A new herbal extract carbon nanodots nanomedicine for anti renal cell carcinoma through PI3K/AKT signaling pathway

Ning Tian^a, Xiangling Liu^a, Xiaoyu He^a, Ying Liu^a, Lizhi Xiao^a, Penghui Wang^a, Di Zhang^a, Zhe Zhang^a, Yu Zhao^{a,*}, Quan Lin^c, Changkui Fu^{b,*}, Yingnan Jiang^{a,b,*}

^aJilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, P.R. China ^bAustralian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia ^cState Key Laboratory of Supramolecular Structure and Materials, College of

Chemistry, Jilin University, Changchun 130012, P.R. China

* Corresponding author.

Yu Zhao

^aJilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, P.R. China

Changkui Fu

^bAustralian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia

Yingnan Jiang

^aJilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun

130117, P.R. China

^bAustralian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia

E-mail: cnzhaoyu1972@126.com, changkui.fu@uq.edu.au, jiangyn@ccucm.edu.cn

Materials

All cells used in this study were from the American type culture collection (ATCC, Manassas, VA and US), including human renal cell carcinoma cells (A498) and human normal hepatocytes (LO2). Re (HPLC > 95%) and paraformaldehyde (4%) were obtained from the Shanghai Yuanye Biotechnology Co., Ltd. (China). The cell counting kit-8 was obtained from the Wuhan Boster Biological Technology Co., Ltd. (China). The FITC annexin V apoptosis detection kit I (CAT: 556547) was from the BD Biosciences Pharmingen (USA). The DNA content quantitation assay (cell cycle) detection kit, anti-fluorescence attenuation sealing agent, 4',6-diamidino-2phenylindole dihydrochloride (DAPI), crystal violet water solution (0.1%), minimum essential medium (MEM), 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA), and 2-[4-(2,4,4-trimethylpentan-2-yl)phenoxy]ethanol (Triton X-100) were obtained from the Beijing Solarbio Science & Technology Co., Ltd. (China). The enhanced mitochondrial membrane potential assay kit (JC-1), fluo-4 calcium assay kit, and diethylpyrocarbonate water (DEPC water) were obtained from the Shanghai Beyotime Biotech Co., Ltd. (China). The roswell park memorial institute medium (RPMI 1640), penicillin-streptomycin solution and certified fetal bovine serum (FBS) were obtained from the VivaCell, Shanghai (China). The phosphate buffered solution (PBS) was obtained from the Hyclone (USA). The primary antibodies (including PI3K, AKT, p-AKT, p21, CDK2 and CCNA2) were purchased from the Proteintech, Wuhan (China). The p-PI3K was purchased from the Cell Signaling Technology (USA). The secondary antibodies CY3-Goat anti-mouse and CY3-Goat anti-rabbit were purchased from the Wuhan BaiQiandu Biotechnology Co., Ltd. (China). The trizol was obtained from the Thermo Scientific (USA). The Transzol Up Plus RNA Kit, PrimeScriptTM RT Reagent Kit with gDNA Eraser (Perfect Real Time) and the TB Green Premix Ex Taq II (Tli RNaseH Plus) were obtained from the TaKaRa (Japan). The Four-week-old female BALB/c nude mice were purchased from the Liaoning Changsheng Biotechnology Co., Ltd. The 5-fluorouracil was purchased from the Tianjin Jinyao Pharmaceutical Co., Ltd. The water used in all experiments was ultrapure water.

Devices

The Shimadzu UV-2550 ultraviolet-visible spectrophotometer was used to obtain UVvis absorption spectra and a VERTEX 70 (resolution: 2 cm⁻¹, coadding times: 32 times) fourier transform infrared spectrometer (FTIR) (Bruker, Germany) was used to obtain the infrared spectra. The Tecnai F20 electron microscope (FEl Company, Netherlands) was used to obtain transmission electron microscopy (TEM) images of the Re-CDs. The infinite M200 PRO (TECAN, Switzerland) was utilized to obtain fluorescence spectra and a FLS 920 steady-state/transient fluorescence spectrometer (Edinburgh, Scotland) was used to obtain the fluorescence lifetime and quantum yield. The ESCALAB 250x photoelectron spectrometer (Thermo Scientifc, USA) was used to perform X-ray photoelectron spectroscopy. The biological images were acquired by an inverted microscope (Nikon, Japan). The fluorescence photos were obtained by a fluorescence inverted microscope (Life Technologies, USA). The experimental data of apoptosis and cell cycle were obtained by a flow cytometry (BD, USA). The information on gene expression was obtained by a qPCR instrument (Bio-rad, USA). Blood routine examination was performed using PE-6800 hematology analyzer (PROKAN, China).

	Fitting equation	R ²	τ1	τ 2	τ3	τ
Re- CDs	y=0.63138*exp(- x/3.88562)+6.79 186*exp(- x/1.19665)+9.49 993*exp(- x/1.19679)+0.00 163	0.9981 2	3.8856 2	1.1966 5	1.1967 9	1.49726

Table S1. After fittings with a third-order decay exponential function (Fig. 1c), three fluorescence lifetimes (τ) were obtained as followed.

	Area	Mean	Length		Area	Mean	Length
1	0.178	75.137	2.238	26	0.192	78.678	2.549
2	0.132	73.355	1.639	27	0.196	109.164	2.591
3	0.178	57.708	2.238	28	0.136	124.138	1.785
4	0.143	84.57	1.832	29	0.136	115.63	1.785
5	0.178	60.933	2.273	30	0.158	115.479	2.041
6	0.27	83.374	3.469	31	0.18	121.6	2.395
7	0.161	65.974	2.033	32	0.158	126.514	2.089
8	0.201	99.33	2.591	33	0.158	95.966	2.066
9	0.23	86.205	2.963	34	0.163	104.925	2.129
10	0.161	63.218	2.058	35	0.18	52.29	2.38
11	0.178	77.154	2.273	36	0.158	84.197	2.087
12	0.138	78.757	1.775	37	0.223	62.22	2.952
13	0.247	65.133	3.259	38	0.114	70.198	1.476
14	0.225	100.962	2.933	39	0.202	114.568	2.657
15	0.203	67.79	2.683	40	0.174	87.864	2.306
16	0.269	58.444	3.568	41	0.218	103.746	2.907
17	0.132	91.05	1.728	42	0.142	69.257	1.867
18	0.214	107.562	2.795	43	0.114	85.476	1.476
19	0.203	92.183	2.65	44	0.18	96.121	2.362
20	0.181	62.606	2.37	45	0.23	55.408	3.051
21	0.219	66.616	2.918	46	0.203	93.486	2.667
22	0.23	77.708	3.051	47	0.241	69.826	3.191
23	0.258	90.982	3.378	48	0.209	119.814	2.732
24	0.181	116.155	2.389	49	0.225	80.082	2.963
25	0.285	85.022	3.748	50	0.148	86.056	1.897

 Table S2. Particle size statistics table of the Re-CDs.

Precursor	Method	Cancer application	Reference	
		When the administration dose		
Ginsenoside Re	Hydrothermal	Hydrothermal was 90 µg/mL, the survival rate		
Gillsenoside Re		of the A498 cells was $28.6 \pm 1.3\%$.		This research
		When the administration dose		
Riboflavin	Hydrothermal			Yue J, et al.[1]
		rate of the 4T1 cells was 31%.		
		After 48 h treatment, the IC50		
Curcumin	nin Hydrothermal	of the HepG2 cells was 267.73	Ilhan H.[2]	
		μg/mL.		
		When the administration dose		
Ellagic acid	Hydrothermal	was 400 μ g/mL, the survival	Ye X, et al.[3]	
8	-j	rate of the 411 cells was less		
		than 20%.		

Table S3. Comparison of administration dose and inhibition rate of carbon nanodots from different extract sources and the Re-CDs.

References

[1] Yue J, Li L, Jiang C, Mei Q, Dong WF, Yan R. Riboflavin-based carbon dots with high singlet oxygen generation for photodynamic therapy. *J Mater Chem B*. **2021**, 9(38):7972-7978.

[2] Ilhan H. Nanoarchitectonics of the Effects of Curcumin Carbon Dot-Decorated Chitosan Nanoparticles on Proliferation and Apoptosis-Related Gene Expressions in HepG2 Hepatocellular Carcinoma Cells. *ACS Omega.* **2023**, 8(37):33554-33563.

[3] Ye X, Qu Z, Wu Y, Zhao S, Mou J, Yang S, Wu H. Nitrogen-doped carbon dots derived from ellagic acid and L-tyrosine for photothermal anticancer and anti-inflammation. *Biomater Adv.* **2024**, 163:213951.

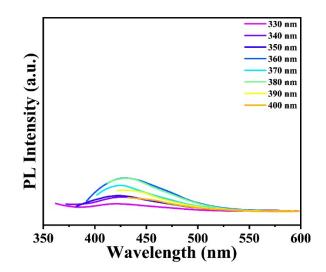
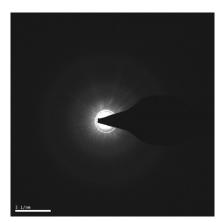
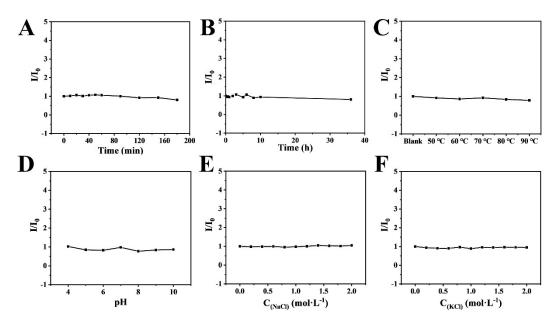
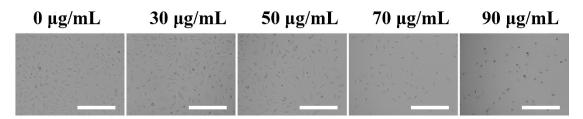
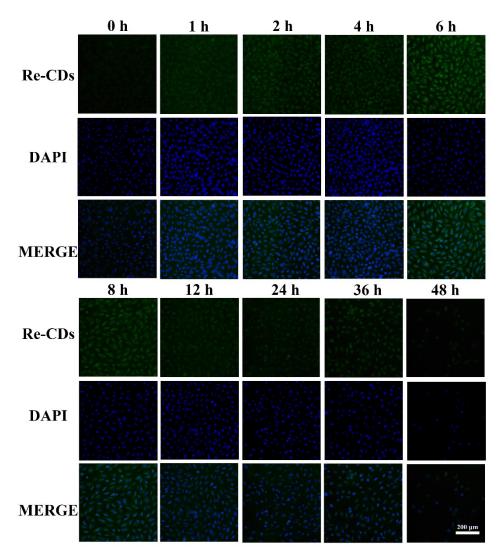
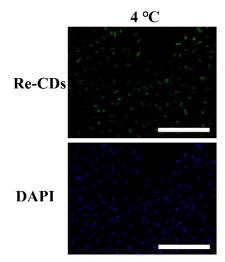


Figure S1. The fluorescence spectra of the Re dissolved in methanol (0.45 mg/mL).


Figure S2. SAED image of the Re-CDs. The scale bar is 5 1/nm.


Figure S3. (A) Calculated chart of the fluorescence intensity of the Re-CDs solution (0.5 mg/mL) after irradiation under 365 nm UV lamp at different times. (B) Calculated chart of the fluorescence intensity of the Re-CDs solution (0.5 mg/mL) under room temperatures at different times. (C) Calculated chart of the fluorescence intensity of the Re-CDs solution (0.5 mg/mL) at different temperatures. (D) Calculated chart of the fluorescence intensity of the Re-CDs solution (0.5 mg/mL) at different pH values. (E) Calculated chart of the fluorescence intensity of the Re-CDs solution (0.25 mg/mL) at different NaCl concentrations. (F) Calculated chart of the fluorescence intensity of the Re-CDs solution (0.25 mg/mL) at different KCl concentrations.

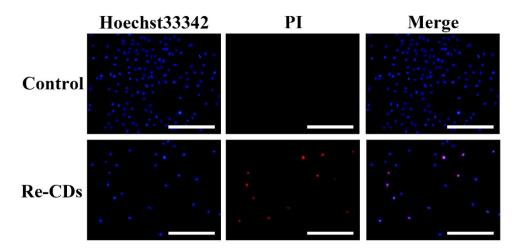

Figure S4. Microscopic morphological images of the A498 cells after 48 h co-incubation with different concentrations of the Re-CDs (0, 30, 50, 70 and 90 μ g/mL) at 37°C. The scale bar is 400 μ m.

Figure S5. Fluorescence images of the A498 cells after incubation with the Re-CDs (100 μ g/mL) at different times (0, 1, 2, 4, 6, 8, 12, 24, 36 and 48 h) at 37°C (DAPI, Ex = 360 nm; Re-CDs, Ex = 470 nm). The scale bar is 200 μ m.

Figure S6. Fluorescence images of the A498 cells after incubation with the Re-CDs (100 μ g/mL) at 4°C for 6 h (DAPI, Ex = 360 nm; Re-CDs, Ex = 470 nm). The scale bar is 400 μ m.

Figure S7. Fluorescence images of hoechst33342/PI staining of the A498 cells after incubation with the Re-CDs (100 μ g/mL) at 37°C for 48 h (Hoechst33342, Ex = 360 nm; PI, Ex = 530 nm). The scale bar is 400 μ m.

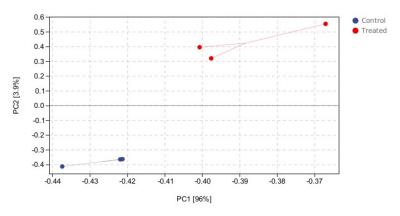
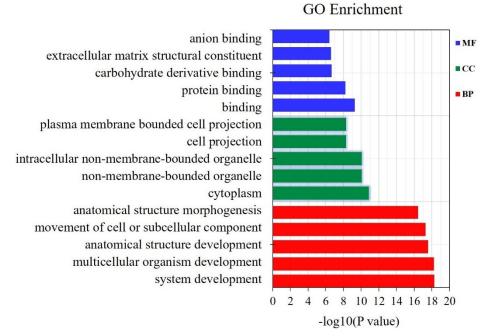
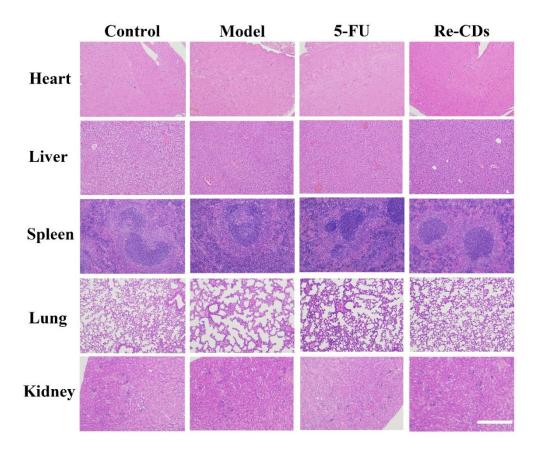




Figure S8. PCA analysis plot of the untreated A498 cells (Control group) versus the Re-CDs (100 μ g/mL, 48 h) treated A498 cells (Treated group).

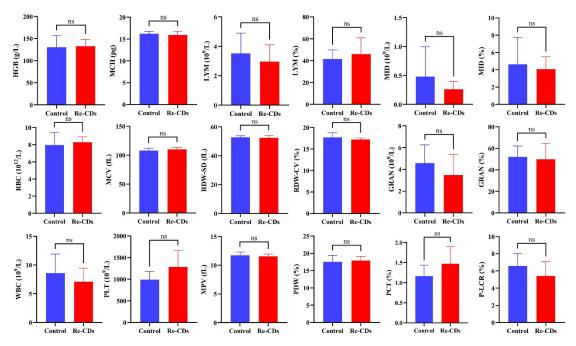


Figure S9. Three biological processes involved in the GO enrichment analysis. The top five items of each biological process are listed in order of the P value.

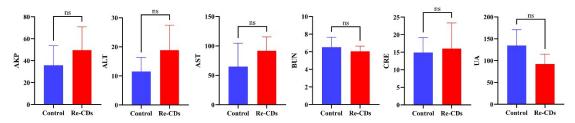


Figure S10. H&E staining images of major organs (heart, liver, spleen, lung and kidney) of mice in each group (Control group, Model group, 5-FU group and Re-CDs group). The scale bar is 400 µm.

On the whole, in the heart, liver, spleen, lungs and kidneys of mice, the cellar nuclei were blue-purple, with regular morphology and uniform chromatin distribution, and the cytoplasm was pale red or pink in color and had uniform texture. Few obvious abnormalities were found between the Re-CDs group and the Control group, indicating that the Re-CDs had no significant toxic effect on these major organs of the mice. In addition, the lung of the mice in the Model group were obviously damaged.

Figure S11. Statistical histogram of the blood index changes of the mice in the Control group and the Re-CDs group via routine blood test.

Figure S12. Statistical histogram of the serum biochemical index changes of the mice in the Control group and the Re-CDs group.

Primer	Species	Quantitative RT-PCR primer		
GAPDH-Forward	Human	CTGGGCTACACTGAGCACC		
GAPDH- Reverse	Human	AAGTGGTCGTTGAGGGCAATG		
COL6A3- Forward	Human	CTGTTCCTCTTTGACGGCTCA		
	Human	CCTTGACATCATCGCTGTACTG		
COL6A3- Reverse		А		
ITGA1- Forward	Human	CTGGACATAGTCATAGTGCTGG		
HGAI- Forward		А		
ITGA1- Reverse	Human	ACCTGTGTCTGTTTAGGACCA		
ITGB6- Forward	Human	GAGGACTACCCGGTGGATTTG		
ITGB6- Reverse	Human	TCCTTTATTGTGTTGAGGTCGTC		
PIK3CA- Forward	Human	CCACGACCATCATCAGGTGAA		
PIK3CA- Reverse	Human	CCTCACGGAGGCATTCTAAAGT		
AKT3- Forward	Human	AATGGACAGAAGCTATCCAGGC		
AKT3- Reverse	Human	TGATGGGTTGTAGAGGCATCC		
CDKN1A- Forward	Human	CGATGGAACTTCGACTTTGTCA		
CDKN1A- Reverse	Human	GCACAAGGGTACAAGACAGTG		
	Human	CCAGGAGTTACTTCTATGCCTG		
CDK2- Forward		А		
CDK2- Reverse	Human	TTCATCCAGGGGAGGTACAAC		
	Human	GGATGGTAGTTTTGAGTCACCA		
CCNA2- Forward		С		
CCNA2 D	Human	CACGAGGATAGCTCTCATACTG		
CCNA2- Reverse		Т		

Table S4. The primer sequences for the realtime-PCR.