Optimization of operating conditions for the catalytic alcoholysis

of waste PET for the synthesis of BHET by sunflower seed husk

matrix materials

Linlin Zhao, Guoliang Shen*, Ruiyang Wen, Tiejun Xu, Sijin Jiang, Xiaocui Wang, Haichen

Wang

School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 111003,

China

Corresponding author:

Guoliang Shen E-mail: shengl_shxy@sut.edu.cn

Table of contents

- 1. Effects of different roasting temperatures on the properties of prepared catalysts
- 2. Response surface design and results

1 Effects of different roasting temperatures on the properties of prepared

catalysts

The effect of different roasting temperatures of sunflower seed shell catalyst on the yield of alcoholysis product BHET was investigated under the conditions of 1% catalyst (in terms of PET mass), reaction temperature 195 °C, reaction time 4 h, and ethylene glycol dosage 14 ml, and the results are shown in Fig. 1. It can be seen that the roasting of sunflower seed shells at a temperature of 750 °C had the optimum catalytic effect on PET, so the optimum roasting temperature of sunflower seed shells was 750 °C.

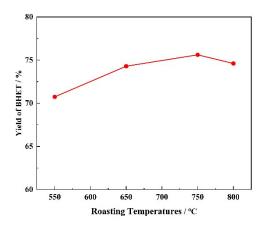


Fig.1 Effect of roasting temperature of sunflower seed husk on yield Results

2 Response surface design and results

Table S1 Response surface test design and results								
serial		conside						
number			BHET yield /%					
	А	В	С	D				
1	-1	0	-1	0	75			
2	0	0	0	0	79.3			
3	1	0	-1	0	76			
4	-1	0	1	0	76.7			
5	0	-1	0	1	73.9			
6	1	0	0	-1	77.7			
7	0	1	1	0	79.6			
8	0	0	1	-1	76.2			
9	0	1	-1	0	74.3			
10	-1	1	0	0	78.5			
11	0	1	0	1	74.5			
12	0	1	0	-1	79.4			
13	0	-1	0	-1	78.1			

14	0	0	0	0	78.1
15	-1	0	0	-1	76.5
16	0	0	-1	-1	73.2
17	1	0	1	0	76.5
18	0	1	-1	0	73.8
19	0	-1	1	0	78.8
20	1	-1	0	0	77.8
21	0	0	0	0	79.5
22	-1	0	0	1	76.2
23	0	0	1	1	73.1
24	1	1	0	0	75.3
25	0	0	0	0	79.8
26	0	0	0	0	78.3
27	-1	-1	0	0	75.2
28	1	0	0	1	76.8
29	0	0	-1	1	70.4