A mixture of arene 6 (1.0 mmol) and NFSI (2.0 mmol) was stirred under argon at 110 $^{\circ}$ C for 1-4 hours until complete consumption of the arene, as monitored by TLC. After completion of the reaction, the reaction mixture was cooled to room temperature. Then, the residue was purified by flash column chromatography using a mixture of hexane and EtOAc as eluent to obtain the desired product.

N-(phenylsulfonyl)-*N*-(3,4,5-trimethoxyphenyl)benzenesulfonamide (7a). The title compound was obtained as brownish solid (95% yield in method A and 91% yield in method B, mp: 95-96 °C). ¹H NMR (600 MHz, CDCl₃) δ 7.99 (d, *J* = 8.0 Hz, 4H), 7.69 (t, *J* = 7.4 Hz, 2H), 7.57 (t, *J* = 7.7 Hz, 4H), 6.16 (s, 2H), 3.87 (s, 3H), 3.65 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 153.14, 139.42, 134.03, 128.98, 128.73, 108.99, 60.96, 56.12; HRMS (ESI) m/z: [M+H]⁺calcd for C₂₁H₂₂NO₇S₂: 464.0832; Found: 464.0828.

N-(4-hydroxy-3,5-dimethoxyphenyl)-*N*-(phenylsulfonyl)benzenesulfonamide (7b). The title compound was obtained as brown solid (67% yield in method A and 74% yield in method B, mp: 178-179 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.07 – 7.89 (m, 4H), 7.68 (t, *J* = 7.5 Hz, 2H), 7.56 (t, *J* = 7.9 Hz, 4H), 6.17 (s, 2H), 5.70 (s, 1H), 3.70 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 146.77, 139.42, 136.74, 133.98, 128.96, 128.69, 125.06, 108.81, 56.34; HRMS (ESI) m/z: [M+H]⁺calcd for C₂₀H₂₀NO₇S₂: 450.0676; Found: 450.0685.

N-(3,4-dimethoxyphenyl)-*N*-(phenylsulfonyl)benzenesulfonamide (7c). The title compound was obtained as brown solid (91% yield in method A and 92% yield in method B, mp: 140-141 °C). ¹H NMR (600 MHz, CDCl₃) δ 7.96 (d, *J* = 7.7 Hz, 4H), 7.68 (t, *J* = 7.4 Hz, 2H), 7.55 (t, *J* = 7.8 Hz, 4H), 6.80 (d, *J* = 8.6 Hz, 1H), 6.63 (dd, *J* = 8.5, 2.1 Hz, 1H), 6.38 (d, *J* = 2.0 Hz, 1H), 3.89 (s, 3H), 3.66 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 150.63, 148.96, 139.49, 133.94, 128.98, 128.63, 126.38, 124.37, 114.35, 110.73, 55.98, 55.91; HRMS (ESI) m/z: [M+H]⁺calcd for C₂₀H₂₀NO₆S₂: 434.0727; Found: 434.0734.

N-(2,5-dimethoxyphenyl)-*N*-(phenylsulfonyl)benzenesulfonamide (7d). The title compound was obtained as white solid (82% yield in method A and 86% yield in method B, mp: 156-157 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.02 – 7.91 (m, 4H), 7.69 – 7.59 (m, 2H), 7.57 – 7.44 (m, 4H), 6.95 (dd, *J* = 9.0, 3.1 Hz, 1H), 6.76 (d, *J* = 9.1 Hz, 1H), 6.66 (d, *J* = 3.1 Hz, 1H), 3.68 (s, 3H), 3.33 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 153.16, 151.98, 139.99, 133.71, 128.88, 128.62, 122.73, 118.34, 117.56, 112.54, 55.82, 55.45; HRMS (ESI) m/z: [M+H]⁺calcd for C₂₀H₂₀NO₆S₂: 434.0727; Found: 434.0738.

N-(3,4-diethoxyphenyl)-*N*-(phenylsulfonyl)benzenesulfonamide (7e). The title compound was obtained as white solid (88% yield in method A and 83% yield in method B, mp: 116-117 °C). ¹H NMR (600 MHz, CDCl₃) δ 7.95 (d, *J* = 7.5 Hz, 4H), 7.66 (t, *J* = 7.5 Hz, 2H), 7.54 (t, *J* = 7.9 Hz, 4H), 6.78 (d, *J* = 8.6 Hz, 1H), 6.59 (dd, *J* = 8.6, 2.4 Hz, 1H), 6.40 (d, *J* = 2.4 Hz, 1H), 4.10 (q, *J* = 7.0 Hz, 2H), 3.86 (q, *J* = 7.0 Hz, 2H), 1.46 (t, *J* = 7.0 Hz, 3H), 1.35 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 150.42, 148.48, 139.57, 133.84, 128.94, 128.60, 126.13, 124.32, 116.27, 112.26, 64.53, 14.72, 14.55; ¹H NMR (400 MHz, DMSO-*d6*) δ 7.85 - 7.79 (m, 6H), 7.73 - 7.65 (m, 4H), 6.97 (d, *J* = 8.7 Hz, 1H), 6.58 (dd, *J* = 8.6, 2.5 Hz, 1H), 6.30 (d, *J* = 2.5 Hz, 1H), 4.04 (q, *J* = 7.0 Hz, 2H), 3.77 (q, *J* = 7.0 Hz, 2H), 1.33 (t, *J* = 7.0 Hz, 3H), 1.22 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (101 MHz, DMSO-*d6*) δ 150.40, 148.24, 139.10, 135.15, 130.08, 128.57, 128.56, 125.70, 124.80, 116.09, 113.06, 64.41, 64.36, 15.13, 14.96; HRMS (ESI) m/z: [M+H]⁺calcd for C₂₂H₂₄NO₆S₂: 462.1040; Found: 462.1048.

PhO₂S^NSO₂Ph

N-(2,3-dihydrobenzo[*b*][1,4]dioxin-6-yl)-*N*-(phenylsulfonyl)benzenesulfonamide (7f). The title compound was obtained as white solid (80% yield in method A and 87% yield in method B, mp: 181-182 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.00 – 7.91 (m, 4H), 7.67 (t, *J* = 7.5 Hz, 2H), 7.55 (t, *J* = 7.9 Hz, 4H), 6.79 (d, *J* = 8.6 Hz, 1H), 6.60 (d, *J* = 2.5 Hz, 1H), 6.45 (dd, *J* = 8.6, 2.5 Hz, 1H), 4.27 (dd, *J* = 5.7, 2.4 Hz, 2H), 4.23 (dd, *J* = 5.7, 2.4 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 145.47, 143.65, 139.52, 133.95, 129.01, 128.57, 126.79, 124.77, 120.45, 117.48, 64.35, 64.07; ¹H NMR (400 MHz, DMSO-*d*6) δ 7.87 – 7.78 (m, 6H), 7.73 – 7.66 (m, 4H), 6.88 (d, *J* = 8.6 Hz, 1H), 6.48 (d, *J* = 2.5 Hz, 1H), 6.40 (dd, *J* = 8.6, 2.6 Hz, 1H), 4.27 (ddd, *J* = 12.1, 3.5, 1.6 Hz, 4H); ¹³C NMR (101 MHz, DMSO-*d*6) δ 145.80, 143.91, 139.04, 135.20, 130.12, 130.10, 128.52, 128.51, 126.28, 124.95, 120.28, 117.97, 64.71, 64.45; HRMS (ESI) m/z: [M+H]⁺calcd for C₂₀H₁₈NO₆S₂: 432.0570; Found: 432.0560.

N-(phenylsulfonyl)-*N*-(benzo[*d*][1,3]dioxol-5-yl)benzenesulfonamide (7g). The title compound was obtained as white solid (92% yield in method A and 90% yield in method B, mp: 178-179 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.03 – 7.92 (m, 4H), 7.68 (t, *J* = 7.5 Hz, 2H), 7.56 (t, *J* = 7.9 Hz, 4H), 6.73 (d, *J* = 8.2 Hz, 1H), 6.49 (d, *J* = 2.1 Hz, 1H), 6.45 (dd, *J* = 8.2, 2.1 Hz, 1H), 6.02 (s, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 149.37, 148.07, 139.40, 134.01, 129.04, 128.58, 127.29, 125.96, 111.84, 108.16, 102.14; ¹H NMR (400 MHz, DMSO-*d*6) δ 7.89 – 7.79 (m, 6H), 7.74 – 7.64 (m, 4H), 6.92 (d, *J* = 8.3 Hz, 1H), 6.58 (d, *J* = 2.1 Hz, 1H), 6.39 (dd, *J* = 8.3 Hz, 1H), 6.58 (d, *J* = 2.1 Hz, 1H), 6.39 (dd, *J* = 6.3 Hz, 1H), 6.58 (d, *J* = 2.1 Hz, 1H), 6.39 (dd, *J* = 6.3 Hz, 1H), 6.58 (d, *J* = 2.1 Hz, 1H), 6.39 (dd, *J* = 6.3 Hz, 1H), 6.58 (d, *J* = 2.1 Hz, 1H), 6.39 (dd, *J* = 6.3 Hz, 1H), 6.58 (d, *J* = 2.1 Hz, 1H), 6.39 (dd, *J* = 6.3 Hz, 1H), 6.58 (d, *J* = 2.1 Hz, 1H), 6.39 (dd, *J* = 6.3 Hz, 1H), 6.58 (dz, *J* = 2.1 Hz, 1H), 6.39 (dd, *J* = 6.3 Hz, 1H), 6.58 (dz, *J* = 2.1 Hz, 1H), 6.39 (dd, *J* = 6.3 Hz, 1H), 6.58 (dz, *J* = 2.1 Hz, 1H), 6.39 (dd, *J* = 6.3 Hz, 1H), 6.58 (dz, *J* = 2.1 Hz, 1H), 6.39 (dd, *J* = 6.3 Hz, 1H), 6.58 (dz, *J* = 2.1 Hz, 1H), 6.39 (dd, *J* = 6.3 Hz, 1H), 6.58 (dz, *J* = 2.1 Hz, 1H), 6.39 (dd, *J* = 6.3 Hz, 1H), 6.58 (dz, *J* = 2.1 Hz, 1H), 6.39 (dd, *J* = 6.3 Hz, 1H), 6.58 (dz, *J* = 2.1 Hz, 1H), 6.39 (dd, *J* = 6.3 Hz, 1H), 6.58 (dz, *J* = 2.1 Hz, 1H), 6.39 (dd, *J* = 6.3 Hz, 1H), 6.58 (dz, *J* = 2.1 Hz, 1H), 6.39 (dd, *J* = 6.3 Hz, 1H), 6.58 (dz, *J* = 2.1 Hz, 1H), 6.39 (dd, *J* = 6.3 Hz, 1H), 6.58 (dz, *J* = 2.1 Hz, 1H), 6.39 (dd, *J* = 6.3 Hz, 1H), 6.58 (dz, *J* = 2.1 Hz, 1H), 6.39 (dd, *J* = 6.3 Hz, 1H), 6.58 (dz, *J* = 2.1 Hz, 1H), 6.39 (dd, J = 6.3 Hz, 1H), 6.38 (dz, J) = 6.3 Hz, 1H), 6.38 (dz,

8.3, 2.2 Hz, 1H), 6.13 (s, 2H); ¹³C NMR (101 MHz, DMSO-*d6*) δ 154.32, 153.03, 143.71, 139.98, 134.87, 133.31, 131.63, 131.10, 116.65, 113.55, 107.67; HRMS (ESI) m/z: [M+H]⁺calcd for C₁₉H₁₆NO₆S₂: 418.0414; Found: 418.0409.

N-(5-acetyl-2,3,4-trimethoxyphenyl)-*N*-(phenylsulfonyl)benzenesulfonamide (7h). The title compound was obtained as yellow solid (51% yield in method A and 54% yield in method B, mp: 200-201 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.16 – 8.01 (m, 4H), 7.68 (d, *J* = 7.5 Hz, 2H), 7.57 (t, *J* = 7.9 Hz, 4H), 5.99 (s, 1H), 3.92 (d, *J* = 7.2 Hz, 6H), 3.50 (s, 3H), 2.46 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 199.51, 153.34, 151.37, 143.51, 138.39, 134.16, 131.34, 129.94, 128.57, 125.25, 112.26, 61.79, 61.00, 55.88, 32.06; HRMS (ESI) m/z: [M+H]⁺calcd for C₂₃H₂₄NO₈S₂: 506.0938; Found: 506.0930.

N-(3-formyl-4,5-dimethoxyphenyl)-*N*-(phenylsulfonyl)benzenesulfonamide (7i). The title compound was obtained as white solid (68% yield in method A and 55% yield in method B, mp: 171-172 °C). ¹H NMR (600 MHz, CDCl₃) δ 10.34 (s, 1H), 7.99 – 7.86 (m, 4H), 7.70 (t, *J* = 7.5 Hz, 2H), 7.57 (t, *J* = 7.9 Hz, 4H), 7.06 (d, *J* = 2.5 Hz, 1H), 6.69 (d, *J* = 2.5 Hz, 1H), 4.04 (s, 3H), 3.72 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 188.53, 153.91, 153.31, 139.14, 134.24, 129.91, 129.58, 129.13, 128.63, 122.33, 120.63, 62.36, 56.19; HRMS (ESI) m/z: [M+H]⁺calcd for C₂₁H₂₀NO₇S₂: 462.0676; Found: 462.0683.

N-(5-formyl-2,3-dimethoxyphenyl)-*N*-(phenylsulfonyl)benzenesulfonamide (7j). The title compound was obtained as white solid (49% yield in method A and 43% yield in method B, mp: 203-204 °C). ¹H NMR (600 MHz, CDCl₃) δ 9.31 (s, 1H), 7.95 (dt, *J* = 3.1, 2.1 Hz, 4H), 7.72 (t, *J* = 7.5 Hz, 2H), 7.58 (t, *J* = 7.9 Hz, 4H), 7.44 (s, 1H), 6.32 (s, 1H), 3.96 (s, 3H), 3.70 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 187.36, 153.49, 150.78, 138.18, 134.61, 130.22, 129.66, 129.32, 128.98, 128.84, 128.63, 114.65, 109.03, 56.32, 56.30; HRMS (ESI) m/z: [M+H]⁺calcd for C₂₁H₂₀NO₇S₂: 462.0676; Found: 462.0670.

N-(5-methoxycarbonyl-2,3-dimethoxyphenyl)-*N*-(phenylsulfonyl)benzenesulfonamide (7k). The title compound was obtained as brown oil (46% yield in method A and 58% yield in method B,). ¹H NMR (600 MHz, CDCl₃) δ 8.02 – 7.93 (m, 4H), 7.71 – 7.64 (m, 2H), 7.58 – 7.51 (m, 5H), 6.42 (s, 1H), 3.96 (s, 3H), 3.71 (s, 3H), 3.30 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 164.95, 151.47, 149.95, 139.81, 133.83, 129.18, 128.76, 126.71, 124.47, 116.06, 113.85, 56.26, 56.19, 51.69; HRMS (ESI) m/z: $[M+H]^+$ calcd for C₂₂H₂₂NO₈S₂: 492.0781; Found: 492.0773.

N-(5-acetyl-2,3-dimethoxyphenyl)-*N*-(phenylsulfonyl)benzenesulfonamide (7l). The title compound was obtained as yellow solid (57% yield in method A and 51% yield in method B, mp: 136-137 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.03 – 7.92 (m, 4H), 7.74 – 7.58 (m, 2H), 7.58 – 7.48 (m, 4H), 7.17 (s, 1H), 6.25 (s, 1H), 3.93 (s, 3H), 3.59 (s, 3H), 2.34 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 197.15, 150.62, 149.83, 138.69, 134.20, 133.59, 129.53, 128.78, 124.65, 115.67, 111.81, 56.21, 56.00, 29.47; HRMS (ESI) m/z: [M+H]⁺calcd for C₂₂H₂₂NO₇S₂: 476.0832; Found: 476.0837.

N-(4,5-dimethoxy-2-methylphenyl)-*N*-(phenylsulfonyl)benzenesulfonamide (7m). The title compound was obtained as white solid (78% yield in method A and 59% yield in method B, mp: 143-144 °C). ¹H NMR (600 MHz, CDCl₃) δ 7.96 (d, *J* = 7.5 Hz, 4H), 7.68 (t, *J* = 7.5 Hz, 2H), 7.55 (t, *J* = 7.9 Hz, 4H), 6.68 (s, 1H), 6.23 (s, 1H), 3.88 (s, 3H), 3.59 (s, 3H), 1.88 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 150.33, 146.78, 139.56, 134.00, 133.49, 128.95, 128.93, 124.60, 114.64, 113.05, 55.89, 55.85, 17.77; HRMS (ESI) m/z: [M+H]⁺calcd for C₂₁H₂₂NO₆S₂: 448.0883; Found: 448.0891.

N-(phenylsulfonyl)-*N*-(3,4,5-trimethoxybenzyl)benzenesulfonamide (7n).¹ The title compound was obtained as yellow solid (53% yield in method A, mp: 109-110 °C), and the analytical data are consistent with those in the literature. ¹H NMR (600 MHz, CDCl₃) δ 7.76 (dd, *J* = 8.5, 1.1 Hz, 4H), 7.56 – 7.47 (m, 2H), 7.43 – 7.34 (m, 4H), 6.46 (s, 2H), 4.82 (s, 2H), 3.75 (s, 3H), 3.62 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 153.10, 140.11, 137.65, 133.70, 129.84, 128.80, 128.10, 105.90, 60.88, 56.00, 52.88; MS (ESI) m/z: [M+H]⁺calcd for C₂₂H₂₄NO₇S₂: 478.1; Found: 478.2.

4,4-Difluoro-3,5-dimethoxycyclohexa-2,5-dien-1-one (70).² The title compound was obtained as brown oil (48% yield in method A) and the analytical data are consistent with those in the literature. ¹H NMR (600 MHz, CDCl₃) δ 5.48 (s, 2H), 3.82 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 184.56, 161.19, 161.04, 160.90, 102.48, 102.46, 102.43, 56.75; ¹⁹F NMR (565 MHz, CDCl₃) δ -112.50, -112.51.

1,1-Difluoronaphthalen-2(1*H***)-one (7p).³** The title compound was obtained as yellowish solid (47% yield in method A, mp: 52-53 °C) and the analytical data are consistent with those in the literature. ¹H NMR (600 MHz, CDCl₃) δ 7.88 – 7.77 (m, 1H), 7.53 (dd, J = 6.2, 2.6 Hz, 2H), 7.44 (d, J = 10.1 Hz, 1H), 7.40 – 7.33 (m, 1H), 6.22 (dt, J = 10.1, 2.7 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 187.70, 187.54, 187.38, 145.70, 133.42, 133.26, 133.10, 132.14, 132.13, 132.12, 131.01, 131.00, 130.98, 130.33, 130.29, 130.25, 129.94, 127.75, 127.72, 127.70, 123.49, 123.48, 123.46, 107.18, 105.56, 103.94; ¹⁹F NMR (565 MHz, CDCl₃) δ -101.16.

3. DFT Calculations

All reported structures were optimized at Density Functional Theory level as implemented in Gaussian 09.⁴ The geometry optimizations and single point electronic energies for those structures were calculated at B97XD /6-311++ level.⁵ The transition states were located and confirmed by frequency calculations (single imaginary frequency). Intrinsic Reaction Coordinate (IRC) calculations were performed to confirm that the first-order saddle points found were real transition states connecting the reactants and the products. All geometry optimizations were carried out without any symmetry constraints. The stationary points were characterized as minima by full vibration frequencies calculations (no imaginary frequency). Distortion energies were obtained by performing a single point calculation for each fragment of the optimized ground state and transition state structures. Reported energy values correspond to Gibbs Free (G) energies in kcal/mol⁻¹.

	H [hartree]	H-correction	G [hartree]	G-correction	Frequency
TMB	-575.376305	0.212378	-575.428296	0.160387	
NFSI	-1714.104871	0.225294	-1714.174121	0.156044	
TS1	-2289.458622	0.438217	-2289.555028	0.341810	-357.3532
Int1	-2289.520764	0.439503	-2289.617848	0.342419	
TS2	-2289.51463	0.438506	-2289.611147	0.341990	-95.2605
TS2`	-2289.510762	0.439484	-2289.606152	0.344095	-179.8377
Adduct I	-2289.552996	0.443051	-2289.647906	0.348140	
Adduct II	-2289.537162	0.442039	-2289.634194	0.345007	
Adduct II`	-2389.466451	0.443908	-2389.567190	0.343169	
TS3	-2289.512146	0.437590	-2289.611207	0.338529	-492.3781
TS3`	-2389.441430	0.439544	-2389.540556	0.340417	-104.6049
Products	-2289.607421	0.439238	-2289.709151	0.337508	

Table S1. Data of calculated enthalpies, free energies, and imaginary frequencies.

Figure S1. Computed Gibbs energy profile for the amidation reaction through *trans*-addition pathway.

Figure S2. Computed Gibbs energy profile for the amidation reaction through *cis*-addition pathway.

Cartesian Coordinates

TMB

Symbolic Z-matrix: Charge = 0 Multiplicity = 1

С	-0.93536	-1.77774	0.00009
С	0.33233	-2.34295	0.00014
С	1.46449	-1.53398	0.00009
С	1.32203	-0.14646	0.
С	0.04056	0.45373	-0.00004
С	-1.08993	-0.3858	-0.00001
Н	-1.80559	-2.41833	0.00012
Н	0.44004	-3.42103	0.00021
Н	2.4474	-1.98319	0.00012
0	0.0681	1.8144	-0.00013
0	2.36728	0.72756	-0.00005
0	-2.32176	0.22357	-0.0001
С	-3.48611	-0.58775	-0.00013
Н	-4.32783	0.10377	-0.00023
Н	-3.53724	-1.21873	-0.89418
Н	-3.53737	-1.21861	0.894
С	3.68547	0.20323	-0.00003
Н	3.87959	-0.40008	-0.89405
Н	4.34662	1.06863	-0.00008
Н	3.87961	-0.39999	0.89405
С	-1.09628	2.64138	0.00016
Н	-1.70601	2.48117	0.89059
Н	-0.70507	3.65889	0.00015
Н	-1.70638	2.48129	-0.89004

NFSI

Symbolic Z-matrix:	Charge = 0 Multij	plicity = 1	
С	-3.88995	-1.83987	-0.02095
С	-2.66227	-1.34454	0.40986
С	-2.48215	0.0356	0.44585
С	-3.4828	0.93034	0.06866
С	-4.70207	0.41691	-0.36102
С	-4.90363	-0.9632	-0.40508
Н	-4.05145	-2.91049	-0.05781
Н	-1.8587	-2.00625	0.70132
Н	-3.30923	1.99745	0.12027
Н	-5.4943	1.09409	-0.65696
Н	-5.8561	-1.35668	-0.74139
S	-0.93117	0.69929	1.0342
Ν	-0.13209	1.01619	-0.58883
0	-1.13189	2.03454	1.56626
0	-0.2066	-0.31959	1.78195
F	0.68133	2.15539	-0.41785
S	0.90613	-0.24671	-1.32595
С	2.40572	-0.35417	-0.35732
С	2.48576	-1.28431	0.67748
С	3.4717	0.48107	-0.69295
С	3.67395	-1.37314	1.3966
Н	1.63913	-1.91357	0.91155
С	4.64855	0.38311	0.04275
Н	3.37853	1.17866	-1.51466
С	4.74841	-0.54145	1.08253
Н	3.7581	-2.09175	2.203
Н	5.48749	1.02386	-0.20103
Н	5.6691	-0.61506	1.65009
0	1.23793	0.30235	-2.62729
0	0.09599	-1.44621	-1.16873

Symbolic Z-matrix: Charge	e = 0 Multip	olicity = 1	
С	5.19487	-0.70779	0.95901
С	3.87783	-0.82671	1.38951
С	2.93922	-1.34953	0.50253
С	3.27418	-1.75502	-0.78608
С	4.59718	-1.6152	-1.20404
С	5.55326	-1.0957	-0.33352
Н	5.94158	-0.30455	1.6331
Н	3.56534	-0.51415	2.37435
Н	2.51882	-2.17385	-1.4366
Н	4.878	-1.92599	-2.20379
Н	6.58268	-0.99661	-0.66004
S	1.27654	-1.71661	1.08864
Ν	0.11153	-0.29784	0.92873
0	0.77223	-2.79081	0.22091
0	1.27896	-1.93879	2.52914
F	1.74422	0.78956	1.59561
S	0.07694	0.62528	-0.6349
С	1.32599	1.92289	-0.63133
С	2.43223	1.77666	-1.4579
С	1.07439	3.10028	0.0686
С	3.3206	2.84455	-1.57921
Н	2.58863	0.85515	-2.00049
С	1.96764	4.15532	-0.06353
Н	0.20624	3.17908	0.70738
С	3.09116	4.02837	-0.8835
Н	4.18806	2.74697	-2.22158
Н	1.79157	5.07679	0.47928
Н	3.78479	4.85607	-0.98049
0	-1.22246	1.29998	-0.56107
0	0.37321	-0.27112	-1.75833
С	-3.0519	-1.27863	-0.9205
С	-3.85741	-0.27412	-0.2964
С	-3.55448	0.15544	1.04324
С	-2.43622	-0.31538	1.66556

С	-1.56365	-1.25326	1.00981
С	-1.95136	-1.77355	-0.26925
Н	-2.1579	0.0199	2.65386
Н	-1.11643	-1.97728	1.68383
Н	-1.31553	-2.5246	-0.71063
0	-3.45349	-1.63472	-2.15957
0	-4.85091	0.16774	-1.04088
0	-4.44162	1.02888	1.59099
С	-2.66872	-2.60896	-2.85452
Н	-2.72944	-3.58493	-2.36281
Н	-3.10561	-2.67581	-3.84875
Н	-1.62602	-2.28801	-2.92159
С	-4.78615	1.28505	-1.95653
Н	-3.89585	1.21326	-2.57873
Н	-5.68315	1.17788	-2.56263
Н	-4.79638	2.22788	-1.41485
С	-4.19041	1.49308	2.91813
Н	-4.99227	2.19408	3.14114
Н	-4.21799	0.66564	3.6336
Н	-3.22458	2.00268	2.97783

Int1

Symbolic Z-matrix: Charge = 0 Multiplicity = 1			
С	-3.52399	1.86933	-1.94346
С	-2.4233	1.07778	-1.61332
С	-2.60827	-0.30116	-1.56811
С	-3.84167	-0.90313	-1.82753
С	-4.92109	-0.09201	-2.16229
С	-4.76041	1.29269	-2.22538
Н	-3.39973	2.94571	-1.96151
Н	-1.4913	1.57155	-1.33045
Н	-3.95106	-1.97797	-1.76256
Н	-5.88528	-0.54236	-2.3679
Н	-5.60507	1.92178	-2.48419
S	-1.23505	-1.4351	-1.32306
Ν	-0.13001	-0.62664	-0.25043
0	-1.74186	-2.63609	-0.67438
0	-0.48036	-1.54465	-2.57676
F	-0.38523	2.77289	-0.29198
S	-0.20407	-0.80849	1.49796
С	-1.79011	-0.11552	1.93596
С	-2.72188	-0.95705	2.54291
С	-2.00995	1.24813	1.73596
С	-3.92255	-0.40413	2.97905
Н	-2.50293	-2.00934	2.66797
С	-3.22141	1.77363	2.18018
Н	-1.2907	1.87867	1.20486
С	-4.16688	0.95797	2.80227
Н	-4.66235	-1.03613	3.45616
Н	-3.4226	2.82789	2.03027
Н	-5.10337	1.38406	3.14541
0	0.8764	0.07373	1.93641
0	-0.16547	-2.21694	1.86615
С	3.51611	-1.08927	-0.26959
С	3.92478	0.3078	-0.1706
С	2.9685	1.35879	-0.31175
С	1.65018	1.05468	-0.51431

C	1.22524	-0.33457	-0.77244
С	2.22499	-1.40324	-0.52176
Н	0.82659	1.83404	-0.50126
Н	1.08243	-0.35802	-1.87407
Н	1.89055	-2.42683	-0.61423
0	4.52655	-1.96265	-0.07849
0	5.19983	0.44384	0.07208
0	3.44576	2.61855	-0.14424
С	4.20495	-3.35563	-0.08624
Н	3.81705	-3.66209	-1.06263
Н	5.1413	-3.8713	0.11421
Н	3.47596	-3.59109	0.69453
С	5.93929	1.6882	0.2107
Н	5.55606	2.2615	1.04988
Н	6.95877	1.35698	0.39258
Н	5.87476	2.26831	-0.70606
С	2.5513	3.71967	-0.43104
Н	3.11192	4.61243	-0.16084
Н	2.31419	3.73056	-1.49832
Н	1.61803	3.64557	0.12914

Symbolic Z-matrix: Charg	ge = 0 Multij	plicity = 1	
С	-3.1147	3.11202	-0.8733
С	-2.11327	2.16507	-1.08902
С	-2.51554	0.85943	-1.36756
С	-3.85593	0.47808	-1.44116
С	-4.83353	1.44639	-1.23041
С	-4.4622	2.76104	-0.94796
Н	-2.82196	4.1307	-0.64697
Н	-1.06296	2.477	-0.99546
Н	-4.11984	-0.54822	-1.659
Н	-5.88056	1.17218	-1.28848
Н	-5.22687	3.51296	-0.7853
S	-1.2954	-0.39519	-1.7691
Ν	-0.17172	-0.38042	-0.42159
0	-1.95478	-1.69533	-1.77759
0	-0.49285	0.04281	-2.90833
F	0.50572	3.18801	-0.39746
S	-0.28985	-1.53555	0.87728
С	-1.96193	-1.32269	1.47834
С	-2.88931	-2.33428	1.24417
С	-2.27068	-0.18534	2.22316
С	-4.16917	-2.19568	1.77573
Н	-2.60798	-3.19723	0.65594
С	-3.55535	-0.0607	2.74161
Н	-1.52356	0.57887	2.39439
С	-4.49947	-1.0643	2.52037
Н	-4.90578	-2.97229	1.60701
Н	-3.81694	0.81724	3.31999
Н	-5.49785	-0.96239	2.93053
0	0.65402	-1.00506	1.86215
0	-0.12557	-2.89794	0.38869
С	3.45942	-0.90347	-0.71029
С	3.9252	0.19865	0.13127
С	3.01941	1.19035	0.59624
С	1.6868	1.07366	0.29583

C	1.20769	0.09124	-0.69402
С	2.16415	-0.97594	-1.08702
Н	0.96271	1.83889	0.58397
Н	1.09213	0.72394	-1.59708
Н	1.79636	-1.75833	-1.73449
0	4.43574	-1.77436	-1.04176
0	5.20613	0.13214	0.38584
0	3.54208	2.17796	1.36541
С	4.06696	-2.90902	-1.82807
Н	3.68908	-2.5998	-2.80755
Н	4.98065	-3.48565	-1.95353
Н	3.31382	-3.51222	-1.31261
С	5.99376	1.09112	1.14113
Н	5.64567	1.13833	2.16935
Н	7.0026	0.6889	1.08781
Н	5.93948	2.07257	0.67759
С	2.64953	3.22781	1.81259
Н	3.30515	4.00377	2.20352
Н	2.03039	3.59427	0.98702
Н	2.01186	2.84674	2.6158

TS2`

Symbolic Z-matrix: C	Charge = 0 Multip	plicity = 1	
С	-3.17156	2.94792	-0.82971
С	-2.16559	2.03089	-1.14542
С	-2.5799	0.729	-1.35253
С	-3.88473	0.27258	-1.27099
С	-4.86271	1.21308	-0.95907
С	-4.50397	2.54466	-0.73908
Н	-2.89373	3.97873	-0.65916
Н	-1.1085	2.35569	-1.18624
Н	-4.11975	-0.76935	-1.43424
Н	-5.89639	0.90399	-0.88699
Н	-5.26952	3.27106	-0.49881
S	-1.28898	-0.54168	-1.76087
Ν	-0.12886	-0.30808	-0.34325
0	-1.95716	-2.00622	-1.68876
0	-0.38043	-0.14739	-3.03354
F	0.00849	1.67443	1.9746
S	-0.24902	-1.4105	1.09053
С	-2.02201	-1.1443	1.5268
С	-2.90306	-2.19083	1.33725
С	-2.37468	0.1064	2.00516
С	-4.24062	-1.96011	1.65707
Н	-2.55678	-3.13275	0.93795
С	-3.71457	0.31644	2.31444
Н	-1.63378	0.88425	2.12261
С	-4.63932	-0.71562	2.14344
Н	-4.96408	-2.75186	1.52292
Н	-4.03312	1.28229	2.67939
Н	-5.67978	-0.54493	2.38508
0	0.74031	-0.66021	2.13103
0	0.03182	-2.96021	0.7683
С	3.45176	-0.98325	-0.58421
С	3.94838	0.20024	0.11003
С	3.06518	1.24561	0.46122

C	1.73328	1.12211	0.19169
С	1.2369	0.06673	-0.70438
С	2.1631	-1.0624	-0.96702
Н	1.00309	1.87225	0.46045
Н	1.10765	0.61332	-1.66739
Н	1.76942	-1.90568	-1.51345
0	4.40487	-1.93924	-0.78923
0	5.23795	0.15824	0.36773
0	3.60427	2.32295	1.13034
С	3.98091	-3.19204	-1.38013
Н	3.63032	-3.03694	-2.40271
Н	4.86856	-3.81438	-1.38355
Н	3.19611	-3.65294	-0.77676
С	6.05133	1.20269	1.00744
Н	5.69075	1.3875	2.01268
Н	7.04511	0.77012	1.00995
Н	6.01247	2.11178	0.41719
С	2.7372	3.48563	1.32809
Н	3.41373	4.29578	1.58
Н	2.16682	3.7003	0.4205
Н	2.05543	3.29459	2.15821

trans-Adduct

Symbolic Z-matrix: Charge = 0 Multiplicity = 1			
С	-4.75696	-2.16737	0.09532
С	-3.75538	-1.44739	0.74119
С	-3.50492	-0.13886	0.33005
С	-4.22812	0.46922	-0.69286
С	-5.2302	-0.2639	-1.32296
С	-5.49207	-1.57668	-0.93219
Н	-4.96491	-3.18587	0.40103
Н	-3.18632	-1.88789	1.54964
Н	-4.00064	1.4837	-0.98841
Н	-5.80428	0.19243	-2.12067
Н	-6.27227	-2.14167	-1.42959
S	-2.22483	0.79387	1.17531
Ν	-0.7231	0.38072	0.39452
0	-2.45263	2.21597	0.96182
0	-2.09078	0.25478	2.52467
S	-0.28152	1.08979	-1.11304
С	0.71163	2.54648	-0.74213
С	0.10238	3.68279	-0.21236
С	2.06642	2.519	-1.06463
С	0.88367	4.81346	0.01104
Н	-0.95265	3.67558	0.02676
С	2.83157	3.66244	-0.84392
Н	2.50064	1.62356	-1.48845
С	2.24277	4.80502	-0.30401
Н	0.42586	5.70377	0.42598
Н	3.88483	3.66001	-1.09985
Н	2.84184	5.69253	-0.13405
0	0.59186	0.11033	-1.75051
0	-1.51696	1.52144	-1.75118
С	1.4125	-2.53434	-0.27156
С	2.58386	-1.94904	0.03771
С	2.62268	-0.78261	0.94459
С	1.50579	-0.16472	1.36729
С	0.14425	-0.67997	1.01243

С	0.10962	-2.01534	0.2379
Н	1.53499	0.66404	2.06038
Н	-0.37216	-0.89195	1.95092
Н	-0.59346	-1.96507	-0.59309
0	1.26614	-3.58512	-1.12714
0	3.76212	-2.45424	-0.44262
0	3.89108	-0.43855	1.28685
С	1.95133	-4.80874	-0.81031
Н	1.63911	-5.52306	-1.57109
Н	3.03298	-4.67521	-0.83708
Н	1.64159	-5.16458	0.17643
С	4.3998	-1.66549	-1.45911
Н	4.71505	-0.69846	-1.06005
Н	5.27619	-2.2318	-1.77244
Н	3.7272	-1.52305	-2.31005
С	4.06543	0.63498	2.20632
Н	5.14012	0.73009	2.35112
Н	3.66176	1.56959	1.80427
Н	3.58348	0.41022	3.1631
F	-0.43318	-2.99458	1.12839

cis-Adduct

Symbolic Z-matrix: Charge = 0 Multiplicity = 1				
С	-3.17156	2.94792	-0.82971	
С	-2.16559	2.03089	-1.14542	
С	-2.5799	0.729	-1.35253	
С	-3.88473	0.27258	-1.27099	
С	-4.86271	1.21308	-0.95907	
С	-4.50397	2.54466	-0.73908	
Н	-2.89373	3.97873	-0.65916	
Н	-1.1085	2.35569	-1.18624	
Н	-4.11975	-0.76935	-1.43424	
Н	-5.89639	0.90399	-0.88699	
Н	-5.26952	3.27106	-0.49881	
S	-1.28898	-0.54168	-1.76087	
Ν	-0.12886	-0.30808	-0.34325	
0	-1.95716	-2.00622	-1.68876	
0	-0.38043	-0.14739	-3.03354	
F	1.85711	0.95509	1.49012	
S	-0.24902	-1.4105	1.09053	
С	-2.02201	-1.1443	1.5268	
С	-2.90306	-2.19083	1.33725	
С	-2.37468	0.1064	2.00516	
С	-4.24062	-1.96011	1.65707	
Н	-2.55678	-3.13275	0.93795	
С	-3.71457	0.31644	2.31444	
Н	-1.63378	0.88425	2.12261	
С	-4.63932	-0.71562	2.14344	
Н	-4.96408	-2.75186	1.52292	
Н	-4.03312	1.28229	2.67939	
Н	-5.67978	-0.54493	2.38508	
0	0.74031	-0.66021	2.13103	
0	0.03182	-2.96021	0.7683	
С	3.45176	-0.98325	-0.58421	
С	3.94838	0.20024	0.11003	
С	3.06518	1.24561	0.46122	

С	1.73328	1.12211	0.19169
С	1.2369	0.06673	-0.70438
С	2.1631	-1.0624	-0.96702
Н	1.00309	1.87225	0.46045
Н	1.10765	0.61332	-1.66739
Н	1.76942	-1.90568	-1.51345
0	4.40487	-1.93924	-0.78923
0	5.23795	0.15824	0.36773
0	3.60427	2.32295	1.13034
С	3.98091	-3.19204	-1.38013
Н	3.63032	-3.03694	-2.40271
Н	4.86856	-3.81438	-1.38355
Н	3.19611	-3.65294	-0.77676
С	6.05133	1.20269	1.00744
Н	5.69075	1.3875	2.01268
Н	7.04511	0.77012	1.00995
Н	6.01247	2.11178	0.41719
С	2.7372	3.48563	1.32809
Н	3.41373	4.29578	1.58
Н	2.16682	3.7003	0.4205
Н	2.05543	3.29459	2.15821

Adduct II`

Symbolic Z-matrix: Charge = -1 Multiplicity = 1				
С	-3.17156	2.94792	-0.82971	
С	-2.16559	2.03089	-1.14542	
С	-2.5799	0.729	-1.35253	
С	-3.88473	0.27258	-1.27099	
С	-4.86271	1.21308	-0.95907	
С	-4.50397	2.54466	-0.73908	
Н	-2.89373	3.97873	-0.65916	
Н	-1.1085	2.35569	-1.18624	
Н	-4.11975	-0.76935	-1.43424	
Н	-5.89639	0.90399	-0.88699	
Н	-5.26952	3.27106	-0.49881	
S	-1.28898	-0.54168	-1.76087	
Ν	-0.12886	-0.30808	-0.34325	
0	-1.95716	-2.00622	-1.68876	
0	-0.38043	-0.14739	-3.03354	
F	1.85711	0.95509	1.49012	
S	-0.24902	-1.4105	1.09053	
С	-2.02201	-1.1443	1.5268	
С	-2.90306	-2.19083	1.33725	
С	-2.37468	0.1064	2.00516	
С	-4.24062	-1.96011	1.65707	
Н	-2.55678	-3.13275	0.93795	
С	-3.71457	0.31644	2.31444	
Н	-1.63378	0.88425	2.12261	
С	-4.63932	-0.71562	2.14344	
Н	-4.96408	-2.75186	1.52292	
Н	-4.03312	1.28229	2.67939	
Н	-5.67978	-0.54493	2.38508	
0	0.74031	-0.66021	2.13103	
0	0.03182	-2.96021	0.7683	
С	3.45176	-0.98325	-0.58421	
С	3.94838	0.20024	0.11003	
С	3.06518	1.24561	0.46122	

1.73328	1.12211	0.19169
1.2369	0.06673	-0.70438
2.1631	-1.0624	-0.96702
1.00309	1.87225	0.46045
1.10765	0.61332	-1.66739
1.76942	-1.90568	-1.51345
4.40487	-1.93924	-0.78923
5.23795	0.15824	0.36773
3.60427	2.32295	1.13034
3.98091	-3.19204	-1.38013
3.63032	-3.03694	-2.40271
4.86856	-3.81438	-1.38355
3.19611	-3.65294	-0.77676
6.05133	1.20269	1.00744
5.69075	1.3875	2.01268
7.04511	0.77012	1.00995
6.01247	2.11178	0.41719
2.7372	3.48563	1.32809
3.41373	4.29578	1.58
2.16682	3.7003	0.4205
2.05543	3.29459	2.15821
0.91055	1.44682	-3.13587
	1.73328 1.2369 2.1631 1.00309 1.10765 1.76942 4.40487 5.23795 3.60427 3.98091 3.63032 4.86856 3.19611 6.05133 5.69075 7.04511 6.01247 2.7372 3.41373 2.16682 2.05543 0.91055	1.733281.122111.23690.066732.1631-1.06241.003091.872251.107650.613321.76942-1.905684.40487-1.939245.237950.158243.604272.322953.98091-3.192043.63032-3.036944.86856-3.814383.19611-3.652946.051331.202695.690751.38757.045110.770126.012472.111782.73723.485633.413734.295782.166823.70032.055433.294590.910551.44682

Symbolic Z-matrix: Charge = 0 Multiplicity = 1			
С	-4.08278	-3.03984	0.15337
С	-3.07957	-2.20247	0.63692
С	-3.29507	-0.8255	0.57093
С	-4.45776	-0.26841	0.0425
С	-5.44792	-1.12652	-0.42777
С	-5.26095	-2.50734	-0.37022
Н	-3.93634	-4.11301	0.18862
Н	-2.14475	-2.61394	1.01328
Н	-4.57569	0.80577	0.00125
Н	-6.3615	-0.71464	-0.84013
Н	-6.03514	-3.17076	-0.73956
S	-2.04595	0.27995	1.22486
Ν	-0.72156	0.23531	0.07874
0	-2.5626	1.64278	1.21294
0	-1.47322	-0.28769	2.43771
S	-0.70226	1.23571	-1.32862
С	-0.0315	2.83329	-0.83451
С	-0.86585	3.77923	-0.24188
С	1.30817	3.10226	-1.11102
С	-0.3315	5.02016	0.09513
Н	-1.90124	3.54165	-0.0426
С	1.8262	4.34959	-0.76912
Н	1.91786	2.35534	-1.60213
С	1.00909	5.30458	-0.16512
Н	-0.96706	5.76634	0.55724
Н	2.86291	4.57813	-0.98808
Н	1.41509	6.27557	0.09525
0	0.28851	0.60664	-2.19873
0	-2.0843	1.41098	-1.74302
С	2.02233	-2.11825	-0.80017
С	3.09001	-1.51683	-0.11647
С	2.84406	-0.41985	0.81195
С	1.58454	0.04331	0.99559
С	0.43004	-0.61885	0.36589

С	0.72925	-1.65801	-0.62431
Н	1.36669	0.83292	1.70002
Н	0.07116	-1.42644	1.11783
Н	-0.05413	-2.019	-1.2707
0	2.2706	-3.11978	-1.68982
0	4.27827	-2.05507	-0.34791
0	3.94796	0.03112	1.47269
С	2.08544	-4.4505	-1.1499
Н	2.06038	-5.11841	-2.00965
Н	2.93014	-4.71133	-0.50508
Н	1.15461	-4.50326	-0.58117
С	5.55245	-1.40499	-0.15041
Н	5.83498	-1.42085	0.89963
Н	6.24616	-1.99763	-0.74362
Н	5.52459	-0.37981	-0.51673
С	3.76055	1.02574	2.47914
Н	4.74694	1.20781	2.90118
Н	3.36824	1.95231	2.04892
Н	3.08459	0.66588	3.26063
F	-0.13814	-3.03637	0.8523

Symbolic Z-matrix: Charge = -1 Multiplicity = 1			
С	-2.6502	-2.56936	-1.92613
С	-1.79512	-1.96975	-1.00311
С	-2.34185	-1.5642	0.20261
С	-3.67395	-1.72198	0.53739
С	-4.51272	-2.3263	-0.39757
С	-4.00071	-2.7497	-1.62355
Н	-2.25386	-2.89104	-2.87974
Н	-0.75214	-1.79041	-1.23663
Н	-4.03731	-1.36405	1.49021
Н	-5.56175	-2.45909	-0.16858
Н	-4.65621	-3.21869	-2.34649
S	-1.21138	-0.85374	1.49817
Ν	-0.17703	0.22439	0.35221
0	-2.1618	-0.09615	2.5722
0	-0.2267	-2.01769	2.00797
F	1.08175	-1.11578	-1.814
S	-0.88891	1.8845	0.03143
С	-2.68963	1.55071	-0.23585
С	-3.57164	1.83013	0.78941
С	-3.06952	1.09947	-1.48811
С	-4.9288	1.62699	0.54102
Н	-3.20036	2.17105	1.74384
С	-4.42687	0.89763	-1.71673
Н	-2.32286	0.91873	-2.24826
С	-5.35078	1.16256	-0.70399
Н	-5.64917	1.82966	1.3217
Н	-4.75855	0.52971	-2.67776
Н	-6.40566	1.00203	-0.88663
0	-0.30815	2.35421	-1.40271
0	-0.75422	2.90048	1.2807
С	3.27295	1.3315	-0.25462
С	3.93828	0.04884	-0.50274
С	3.23988	-1.09642	-0.4048

C	1.77073	-1.08298	-0.26022
С	1.29087	0.10942	0.52728
С	2.03187	1.37591	0.24414
Н	1.41143	-2.00892	0.1788
Н	1.66186	-0.2172	1.6272
Н	1.59228	2.31132	0.54938
0	4.05966	2.44127	-0.52034
0	5.29242	0.13086	-0.72212
0	3.85399	-2.35144	-0.37332
С	3.4607	3.72652	-0.28414
Н	3.2439	3.86963	0.77844
Н	4.20002	4.4533	-0.60955
Н	2.53815	3.83968	-0.86064
С	5.9308	-0.87515	-1.54355
Н	5.29469	-1.13009	-2.39277
Н	6.85576	-0.41373	-1.88243
Н	6.13761	-1.7812	-0.97769
С	4.24735	-2.74017	0.99572
Н	4.13884	-3.82185	1.04751
Н	5.29163	-2.45708	1.15598
Н	3.61355	-2.22533	1.72983
F	2.5563	-0.71918	2.64179

Products

Symbolic Z-matrix: Charge = 0 Multiplicity = 1				
С	-0.60514	-0.38169	-0.36246	
С	0.39955	0.4198	0.17376	
С	0.22204	1.80349	0.16062	
С	-0.92282	2.40095	-0.36282	
С	-1.91664	1.58184	-0.89073	
С	-1.75756	0.19656	-0.89332	
Н	-0.48685	-1.45868	-0.35571	
Н	1.28509	-0.02896	0.60478	
Н	-1.02258	3.47705	-0.36206	
Н	-2.8143	2.02908	-1.30078	
Н	-2.53569	-0.43479	-1.30694	
S	1.49612	2.85561	0.85925	
Ν	2.66387	3.11833	-0.39188	
0	0.91476	4.13578	1.23018	
0	2.22895	2.08563	1.8719	
S	2.38132	4.26848	-1.66557	
С	3.15737	5.78979	-1.10663	
С	2.49215	6.59778	-0.18529	
С	4.39822	6.13773	-1.63657	
С	3.09984	7.78323	0.21862	
Н	1.52993	6.29796	0.20815	
С	4.99099	7.32892	-1.2222	
Н	4.87482	5.49378	-2.36408	
С	4.34447	8.14747	-0.29723	
Н	2.59718	8.42456	0.933	
Н	5.95261	7.61861	-1.6295	
Н	4.80835	9.0749	0.01912	
0	3.13336	3.77834	-2.80945	
0	0.93902	4.45721	-1.7231	
С	5.31839	0.59633	-1.04859	
С	6.36684	1.08911	-0.26027	
С	6.16608	2.25119	0.51589	
С	4.94575	2.9204	0.46468	
С	3.92278	2.42086	-0.34647	

С	4.09621	1.26723	-1.09809
Н	4.76481	3.80632	1.05525
Н	2.90963	0.53812	2.07733
Н	3.30867	0.88924	-1.73543
0	5.48333	-0.51481	-1.82956
0	7.544	0.39812	-0.20443
0	7.22269	2.64092	1.28029
С	5.62941	-1.76079	-1.12491
Н	5.69455	-2.52932	-1.89418
Н	6.53481	-1.76215	-0.5162
Н	4.75475	-1.9427	-0.493
С	8.66507	1.01547	-0.85556
Н	8.91221	1.96975	-0.38601
Н	9.49737	0.32257	-0.73853
Н	8.4542	1.15911	-1.91972
С	7.04406	3.73441	2.17528
Н	7.98492	3.8304	2.71424
Н	6.83821	4.66414	1.63455
Н	6.23562	3.53476	2.88541
F	3.17717	-0.36395	2.10299

4. References

(1) Sakakibara, Y.; Ito, E.; Fukushima, T.; Murakami, K.; Itami, K., Late-Stage Functionalization of Arylacetic Acids by Photoredox-Catalyzed Decarboxylative Carbon-Heteroatom Bond Formation. *Chemistry – A European Journal* **2018**, *24*, 9254-9258.

(2) Hernández, J. G.; Ardila-Fierro, K. J.; Barišić, D.; Geneste, H., Multi-faceted reactivity of *N*-fluorobenzenesulfonimide (NFSI) under mechanochemical conditions: fluorination, fluorodemethylation, sulfonylation, and amidation reactions. *Beilstein Journal of Organic Chemistry* **2022**, *18*, 182-189.

(3) Stavber, G.; Zupan, M.; Jereb, M.; Stavber, S., Selective and Effective Fluorination of Organic Compounds in Water Using Selectfluor F-TEDA-BF4. *Org. Lett.* **2004**, *6*, 4973-4976.

(4) M. J. Frisch, G. W. T., H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, , *Gaussian, Inc., Wallingford CT*, 2013.

(5) Lu, T.; Chen, Q., Shermo: A general code for calculating molecular thermochemistry properties. *Computational and Theoretical Chemistry* **2021**, *1200*, 113249.

ICO fl (ppm) -10 -20 210 200

¹H NMR of **7e** (DMSO-*d6*)

¹H NMR of **7f** (DMSO-*d6*)

¹³C NMR of **7g** (CDCl₃)

¹H NMR of **7g** (DMSO-*d6*)

¹⁹F NMR of **7p**

