Supporting information for

Ag@Mg12@Ag20: A three-layer Matryoshka structure with

S₆ symmetry

 Peng-Bo Liu,^a Jing-Jing Guo,^a Yi-Sha Chen,^a Hui-Yan Zhao,^{*,a} Jing Wang,^a and Ying Liu^{*,a}
¹Department of Physics and Hebei Advanced Thin Film Laboratory, Hebei Normal University, Shijiazhuang 050024, Hebei, China.
²State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China.

Figure S1. Detailed construction of core-shell $Ag@Mg_{12}@Ag_{20}$. The three-layer core-shell $Ag@Mg_{12}@Ag_{20}$ structure is formed by encapsulating an $Ag@Mg_{12}$ icosahedron within the Ag_{20} dodecahedron.

Figure S2. The proposed ideal Ag@Mg₁₂@Ag₂₀ structure for part (*a*), and fifteen structures obtained by swaps of Ag-Mg pairs for part (*b*-*p*) with the binding energies (E_{*b*}) listed below each configurations after energy minimizing. Part (*b*) shows the configuration of Mg@Ag₁₂@Mg₂₀ obtained by conducting complete swap of Ag-Mg pairs; part (*c*-*h*) show the configurations of Mg@AgMg₁₁@Ag₂₀ and part (*i*-*p*) show the configurations of Mg@Ag₂Mg₁₀@MgAg₁₉, the swapped Mg and Ag atoms are colored in blue and red, respectively.

Figure S3. Top view (*a*) and side view (*b*) of the optimized Mg@Ag₁₂@Mg₂₀, which is obtained by conducting complete swap of Ag-Mg pairs in Ag@Mg₁₂@Ag₂₀.

Figure S4. IR spectrum for the three-layer core-shell $Ag@Mg_{12}@Ag_{20}$.

Figure S5. The lowest frequency mode (Mode 01) and the highest frequency mode (Mode 06) of the three-layer core-shell Ag@Mg₁₂@Ag₂₀ are depicted. Additionally, several frequency modes exhibiting higher mode intensities are listed for reference.

Figure S6. *Ab into* molecular dynamics simulations for the three-layer Ag@Mg₁₂@Ag₂₀ structure at 500 K, insets depicting snapshots at 0 *ps*, 2 *ps*, 4 *ps*, 6 *ps*, 8 *ps*, 10 *ps*.

Figure S7 Coordinate root-mean-square deviation (RMSD) based on the molecular dynamics (MD) simulations at 500 *K* for the three-layer $Ag@Mg_{12}@Ag_{20}$ structure. This plot illustrates the RMSD values over time, emphasizing the structural stability and deviations observed throughout the simulations.

Figure S8. The reduced density gradient (RDG) for $Ag@Mg_{12}@Ag_{20}$ sections along the XZ plane with the different values of RDG colored from dark blue to red for part (*a*), the corresponding view of $Ag@Mg_{12}@Ag_{20}$ structure for part (*b*).

Figure S9. Selected representative frontier molecular orbitals for the three-layer core-shell $Ag@Mg_{12}@Ag_{20}$ structure with the isosurface value of 0.02 e/Å³.

Figure S10. Five *d*-type lone pairs on one Ag atom in the Ag₂₀ dodecahedron.

Table S1. Natural	population	charge analysis	s (NPA) fo	r the three-la	ayer core-sh	ell Ag@Mg1	$_2@Ag_{20}$
structure.							

Number	Atom	Charge	Number	Atom	Charge	Number	Atom	Charge
1	Mg	-0.48	12	Mg	-0.46	23	Ag	0.36
2	Mg	-0.47	13	Ag	-0.72	24	Ag	0.36
3	Mg	-0.51	14	Ag	0.21	25	Ag	0.27
4	Mg	-0.49	15	Ag	0.39	26	Ag	0.27
5	Mg	-0.49	16	Ag	0.26	27	Ag	0.36
6	Mg	-0.51	17	Ag	0.39	28	Ag	0.36
7	Mg	-0.51	18	Ag	0.39	29	Ag	0.38
8	Mg	-0.51	19	Ag	0.21	30	Ag	0.39
9	Mg	-0.48	20	Ag	0.39	31	Ag	0.36
10	Mg	-0.48	21	Ag	0.39	32	Ag	0.27
11	Mg	-0.46	22	Ag	0.27	33	Ag	0.27