Supplementary Information

Fluorescence sensing of metal ions in solution by a morpholine-containing phenolic Mannich base of 1'-hydroxy-2'-acetonaphthone

Andreea Laura Chibac-Scutaru^{1,*}, Gheorghe Roman²

¹Petru Poni Institute of Macromolecular Chemistry, Department of Polyaddition and Photochemistry, Iaşi, 700487, Romania; <u>andreea.chibac@icmpp.ro</u>; ORCID: 0000-0003-3503-0237.

²Petru Poni Institute of Macromolecular Chemistry, Department of Inorganic Polymers, Iași, 700487, Romania; <u>gheorghe.roman@icmpp.ro</u>; ORCID: 0000-0003-0939-1899.

*Correspondence: andreea.chibac@icmpp.ro (ALCS).

Figure S1. ¹H NMR spectrum of compound 1.

Figure S2. ¹³C NMR spectrum of compound 1.

Figure S3. H,H-COSY spectrum of compound 1.

Figure S4. H,C-HSQC spectrum of compound 1.

Figure S5. H,C-HMBC spectrum of compound 1.

compound	λ_{abs} (nm)	$\epsilon (M^{-1} cm^{-1})^{a}$	λ_{em} (nm)	Φ (%)
	287; 298; 310; 368	5158	475	2.91
HAN	283; 293; 305; 363	4385	473	2.44

Table S1. Photophysical properties of compound 1 compared to those of HAN in methanol.

^aThe value for the molar extinction coefficient (ϵ) is determined for compound 1 at $\lambda_{abs} = 368$ nm and for HAN at $\lambda_{abs} = 363$ nm.

Table S2. Decay components and their contribution to the fluorescence lifetime of compound 1 (10^{-4} M) in presence of different Al³⁺ concentrations. The decays were monitored at 475 nm (λ_{exc} = 375 nm).

[Al ³⁺] (M)	τ_1 (ns)	A ₁ (%)	$\tau_2(ns)$	A ₂ (%)	<\(\tau_F)* (ns)*
0	0.2383	83.12	4.1509	16.88	3.2886
$0.5 imes 10^{-4}$	0.2943	39.51	6.9943	60.49	6.8151
$1.0 imes 10^{-4}$	0.3791	30.41	8.2081	69.59	8.0532
1.5×10^{-4}	0.4469	22.70	8.4847	77.30	8.3623
$2.0 imes 10^{-4}$	0.5751	20.66	8.6751	79.34	8.6275
2.5×10^{-4}	0.7973	18.96	8.8093	81.04	8.6432

*The effective average lifetime (τ_F) was calculated using the equation given in J.R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, Boston, 2006:

$$< au_{F}> = rac{\left(A_{1}(au_{1})^{2}+A_{2}(au_{2})^{2}\right)}{A_{1} au_{1}+A_{2} au_{2}}$$

Table S3. Decay components and their contribution to the fluorescence lifetime of compound 1 (10⁻⁴ M) in presence of different Cu²⁺ concentrations. The decays were monitored at 475 nm (λ_{exc} = 375 nm).

[Cu ²⁺] (M)	τ_1 (ns)	A ₁ (%)	$\tau_2(ns)$	A ₂ (%)	<\au_F> (ns)*
0	0.2383	83.12	4.1509	16.88	3.2886
$0.5 imes 10^{-4}$	0.2419	74.63	4.70054	25.37	4.1190
$1.0 imes 10^{-4}$	0.2912	66.45	5.3647	33.55	4.8722
1.5×10^{-4}	0.2948	64.57	5.3321	35.43	4.8710
2.0×10^{-4}	0.2904	64.00	5.4405	36.00	4.9941
2.5×10^{-4}	0.2948	64.11	5.5568	35.89	5.1013

*The effective average lifetime (τ_F) was calculated using the equation given in J.R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, Boston, 2006:

$$< au_{F}> = rac{\left(A_{1}(au_{1})^{2}+A_{2}(au_{2})^{2}
ight)}{A_{1} au_{1}+A_{2} au_{2}}$$

Figure S6. Job's plot for complexation of compound 1 with (a) Al^{3+} and (b) Cu^{2+} in methanol-water (85:15, v/v).

Determination of association constant (K_a)

The association constant (K_a) was obtained from fluorescence titration data according to the Benesi–Hildebrand equation:

$$\frac{1}{I - I_0} = \frac{1}{K_a[C](I_{max} - I)} + \frac{1}{I_{max} - I_0}$$

where, *I* is fluorescence intensity of compound 1 ($\lambda_{em} = 475$ nm) in the presence of a given concentration of Al³⁺, *I*₀ and *I*_{max} represents initial fluorescence intensity of sensor 1 in the absence of Al³⁺ and the fluorescence intensity of sensor 1 in the presence of the highest concentration of Al³⁺, respectively; *K*_a is the association constant, and *C* is the concentration of Al³⁺.

For fluorescence quenching in presence of Cu²⁺, a slightly modified equation was used:

$$\frac{1}{I - I_0} = \frac{1}{K_a[C](I_{min} - I_0)} + \frac{1}{I_{min} - I_0}$$

where I_{min} is intensity of compound 1 in the presence of the highest concentration of Cu²⁺.

The values of intercept and slope were taken from the plot of $(I_{max} - I_0) / (I - I_0)$ versus $I/[Al^{3+}]$ for 1–Al³⁺ complex (Fig. S7a) and from the plot of $(I_{min} - I_0) / (I - I_0)$ versus $I/[Cu^{2+}]$ for 1–Cu²⁺ complex (Fig. S7b).

Figure S7. Benesi–Hildebrand plots for the determination of the association constants (K_a) for the complexation of compound 1 (10^{-4} M) with (a) Al³⁺ and (b) Cu²⁺.