Electrophilic aromatic substitution using fluorinated isoxazolines at C5 position via C-F bond cleavage.

Kazuyuki Sato,^{*1,} Tomohiro Kuroki,¹ Haruka Minami,¹ Azusa Sato,² Yukiko Karuo,¹ Atsushi Tarui,¹ Kentaro Kawai,¹ Masaaki Omote^{*1}

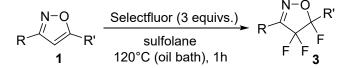
 Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
School of Pharmace, Tolyo University of Pharmace, and Life Sciences, 1422, 1 Horinovski

2) School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan

Electronic Supplementary Information (ESI)

General Information	S2
Materials	S2
Experimental Section	
General procedure for the synthesis	
of 4,4,5-trifluoroisoxazolines	S2
General procedure for S _E Ar reaction	
with fluorinated isoxazolines	S2
Typical procedure for the synthesis of 6	
via reductive N-O bond cleavage	S3
Typical procedure for the synthesis of 7	
via reductive N-O bond cleavage	S3
Spectroscopic Data	S4–S9
References	S9
NMR charts	. S10–S37
X-ray crystallographic data	S38–S40

General Information:


¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded on a JEOL JNM-ECZS-400 spectrometer. Chemical shifts of ¹H NMR are reported in ppm from tetramethylsilane (TMS: 0 ppm) as an internal standard. Chemical shifts of ¹³C NMR are reported in ppm from tetramethylsilane (TMS: 0 ppm) as an internal standard. Chemical shifts of ¹⁹F NMR are reported in ppm from trichlorofluoromethane (CFCl₃: 0 ppm) as an internal standard. All data are reported as follows: chemical shifts, relative integration value, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, br = broad, m = multiplet), coupling constants (Hz). Mass spectra were obtained on JEOL JMS-700T spectrometers. Melting points were measured on Yanagimoto micro melting point apparatus MP-S3. Details of high quality and resolution X-ray diffraction experiments are shown in the section "X-ray crystallographic data"

Materials:

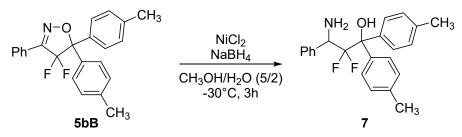
Sulfolane was distilled before use. Tetrahydrofuran (THF) was distilled over benzophenone ketyl sodium just before use. All commercially available reagents were used without further purification. All experiments were carried out under argon atmosphere in flame-dried glassware using standard inert techniques for introducing reagents and solvents unless otherwise noted. 3,5-Diphenyl-4,4,5-trifluoroisoxazoline (3) was synthesized according to the previous paper and used as a solution of 2.0 M in cyclohexane.¹

Experimental Section:

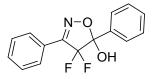
General procedure for the synthesis of 4,4,5-trifluoroisoxazolines.¹


Isoxazole (1; 1 mmol) and Selectfluor (3 mmol) were suspended in sulfolane (4 mL) and stirred for 1 h at 120 °C. The resulting mixture was quenched with saturated aqueous NaHCO₃ and extracted with AcOEt. The AcOEt layer was washed with saturated aqueous NaCl and dried over MgSO₄. The solvent was removed in vacuo and the residue was purified by column chromatography to give 4,4,5-trifluorinated isoxazole (3).

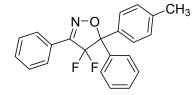
General procedure for S_EAr reaction with fluorinated isoxazolines.


To a solution of 2.0 M 4,4,5-trifluoroisoxazoline (**3**) in cyclohexane (0.5 mL, 1 mmol of **3**) was added sulfolane (3.5 mL) and aromatics (**6**, 3 mmol) followed by $BF_3 \cdot Et_2O$ (1 mmol) at ambient temperature. The reaction mixture was stirred at 90°C for 1 h. After that time, the resulting mixture was quenched with saturated aqueous NaHCO₃ and extracted with AcOEt. The AcOEt layer was washed with saturated aqueous NaCl and dried over MgSO₄. The solvent was removed in vacuo and the residue was purified by column chromatography to give 5-arylated 4,4-difluoroisoxazoline (**5**).

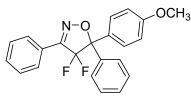
Typical procedure for the synthesis of 6 via reductive N-O bond cleavage.²


The mixture of **5aB** (141 mg, 0.4 mmol), Fe powder (223 mg, 4 mmol), and NH₄Cl (214 mg, 4 mmol) of EtOH/H₂O (1/1) 20 mL was stirred overnight at 80 °C. After that time, the reaction mixture was filtered through Celite, then the filtrate was diluted with AcOEt and washed with saturated aqueous NaCl. The AcOEt layer was separated and dried over MgSO₄. The solvent was removed in vacuo and the residue was purified by column chromatography to give the keto alcohol (**6**, 96 mg, 68%).

Typical procedure for the synthesis of 7 via reductive N-O bond cleavage.³


The solution of **5bB** (200 mg, 0.55 mmol) and NiCl₂ (392 mg, 1.65 mmol) in MeOH (11 mL) and THF (4.4 mL) was cooled to -30° C and stirred for 10 min. After that time, NaBH₄ (209 mg, 5.5 mmol) was added and the mixture was stirred for 3 h under the same temperature. The resulting mixture was quenched with H₂O and extracted with AcOEt. The AcOEt layer was washed with saturated aqueous NaCl and dried over MgSO₄. The solvent was removed in vacuo and the residue was purified by column chromatography to give the amino alcohol (7, 125 mg, 62%).

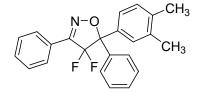
Spectroscopic Data: 4,4-Difluoro-3,5-diphenyl-4,5-dihydroisoxazol-5-ol (4a)¹


Colorless solid; M.p. 109.0–111.0 °C (recrystallized from hexane–AcOEt); ¹H NMR (400 MHz, CDCl₃) δ : 3.96 (1H, s), 7.41–7.53 (6H, m), 7.63–7.66 (2H, m), 7.83–7.85 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ : 103.0 (dd, J = 33.1, 19.4 Hz), 124.6 (dd, J = 267.8, 255.2 Hz), 124.9 (m), 126.8 (d, J = 1.5 Hz), 127.1 (d, J = 1.5 Hz), 128.5, 129.1, 130.3, 131.6, 132.7 (d, J = 1.4 Hz), 153.7 (dd, J = 25.9, 24.9 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ : -37.54 (1F, d, J = 266.3 Hz), -57.23 (1F, d, J = 266.3 Hz); MS *m/z*: 275 (M⁺); HRMS Calcd for C₁₅H₁₁F₂NO₂: 275.076 (M⁺), Found: 275.076; IR (KBr) cm⁻¹: 2982, 1450, 1365, 1242, 1127, 1098.

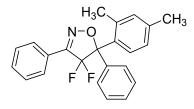
4,4-difluoro-3,5-diphenyl-5-(p-tolyl)-4,5-dihydroisoxazole (5aB)

Colorless solid; M.p. 86.5–88.0 °C (recrystallized from hexane); ¹H NMR (400 MHz, CDCl₃) δ : 2.33 (3H, s), 7.17–7.19 (2H, m), 7.31–7.49 (8H, m), 7.54–7.56 (2H, m), 7.86–7.87 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ : 21.09, 90.77 (t, *J* = 23.0 Hz), 125.3, 126.8, 127.1, 127.2, 127.2, 128.2 (t, *J* = 260.1 Hz), 128.3, 128.5, 129.0 (d, *J* = 3.3 Hz), 131.2, 132.6 (t, *J* = 2.5 Hz), 135.6 (t, *J* = 2.4 Hz), 138.5, 153.57 (t, *J* = 25.8 Hz).; ¹⁹F NMR (376 MHz, CDCl₃) δ : -97.41 (1F, d, *J* = 258.1 Hz), -98.48 (1F, d, *J* = 258.1 Hz); MS *m/z*: 349 (M⁺); HRMS Calcd for C₂₂H₁₇F₂NO: 349.1278 (M⁺), Found: 349.1275.

4,4-difluoro-5-(4-methoxyphenyl)-3,5-diphenyl-4,5-dihydroisoxazole (5aC)

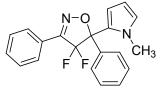

Colorless solid; M.p. 77.0–79.0 °C (recrystallized from hexane); ¹H NMR (400 MHz, CDCl₃) δ : 3.79 (3H, s), 6.87–6.91 (2H, m), 7.32–7.47 (8H, m), 7.54–7.56 (2H, m), 7.85–7.87 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ : 55.26, 90.7 (t, J = 23.2 Hz) , 113.7, 125.3, 126.8, 127.20 (d, J = 1.6 Hz) , 127.6 (t, J = 3.0 Hz) , 128.2 (t, J = 259.9 Hz) , 128.3, 128.5, 128.7 (d, J = 1.4 Hz) , 129.0, 131.2, 135.7, 153. 6 (t, J = 25.9 Hz), 159.7; ¹⁹F NMR (376 MHz, CDCl₃) δ : -96.99 (1F, d, J = 258.0 Hz), -98.78 (1F, d, J = 258.0 Hz); MS *m*/*z*: 365 (M⁺); HRMS Calcd for C₂₂H₁₇F₂NO₂: 365.1227 (M⁺), Found: 365.1230.

4-(4,4-difluoro-3,5-diphenyl-4,5-dihydroisoxazol-5-yl)-N,N-dimethylaniline (5aD)

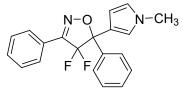

Yellowish solid; M.p. 130.0–131.5 °C; ¹H NMR (400 MHz, CDCl₃) δ : 2.93 (6H, s), 6.65– 6.69 (2H, m), 7.33–7.49 (8H, m), 7.55–7.58 (2H, m), 7.86–7.88 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ : 40.25, 91.09 (t, J = 23.0 Hz), 111.7, 122.8 (t, J = 2.6 Hz), 125.5, 126.8, 128.1, 127.3 (d, J = 1.6 Hz), 128.2 (t, J = 259.3 Hz), 128.3, 128.3, 128.9, 131.0, 135.9, 150.3, 153.5 (t, J = 26.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ : -96.18 (1F, d, J = 257.8 Hz), -99.64 (1F, d, J = 257.8 Hz); MS *m/z*: 378 (M⁺); HRMS Calcd for C₂₃H₂₀F₂N₂O: 378.1544 (M⁺), Found: 378.1542.

5-(3,4-dimethylphenyl)-4,4-difluoro-3,5-diphenyl-4,5-dihydroisoxazole (5aH)

Colorless solid; M.p. 102.0–105.0 °C (recrystallized from hexane); ¹H NMR (400 MHz, CDCl₃) δ : 2.24 (3H, s), 2.26 (3H, s), 7.14 (1H, d, J = 7.9 Hz), 7.17–7.49 (8H, m), 7.54–7.56 (2H, m), 7.85–7.87 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ : 19.45, 20.03, 90.74 (t, J = 23.1 Hz), 124.6, 125.3, 126.8, 127.2, 128.2 (t, J = 260.1 Hz), 128.2, 128.3, 128.4, 129.0, 129.5, 131.2, 132.9 (t, J = 2.4 Hz), 135.8 (t, J = 2.4 Hz), 136.6, 137.2, 153.6 (t, J = 25.9 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ : -97.92 (2F, s); MS *m/z*: 363 (M⁺); HRMS Calcd for C₂₃H₁₉F₂NO: 363.1435 (M⁺), Found: 363.1439.


5-(2,4-dimethylphenyl)-4,4-difluoro-3,5-diphenyl-4,5-dihydroisoxazole (5aI)

Colorless solid; M.p. 148.5–150.5 °C (recrystallized from hexane–AcOEt); ¹H NMR (400 MHz, CDCl₃) δ : 2.20 (3H, s), 2.36 (3H, s), 7.07 (1H, m), 7.13 (1H, m), 7.26–7.30 (5H, m), 7.43–7.51 (3H, m), 7.73 (1H, m), 7.88–7.90 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ : 20.98, 21.46, 92.52 (t, J = 22.9 Hz), 125.3 (d, J = 1.5 Hz), 126.2, 126.8 (d, J = 0.6 Hz),127.1 (d, J = 3.7 Hz), 127.9 (d, J = 1.5 Hz), 128.2, 128.7, 128.8 (dd, J = 261.8, 258.4 Hz), 129.0, 130.0 (d,


J = 3.5 Hz), 131.1, 133.0, 136.1 (d, J = 4.1 Hz), 137.6, 138.5, 153.4 (t, J = 26.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ : -88.58 (1F, d, J = 260.6 Hz), -106.3 (1F, d, J = 260.6 Hz); MS *m/z*: 363 (M⁺); HRMS Calcd for C₂₃H₁₉F₂NO: 363.1435 (M⁺), Found: 363.1432.

4,4-difluoro-5-(1-methyl-1*H*-pyrrol-2-yl)-3,5-diphenyl-4,5-dihydroisoxazole (5aJ)

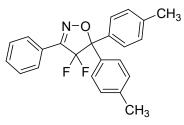
Pale yellow solid; M.p. 93.0–95.5 °C (recrystallized from hexane); ¹H NMR (400 MHz, CDCl₃) δ : 3.33 (3H, s), 6.10 (1H, m), 6.58 (1H, m), 6.65 (1H, m), 7.33–7.38 (5H, m), 7.42–7.51 (3H, m), 7.84–7.86 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ : 35.95, 88.75 (dd, J = 25.2, 21.2 Hz), 106.6 (d, J = 1.2 Hz), 111.9 (d, J = 11.9 Hz), 125.0 (d, J = 3.4 Hz), 125.2, 125.8, 126.8, 127.5 (d, J = 1.0 Hz), 127.8 (dd, J = 264.9, 257.3 Hz), 128.4, 128.9, 129.0, 131.2, 134.4 (m), 153.7 (t, J = 25.4 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ : -97.98 (1F, d, J = 259.2 Hz), -103.9 (1F, dd, J = 259.2, 5.2 Hz); MS *m/z*: 338 (M⁺); HRMS Calcd for C₂₀H₁₆F₂N₂O: 338.1231 (M⁺), Found: 338.1233.

4,4-difluoro-5-(1-methyl-1*H*-pyrrol-3-yl)-3,5-diphenyl-4,5-dihydroisoxazole (5aJ')

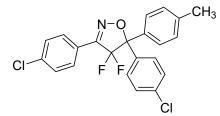
Pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ : 3.56 (3H, s), 6.13 (1H, m), 6.52–6.55 (2H, m), 7.34–7.48 (6H, m), 7.61–7.63 (2H, m), 7.86–7.89 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ : 36.29, 89.19 (t, J = 23.0 Hz), 108.8 (d, J = 3.3 Hz), 119.7 (t, J = 3.6 Hz), 122.2, 122.4 (d, J = 2.9 Hz), 125.7 (m), 126.7, 127.0 (d, J = 1.0 Hz), 127.4 (dd, J = 260.1, 256.8 Hz), 128.0, 128.3, 128.9, 130.9, 135.4 (m), 153.3 (t, J = 25.9 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ : -95.14 (1F, d, J = 258.2 Hz), -104.1 (1F, d, J = 258.2 Hz); MS *m/z*: 338 (M⁺); HRMS Calcd for C₂₀H₁₆F₂N₂O: 338.1231 (M⁺), Found: 338.1232.

4,4-difluoro-5-(furan-2-yl)-3,5-diphenyl-4,5-dihydroisoxazole (5aK)

Pale yellow solid; M.p. 61.0–65.0 °C; ¹H NMR (400 MHz, CDCl₃) δ : 6.30–6.32 (2H, m), 7.40–7.51 (7H, m), 7.64–7.66 (2H, m), 7.87–7.90 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ : 87.26 (dd, J = 26.7, 22.7 Hz), 110.1, 111.9, 125.1, 126.8, 127.4 (dd, J = 261.9, 258.0 Hz),

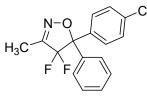

127.9 (d, J = 11.7 Hz), 128.3, 129.0, 129.2, 131.3, 132.1 (d, J = 3.9 Hz), 144.2, 149.3 (m), 153.0 (t, J = 25.5 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ : -90.86 (1F, d, J = 261.3 Hz), -106.1 (1F, d, J = 261.3 Hz); MS *m*/*z*: 325 (M⁺); HRMS Calcd for C₁₉H₁₃F₂NO₂: 325.0914 (M⁺), Found: 325.0916.

4,4-difluoro-3,5-diphenyl-5-(thiophen-2-yl)-4,5-dihydroisoxazole (5aL)

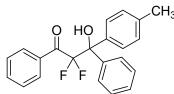

Colorless solid; M.p. 65.5–66.5 °C (recrystallized from hexane); ¹H NMR (400 MHz, CDCl₃) δ : 6.98 (1H, dd, J = 5.1, 3.8 Hz), 7.15 (1H, m), 7.33 (1H, dd, J = 5.1, 1.2 Hz), 7.39–7.52 (6H, m), 7.64–7.67 (2H, m), 7.86–7.88 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ : 89.30 (dd, J = 25.8, 22.4 Hz), 125.1, 126.8, 126.8, 126.9, 127.0, 127.3 (dd, J = 262.0, 259.4 Hz), 128.3, 128.4, 128.4, 129.0, 131.4, 134.5 (d, J = 3.1 Hz), 139.4 (m), 153.6 (t, J = 25.7 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ : -93.54 (1F, d, J = 258.0 Hz), -103.93 (1F, d, J = 258.0 Hz); MS *m/z*: 341 (M⁺); HRMS Calcd for C₁₉H₁₃F₂NOS: 341.0686 (M⁺), Found: 341.0687.

4,4-difluoro-3-phenyl-5,5-di-p-tolyl-4,5-dihydroisoxazole (5bB)

Pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ : 2.33 (6H, s), 7.15–7.18 (4H, m), 7.40–7.48 (7H, m), 7.85–7.89 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ : 21.08, 90.80 (t, J = 23.1 Hz), 125.3 (m), 126.8, 127.1, 128.2 (t, J = 259.8 Hz), 129.0, 129.0, 131.1, 132.7 (t, J = 2.4 Hz), 138.4, 153.5 (t, J = 25.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ : -98.03 (2F, s); MS *m/z*: 363 (M⁺); HRMS Calcd for C₂₃H₁₉F₂NO: 363.1435 (M⁺), Found: 363.1432.


3,5-bis(4-chlorophenyl)-4,4-difluoro-5-(p-tolyl)-4,5-dihydroisoxazole (5cB)

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ: 2.34 (3H, s), 7.19–7.21 (2H, m), 7.34–7.39 (4H, m), 7.42–7.48 (4H, m), 7.78–7.80 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ: 21.11, 90.55 (t, *J* = 23.5 Hz), 123.5, 127.0, 127.9 (t, *J* = 260.1 Hz), 128.0, 128.6, 128.6, 129.2, 129.4, 131.1


(m), 134.0 (m), 134.7, 137.6, 138.9, 152.8 (t, J = 26.3 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ : -97.48 (1F, d, J = 258.2 Hz), -98.40 (1F, d, J = 258.2 Hz); MS *m/z*: 417 (M⁺); HRMS Calcd for C₂₂H₁₅Cl₂F₂NO: 417.0499 (M⁺), Found: 417.0499.

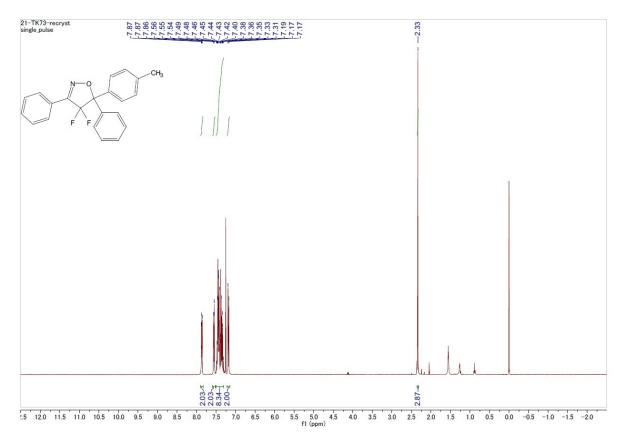
4,4-difluoro-3-methyl-5-phenyl-5-(p-tolyl)-4,5-dihydroisoxazole (5dB)


Pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ : 2.11 (3H, t, J = 1.5 Hz), 2.33 (3H, s), 7.16– 7.18 (2H, m), 7.30–7.39 (5H, m), 7.49–7.51 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ : 8.56, 21.08, 88.83 (t, J = 22.4 Hz), 127.7 (t, J = 258.5 Hz), 127.0 (m), 127.0 (m), 128.2, 128.3, 129.0, 132.8 (t, J = 2.7 Hz), 135.8 (t, J = 2.5 Hz), 138.3, 152.9 (t, J = 27.9 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ : -102.5 (dq, J = 258.9, 1.5 Hz), -103.6 (dq, J = 258.9, 1.6 Hz); MS *m/z*: 287 (M⁺); HRMS Calcd for C₁₇H₁₅F₂NO: 287.1122 (M⁺), Found: 287.1123.

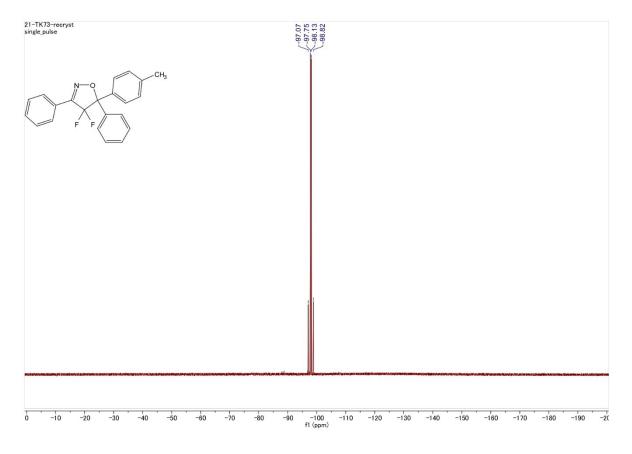
2,2-difluoro-3-hydroxy-1,3-diphenyl-3-(p-tolyl)propan-1-one (6)

Pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ : 2.33 (3H, s), 4.27 (1H, s), 7.12–7.14 (2H, m), 7.28–7.37 (5H, m), 7.45–7.49 (4H, m), 7.62–7.67 (1H, m), 8.00–8.03 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ : 21.07, 80.25 (t, J = 23.0 Hz), 115.5 (t, J = 264.9 Hz), 127.4, 127.6, 127.9, 128.0, 128.7, 128.8, 130.3 (t, J = 3.1 Hz), 132.6 (t, J = 2.7 Hz), 134.7, 137.8, 137.9, 140.8, 191.9 (t, J = 31.6 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ : -101.5 (2F, s); MS *m/z*: 352 (M⁺); HRMS Calcd for C₂₂H₁₈F₂O₂: 352.1275 (M⁺), Found: 352.1278.

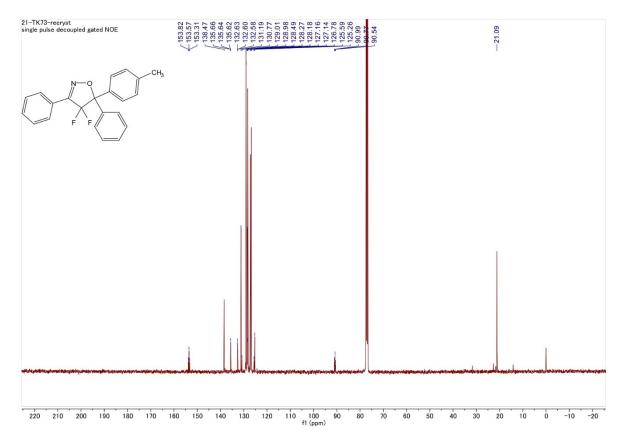
3-amino-2,2-difluoro-3-phenyl-1,1-di-p-tolylpropan-1-ol (7)

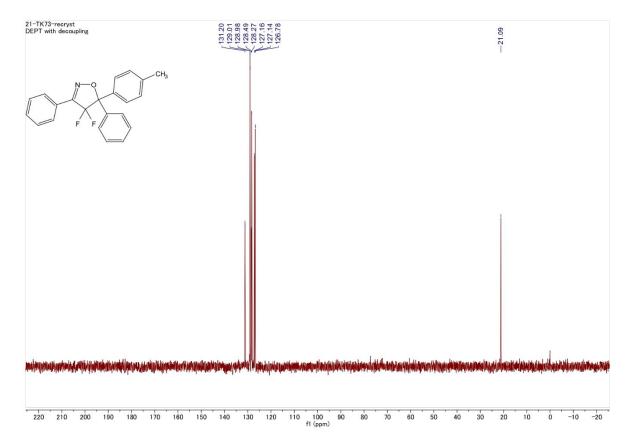

Colorless solid; M.p. 181.5–188.0 °C; ¹H NMR (400 MHz, CDCl₃) δ : 2.28 (3H, s), 2.39 (3H, s), 4.36 (1H, d, J = 26.5 Hz), 7.06–7.08 (2H, m), 7.23–7.29 (4H, m), 7.31–7.37 (3H, m), 7.45–7.47 (2H, m), 7.69–7.71 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ : 20.98, 21.06, 58.15 (dd, J = 23.0, 31.7 Hz), 81.27 (t, J = 24.3 Hz), 120.7 (dd, J = 255.3, 260.5 Hz), 127.0 (d, J =

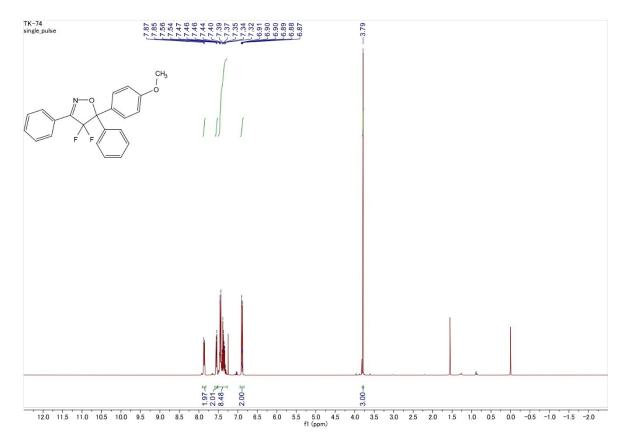
4.5 Hz), 127.8, 128.0, 128.3, 128.4, 128.6, 129.1, 137.0, 137.3, 137.8, 138.4, 140.6 (m); ¹⁹F NMR (376 MHz, CDCl₃) δ : -100.6 (1F, d, *J* = 265.0 Hz), -124.0 (1F, dd, *J* = 26.5, 265.0 Hz); MS *m*/*z*: 367 (M⁺); HRMS Calcd for C₂₃H₂₃F₂NO: 367.1748 (M⁺), Found: 367.1747.

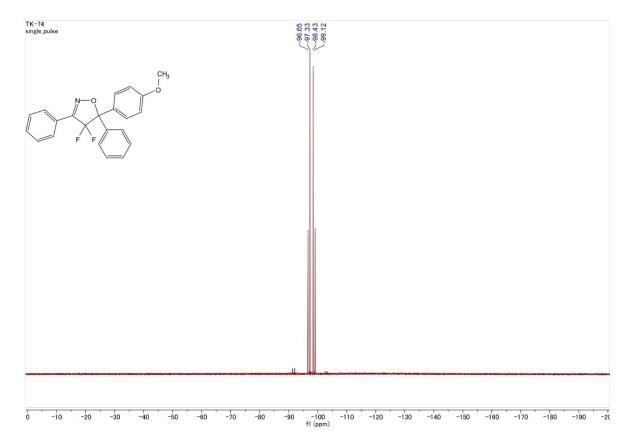

References:

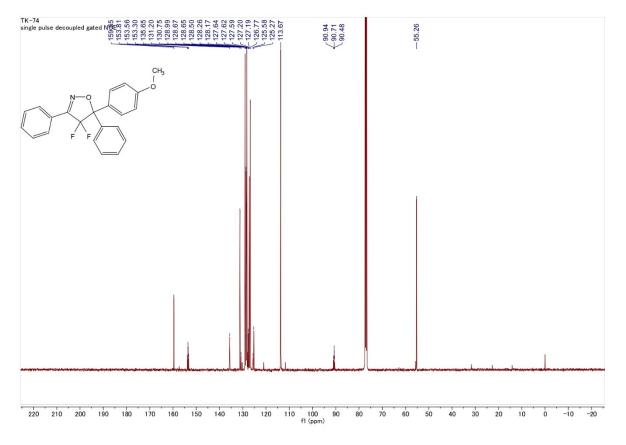
- Sato, K.; Sandford, G.; Shimizu, K.; Akiyama, S.; Lancashire, M. J.; Yufit, D. S.; Tarui, A.; Omote, M.; Kumadaki, I.; Harusawa, S.; Ando, A. *Tetrahedron* 2016, 72, 1690– 1698.
- [2] Wang, L.; Zhang, K.; Wang, Y.; Li, W.; Chen, M.; Zhang, J. Angew. Chem., Int. Ed. 2020, 59, 4421–4427.
- [3] Li, X.-T.; Gu, Q.-.; Dong, X.-Y.; Meng, X.; Liu, X.-Y. Angew. Chem., Int. Ed. 2018, 57, 7668–7672.

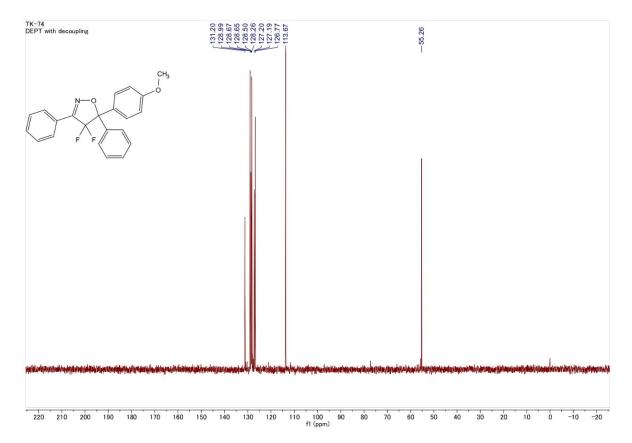

NMR charts: ¹H NMR of **5aB**

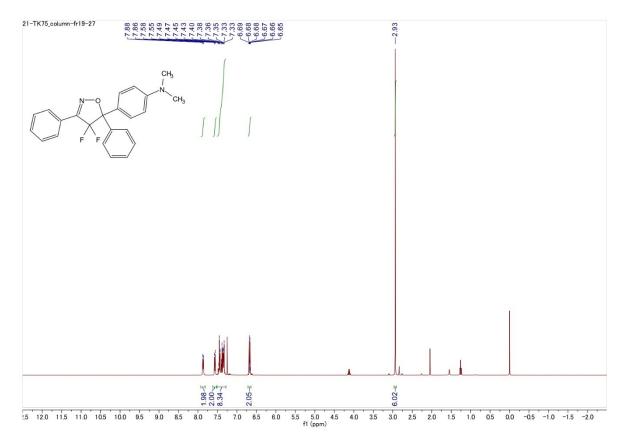

¹⁹F NMR of **5aB**

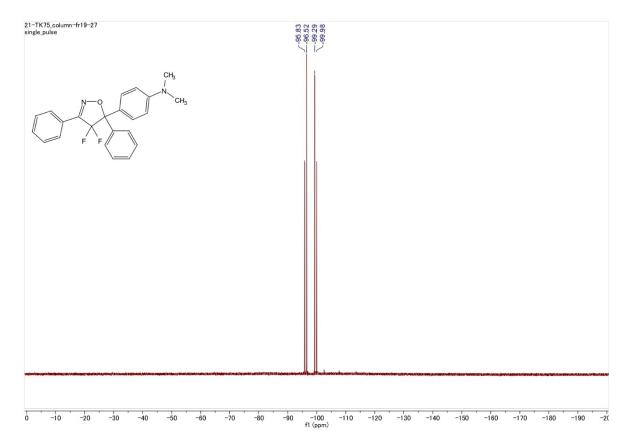

¹³C NMR of **5aB**

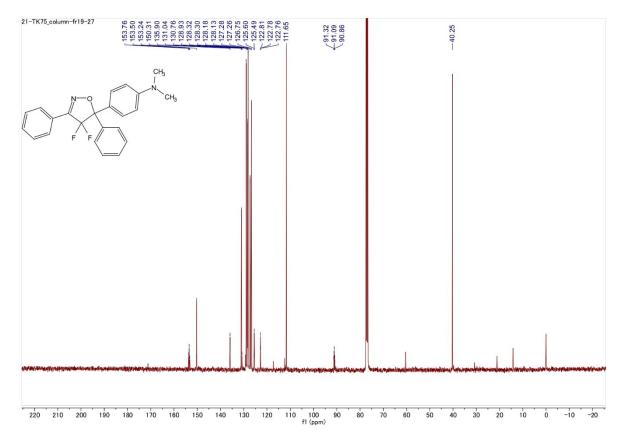

DEPT135 of 5aB

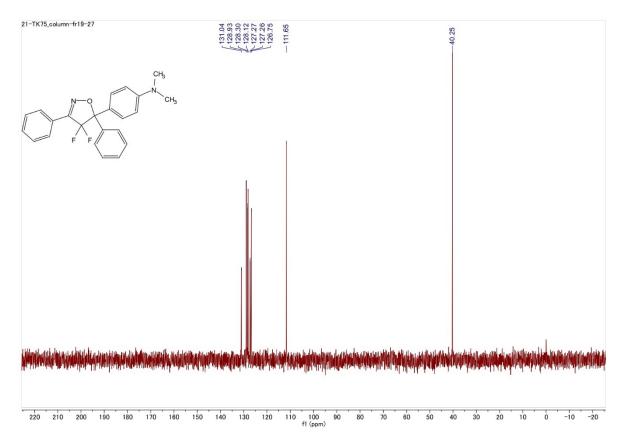

¹H NMR of **5aC**

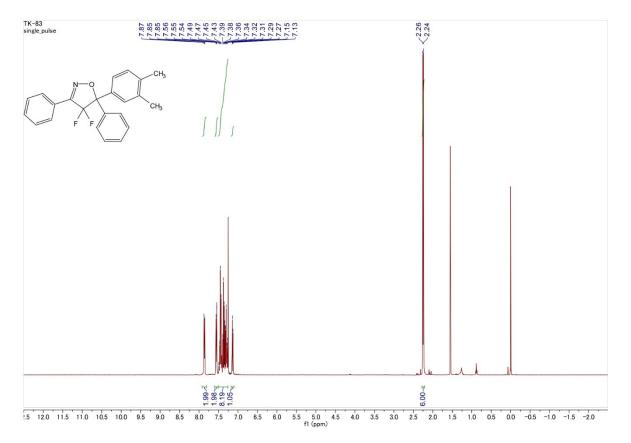

¹⁹F NMR of **5aC**

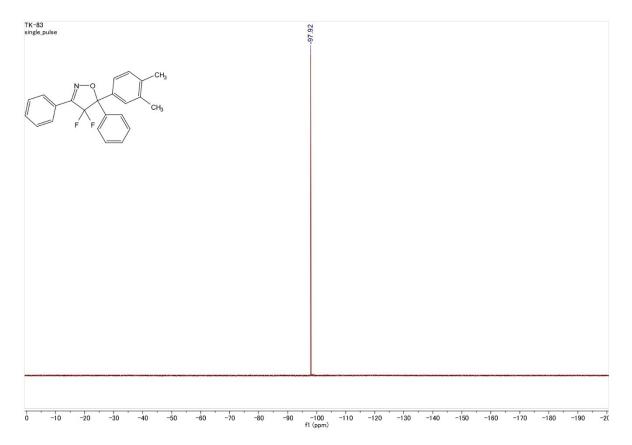

¹³C NMR of **5a**C

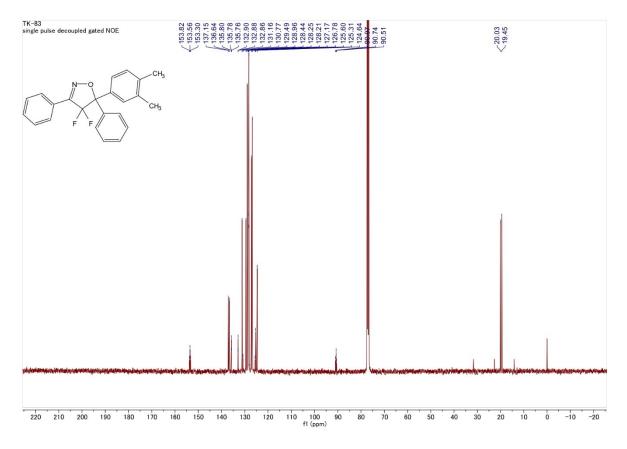

DEPT135 of 5aC

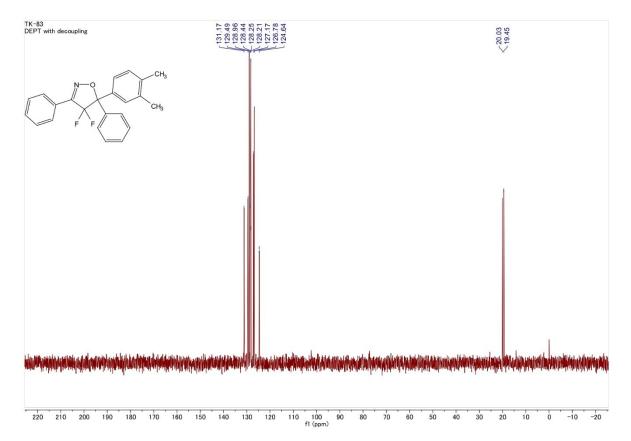

¹H NMR of **5aD**

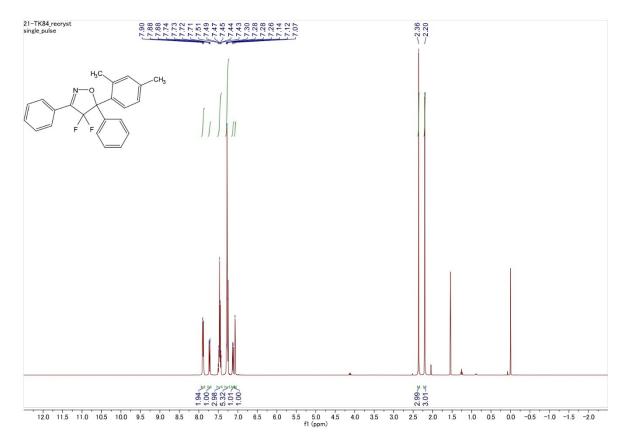

¹⁹F NMR of **5aD**

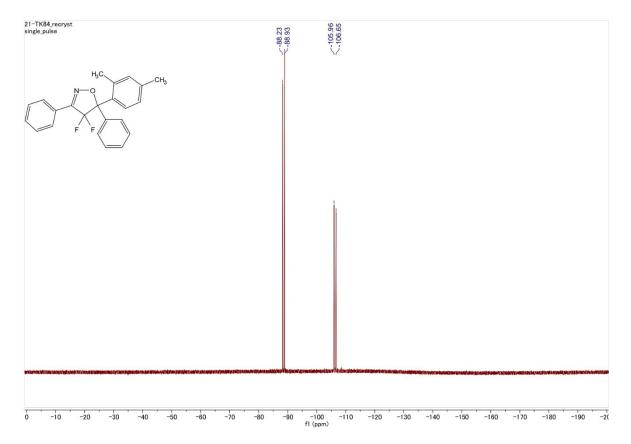

¹³C NMR of **5aD**

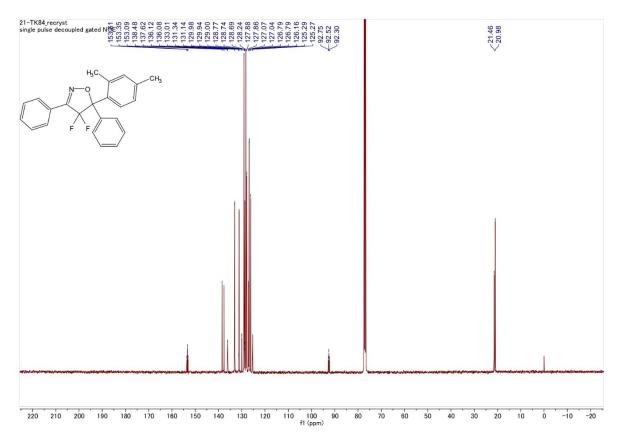

DEPT135 of 5aD

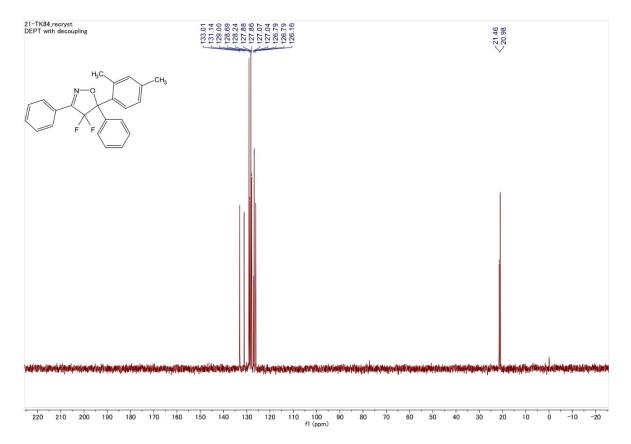

¹H NMR of **5aH**

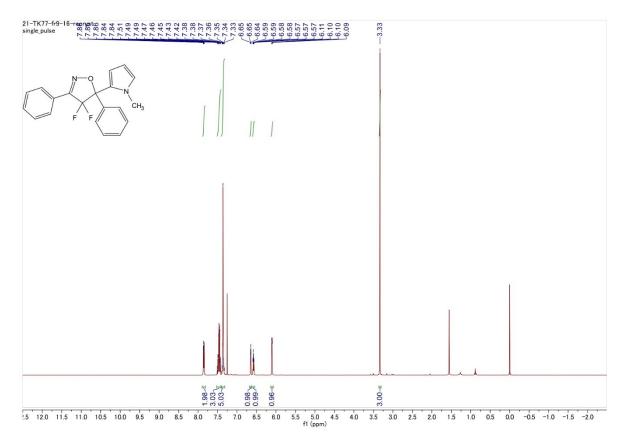

¹⁹F NMR of **5aH**

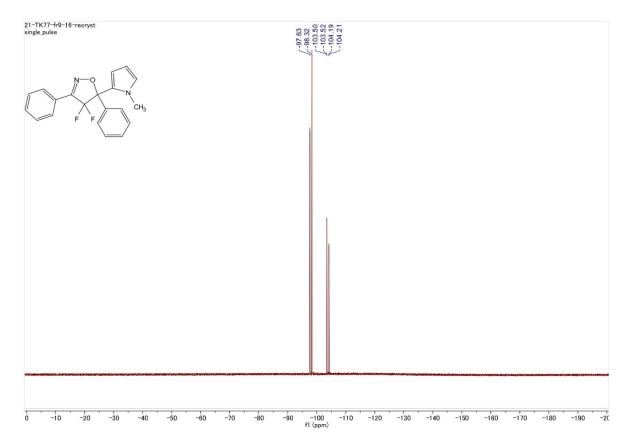

¹³C NMR of **5aH**

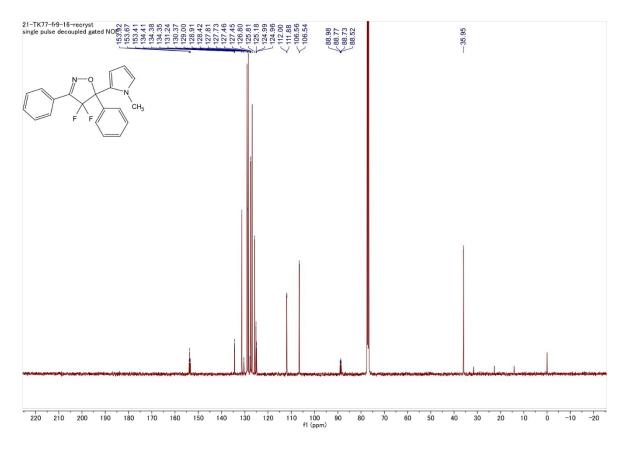

DEPT135 of 5aH

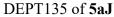

¹H NMR of **5aI**

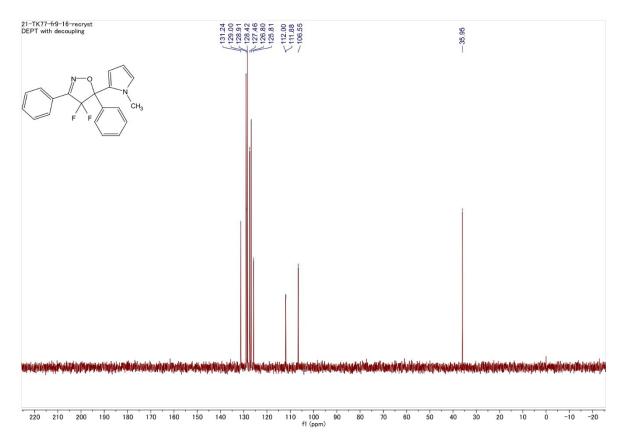

¹⁹F NMR of **5aI**

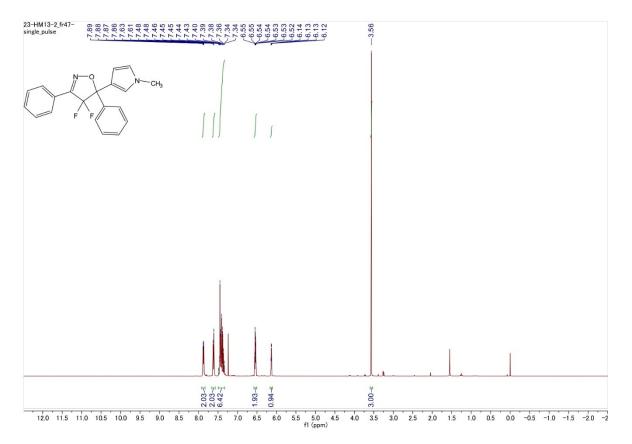

¹³C NMR of **5aI**

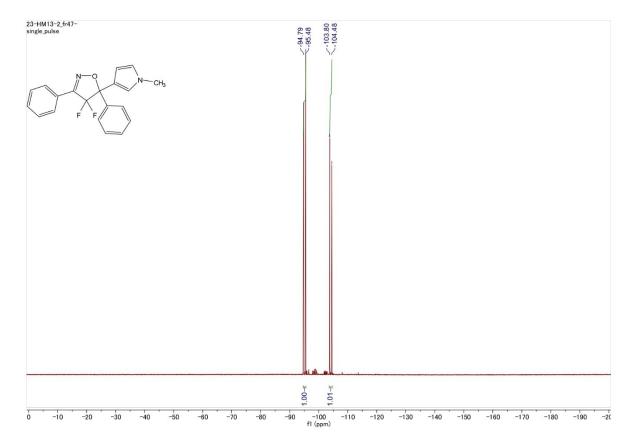

DEPT135 of 5aI

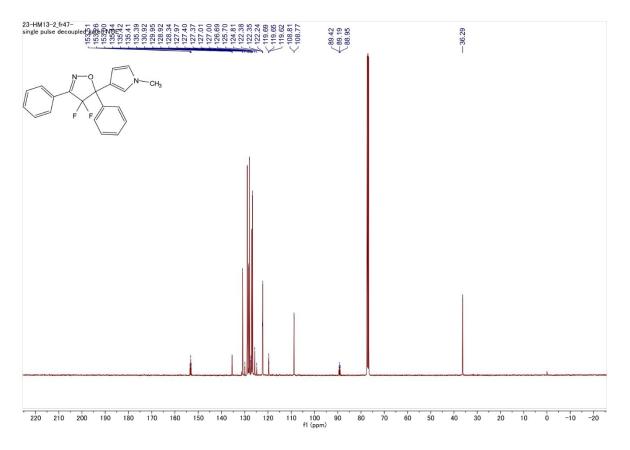

¹H NMR of **5aJ**

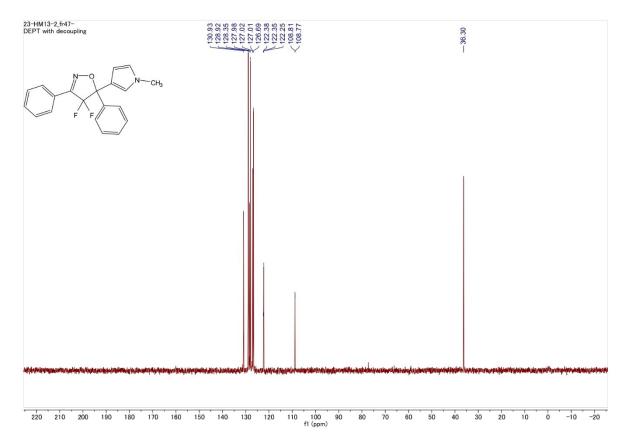


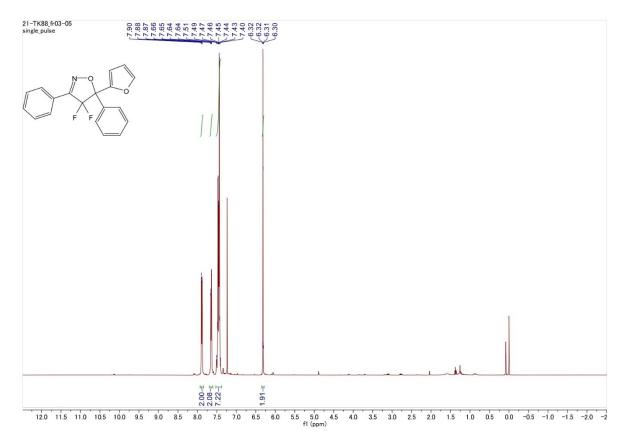

¹⁹F NMR of **5aJ**

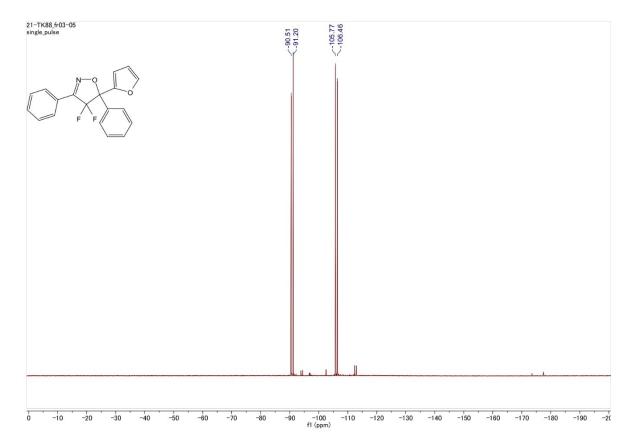

¹³C NMR of **5aJ**

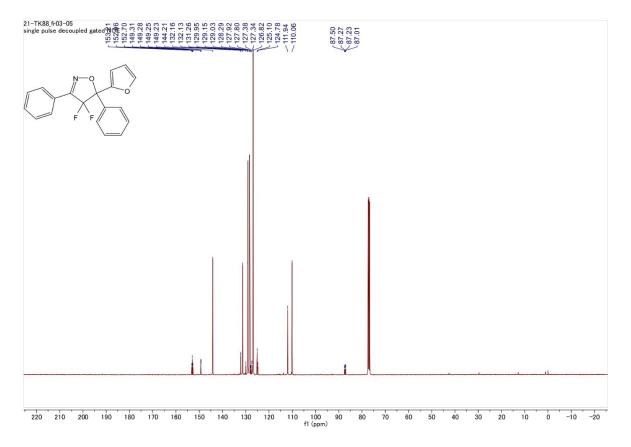


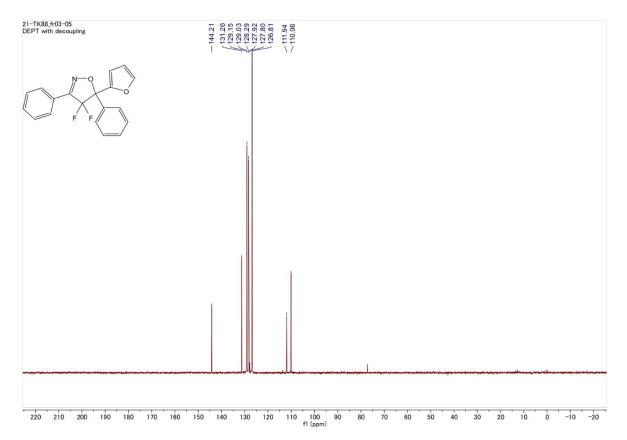

¹H NMR of **5aJ'**

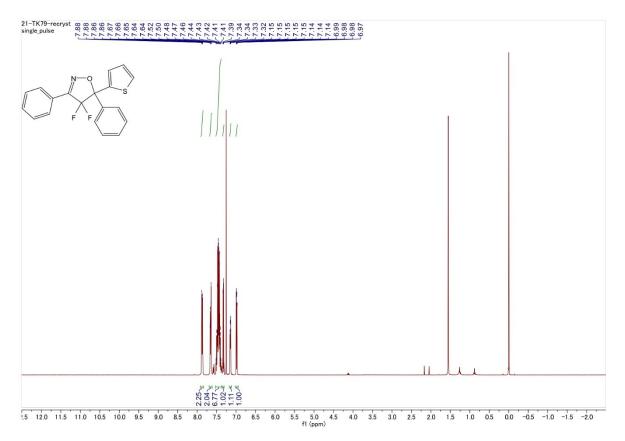

¹⁹F NMR of **5aJ'**

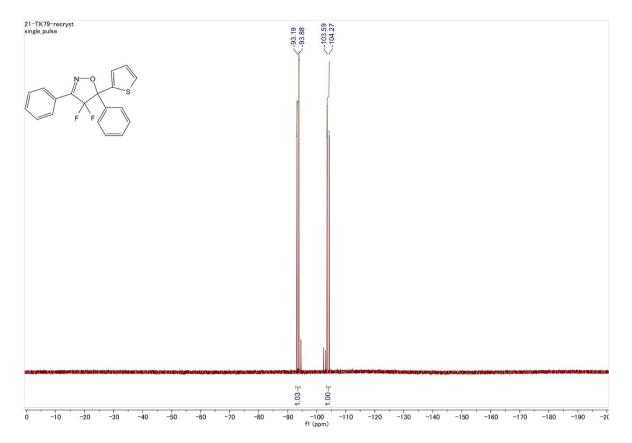

¹³C NMR of **5aJ'**

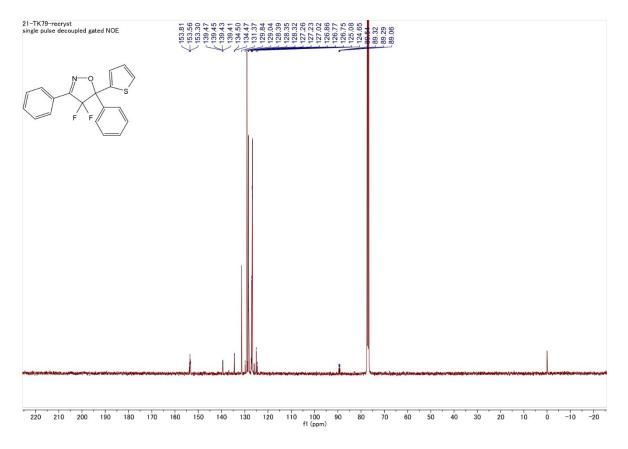

DEPT135 of 5aJ'

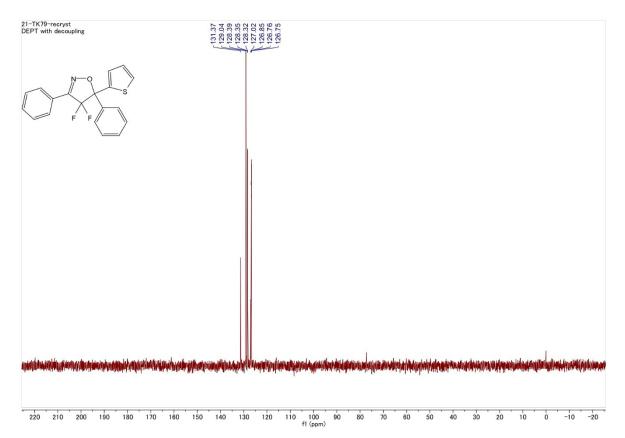

¹H NMR of 5aK

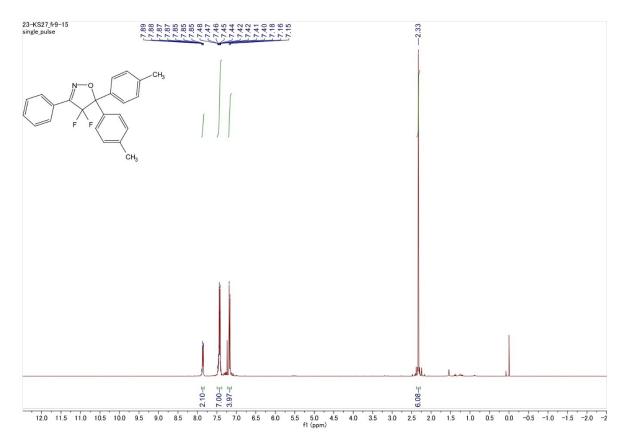

¹⁹F NMR of **5aK**

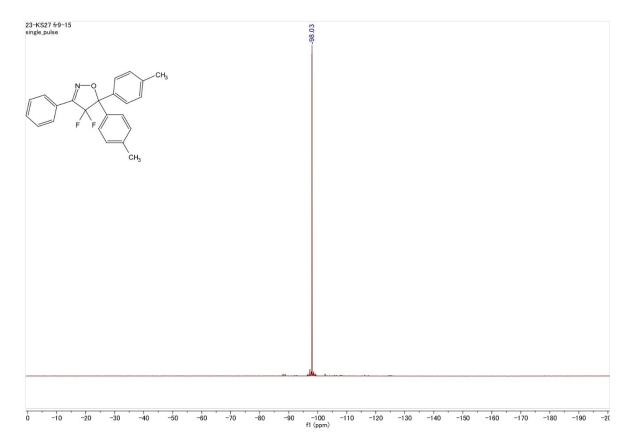

¹³C NMR of **5aK**

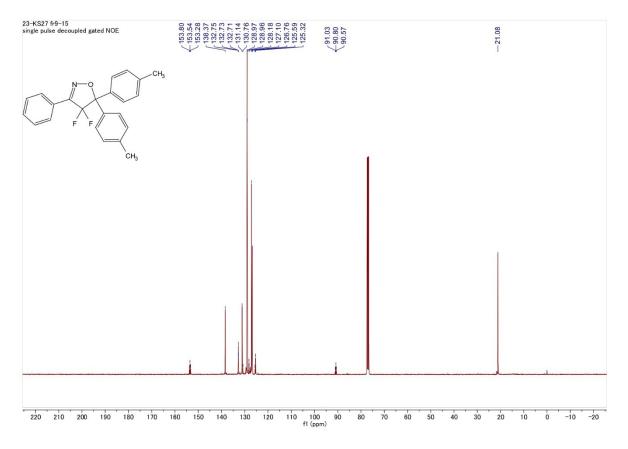

DEPT135 of 5aK

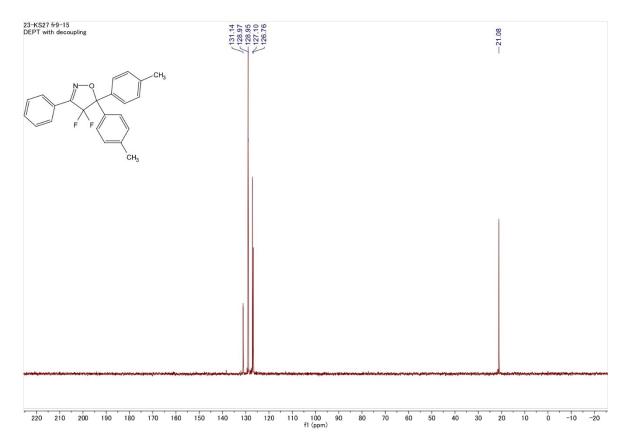

¹H NMR of **5aL**

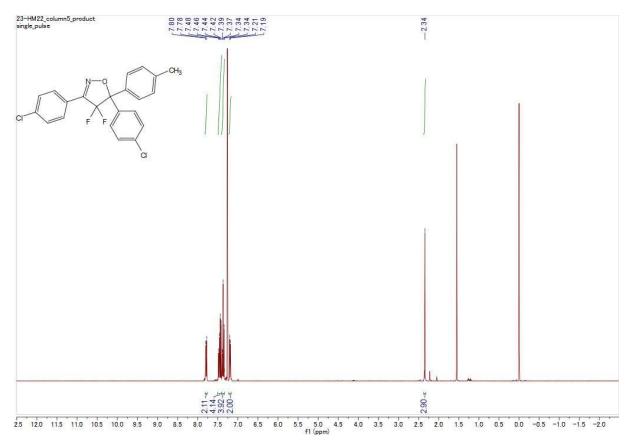

¹⁹F NMR of **5aL**

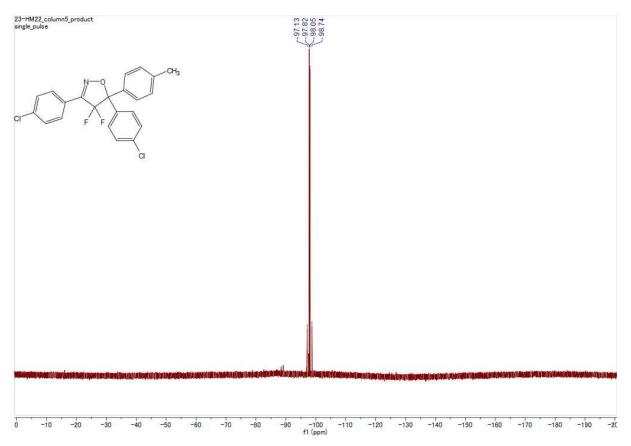

¹³C NMR of **5aL**

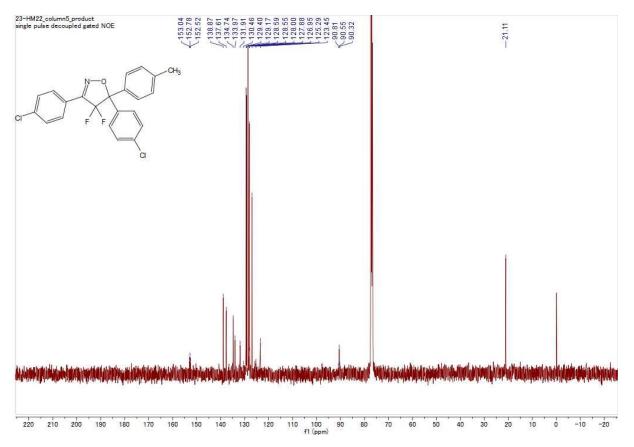

DEPT135 of 5aL

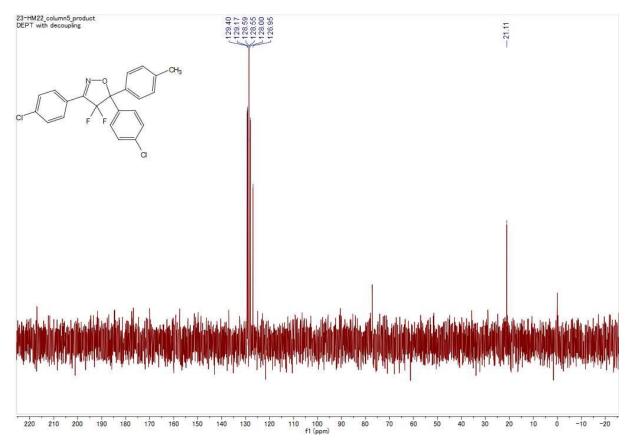

¹H NMR of **5bB**

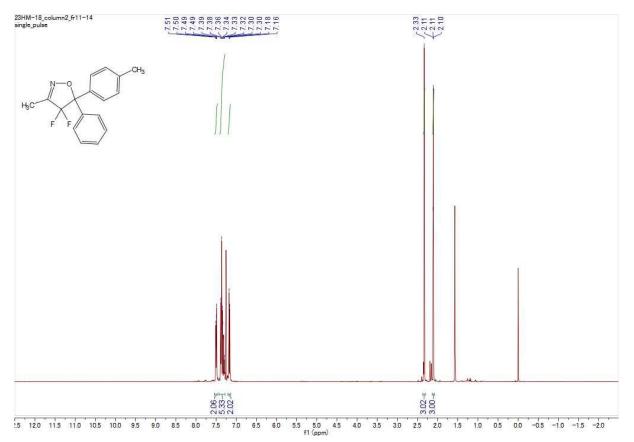

¹⁹F NMR of **5bB**

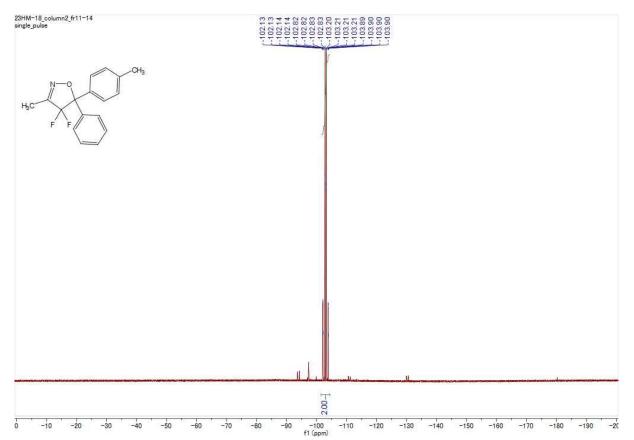

¹³C NMR of **5bB**

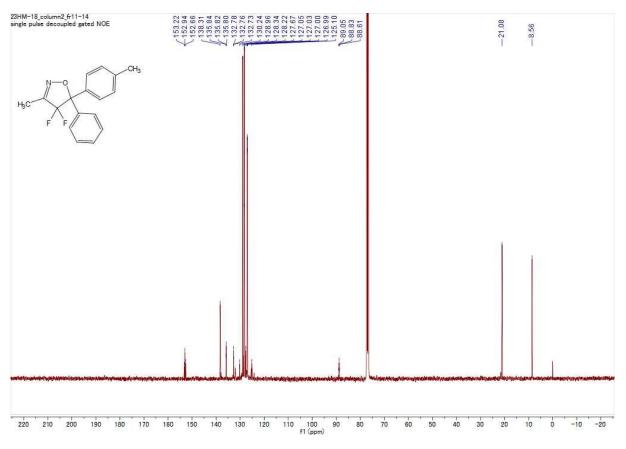

DEPT135 of 5bB

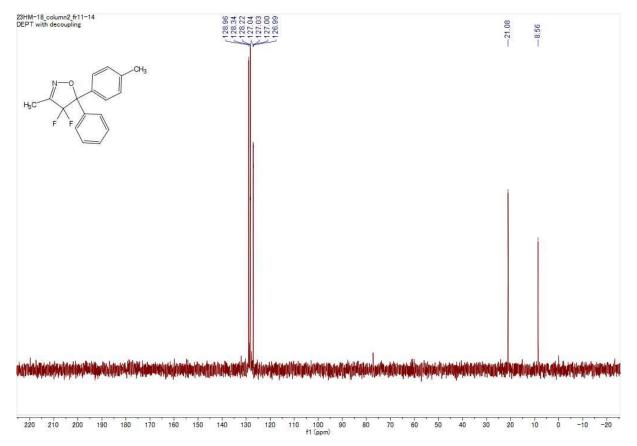

¹H NMR of **5cB**

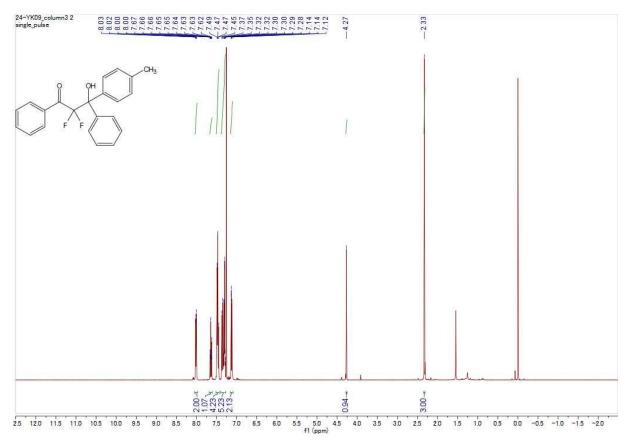

$^{19}\mathrm{F}\ \mathrm{NMR}\ \mathrm{of}\ \mathbf{5cB}$

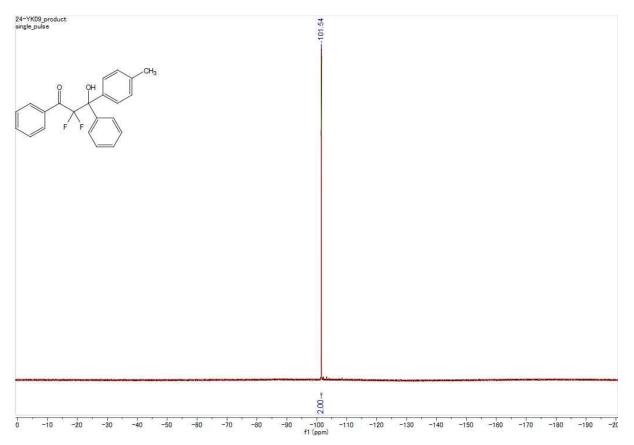

¹³C NMR of **5cB**

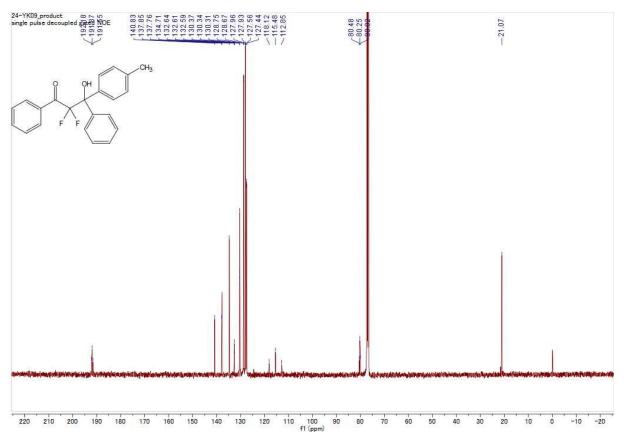

DEPT135 of 5cB

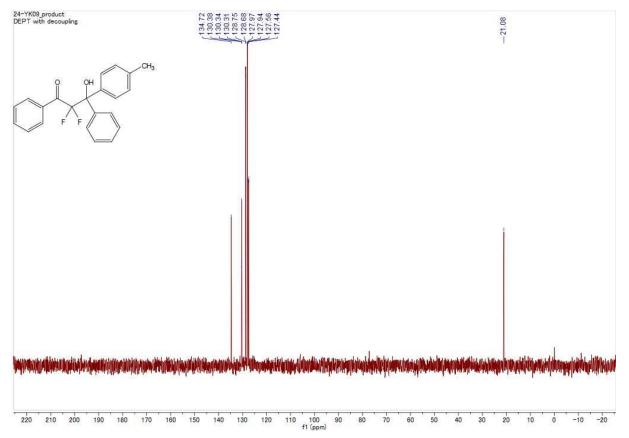

¹H NMR of **5dB**

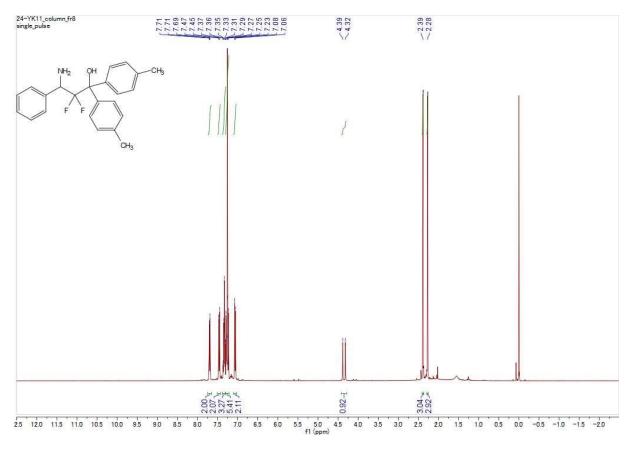

¹⁹F NMR of **5dB**

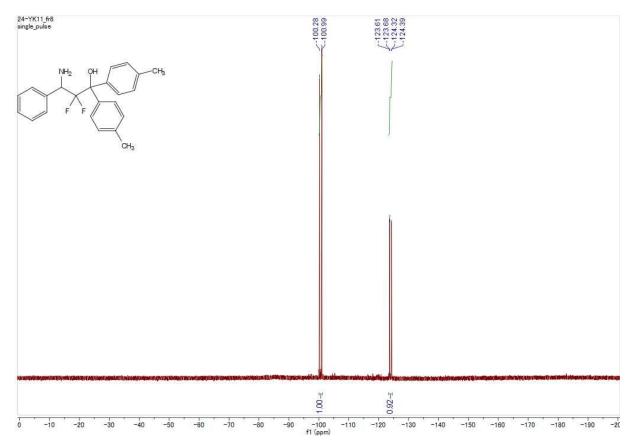

¹³C NMR of **5dB**

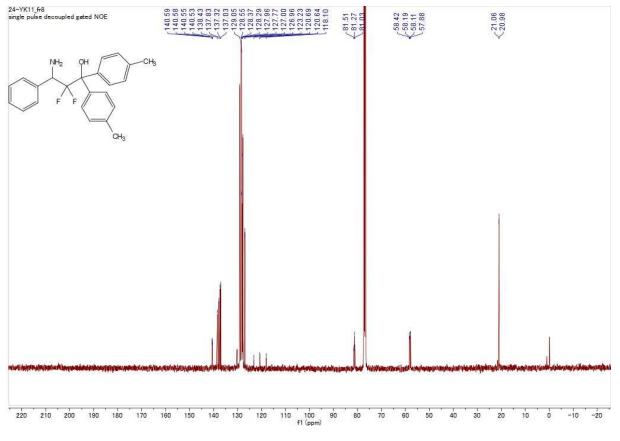

DEPT135 of 5dB

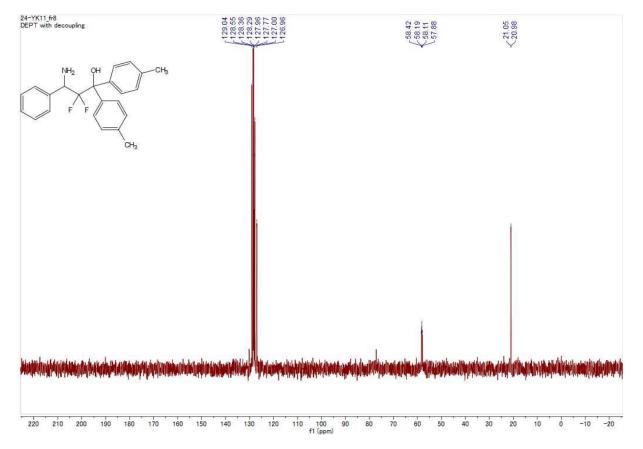

1 H NMR of **6**


¹⁹F NMR of **6**


13 C NMR of **6**

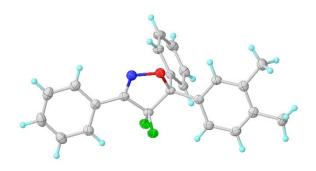

DEPT135 of **6**


¹H NMR of 7


¹⁹F NMR of **7**

¹³C NMR of 7

DEPT135 of 7



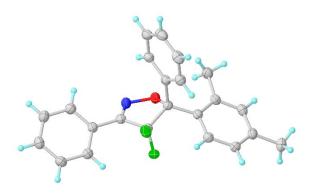
X-ray crystallographic data:

Crystallographic data for the structure have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication CCDC: 1440941-1440946.

Experimental of 5aH.

Single colourless block-shaped crystals of **5aH** were obtained from slow evaporation of ethyl acetate and n-hexane at room temperature. A suitable crystal $0.10 \times 0.08 \times 0.05$ mm³ was selected and mounted on a MiTeGEN Dual Thickness MicroLoops in perfluoropolyether oil on an XtaLAB Synergy R, HyPix diffractometer. The crystal was kept at a steady T = 120.0(4) K during data collection. The structure was solved with the ShelXT 2018/2 (Sheldrick, 2018) structure solution program using the Intrinsic Phasing solution method and by using **Olex2** (Dolomanov et al., 2009) as the graphical interface. The model was refined with version 2018/3 of ShelXL 2018/3 (Sheldrick, 2015) using Least Squares minimisation.

Crystal Data of 5aH.


C₂₃H₁₉F₂NO, M_r = 363.39, monoclinic, $P2_1/c$ (No. 14), a = 17.3894(2) Å, b = 6.21370(10) Å, c = 16.7372(2) Å, β = 96.2100(10)°, $\alpha = \gamma = 90°$, V = 1797.88(4)Å³, T = 120.0(4) K, Z = 4, Z' = 1, μ (Cu K $_{\alpha}$) = 0.791, 40254 reflections measured, 3825 unique ($R_{int} = 0.0373$) which were used in all calculations. The final wR_2 was 0.0912 (all data) and R_1 was 0.0379 (I > 2(I)).

ORTEP drawing of **5aH** showing thermal ellipsoids at the 50% probability level.

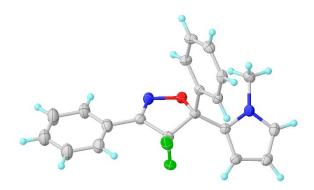
Compound 5aH	
Formula	$C_{23}H_{19}F_2NO$
$D_{calc.}$ / g cm ⁻³	1.343
μ/mm^{-1}	0.791
Formula Weight	363.39
Colour	colourless
Shape	block
Size/mm ³	0.10×0.08×0.05
T/K	120.0(4)
Crystal System	monoclinic
Space Group	$P2_1/c$
a/Å	17.3894(2)
b/Å	6.21370(10)
c/Å	16.7372(2)
$\alpha/^{\circ}$	90
$\frac{\alpha/^{\circ}}{\beta/^{\circ}}$	96.2100(10)
$\gamma/^{\circ}$	90
V/Å ³	1797.88(4)
Z	4
Z'	1
Wavelength/Å	1.54184
Radiation type	$Cu K_{\alpha}$
$\Theta_{min}/^{\circ}$	2.556
$\Theta_{max}/^{\circ}$	78.006
Measured Refl.	40254
Independent Refl.	3825
Reflections with I > 2(I)	3612
R _{int}	0.0373
Parameters	246
Restraints	0
Largest Peak	0.256
Deepest Hole	-0.253
GooF	1.078
wR_2 (all data)	0.0912
wR ₂	0.0895
R_1 (all data)	0.0404
R ₁	0.0379

Experimental of 5aI.

Single colourless block-shaped crystals of **5aI** were obtained from slow evaporation of ethyl acetate and n-hexane at room temperature. A suitable crystal $0.12 \times 0.08 \times 0.04$ mm³ was selected and mounted on a MiTeGEN Dual Thickness MicroLoops in perfluoropolyether oil on an XtaLAB Synergy R, HyPix diffractometer. The crystal was kept at a steady T = 119.9(5) K during data collection. The structure was solved with the ShelXT (Sheldrick, 2015) structure solution program using the Intrinsic Phasing solution method and by using **Olex2** (Dolomanov et al., 2009) as the graphical interface. The model was refined with version 2018/3 of ShelXL 2018/3 (Sheldrick, 2015) using Least Squares minimisation.

Crystal Data of 5aI.

C₂₃H₁₉F₂NO, M_r = 363.39, monoclinic, $P2_1/c$ (No. 14), a = 13.4568(2) Å, b = 16.4098(2) Å, c = 8.25210(10) Å, β = 94.7070(10)°, $\alpha = \gamma = 90°$, V = 1816.11(4)Å³, T = 119.9(5) K, Z = 4, Z' = 1, μ (Cu K $_{\alpha}$) = 0.783, 31987 reflections measured, 3869 unique ($R_{int} = 0.0392$) which were used in all calculations. The final wR_2 was 0.1079 (all data) and R_1 was 0.0450 (I > 2(I)).


ORTEP drawing of **5aI** showing thermal ellipsoids at the 50% probability level.

Comp	oun	d	5aI
------	-----	---	-----

Compound Sar	
Formula	$C_{23}H_{19}F_2NO$
$D_{calc.}$ / g cm ⁻³	1.329
μ/mm^{-1}	0.783
Formula Weight	363.39
Colour	colourless
Shape	block
Size/mm ³	0.12×0.08×0.04
Т/К	119.9(5)
Crystal System	monoclinic
Space Group	$P2_1/c$
a/Å	13.4568(2)
b/Å	16.4098(2)
c/Å	8.25210(10)
$\alpha/^{\circ}$	90
$\beta/^{\circ}$	94.7070(10)
$\gamma/^{\circ}$	90
V/Å ³	1816.11(4)
Z	4
Z'	1
Wavelength/Å	1.54184
Radiation type	Cu K _a
$\Theta_{min}/^{\circ}$	3.295
$\Theta_{max}/^{\circ}$	77.725
Measured Refl.	31987
Independent Refl.	3869
Reflections with I > 2(I)	3677
R _{int}	0.0392
Parameters	246
Restraints	0
Largest Peak	0.409
Deepest Hole	-0.169
GooF	1.086
wR_2 (all data)	0.1079
wR ₂	0.1061
R_1 (all data)	0.0479
R_1	0.0450
1	

Experimental of 5aJ.

Single colourless block-shaped crystals of **5aJ** were obtained from slow evaporation of ethyl acetate and n-hexane at room temperature. A suitable crystal $0.14 \times 0.07 \times 0.04$ mm³ was selected and mounted on a MiTeGEN Dual Thickness MicroLoops in perfluoropolyether oil on an XtaLAB Synergy R, HyPix diffractometer. The crystal was kept at a steady T = 120.0(5) K during data collection. The structure was solved with the ShelXT (Sheldrick, 2015) structure solution program using the Intrinsic Phasing solution method and by using **Olex2** (Dolomanov et al., 2009) as the graphical interface. The model was refined with version 2018/3 of ShelXL 2018/3 (Sheldrick, 2015) using Least Squares minimisation.

Crystal Data of 5aJ.

C₂₀H₁₆F₂N₂O, $M_r = 338.35$, triclinic, *P*-1 (No. 2), a = 8.14050(10) Å, b = 12.07940(10) Å, c = 17.1421(3) Å, $\alpha =$ 96.3100(10)°, $\beta = 97.1640(10)°$, $\gamma =$ 93.9910(10)°, V = 1656.39(4) Å³, T =120.0(5) K, Z = 4, Z' = 2, μ (Cu K_{α}) = 0.834, 13056 reflections measured, 13056 unique ($R_{int} = .$) which were used in all calculations. The final wR_2 was 0.1394 (all data) and R_1 was 0.0486 (I > 2(I)).

ORTEP drawing of **5aJ** showing thermal ellipsoids at the 50% probability level.

Compound 5aJ

- I - · · · · · · · · ·	
Formula	$C_{20}H_{16}F_2N_2O$
$D_{calc.}$ / g cm ⁻³	1.357
μ/mm^{-1}	0.834
Formula Weight	338.35
Colour	colourless
Shape	block
Size/mm ³	0.14×0.07×0.04
Т/К	120.0(5)
Crystal System	triclinic
Space Group	<i>P</i> -1
a/Å	8.14050(10)
b/Å	12.07940(10)
c/Å	17.1421(3)
$\alpha/^{\circ}$	96.3100(10)
$\beta/^{\circ}$	97.1640(10)
$\gamma/^{\circ}$	93.9910(10)
V/Å ³	1656.39(4)

Ζ	4
Z'	2
Wavelength/Å	1.54184
Radiation type	$Cu K_{\alpha}$
$\Theta_{min}/^{\circ}$	2.617
$\Theta_{max}/^{\circ}$	77.956
Measured Refl.	13056
Independent Refl.	13056
Reflections with $I > 2(I)$	11518
R _{int}	
Parameters	546
Restraints	169
Largest Peak	0.326
Deepest Hole	-0.316
GooF	1.066
wR_2 (all data)	0.1394
wR_2	0.1357
R_1 (all data)	0.0547
R_1	0.0486