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1 A Closer Look at the Intrinsic Terms in the Fundamental Equation

We explore the possibility of obtaining mathematical expressions for the intrinsic terms. 
The motivation is that these terms cannot be independently measured since no single system 
variable can be varied while the other three remain constant. In our quest, we will consider the 
following differential isobaric/isothermal expression from Equation (1):

 

 (1.1)
(∂∆𝐺 ‡

∂𝜀𝑟
)𝑃,𝑇 = (∂∆𝐺 ‡

∂𝜀𝑟
)𝑃,𝑇,𝑋 + (∂∆𝐺 ‡

∂𝑋 )𝑃,𝑇,𝜀𝑟(∂𝑋
∂𝜀𝑟

)𝑃,𝑇

 and  both can be evaluated from experimental data, leaving the intrinsic 
(∂∆𝐺 ‡

∂𝜀𝑟
)𝑃,𝑇 (∂𝑋

∂𝜀𝑟
)𝑃,𝑇

solvent model terms,  and , as unknowns in the equation. To obtain a 
(∂∆𝐺 ‡

∂𝜀𝑟
)𝑃,𝑇,𝑋 (∂∆𝐺 ‡

∂𝑋 )𝑃,𝑇,𝜀𝑟

sufficient number of equations for our analysis, we add the following independent equations:

 (1.2)
(∂∆𝐺 ‡

∂𝑇 )𝑃,𝑋 =‒ ∆𝑆 ‡
𝑃,𝑋,𝜀𝑟

+ (∂∆𝐺 ‡

∂𝜀𝑟
)𝑃,𝑇,𝑋(∂𝜀𝑟

∂𝑇)𝑃,𝑋

 (∂∆𝐺 ‡

∂𝑋 )𝑃,𝜀𝑟
= (∂∆𝐺 ‡

∂𝑋 )𝑃,𝑇,𝜀𝑟
‒ ∆𝑆 ‡

𝑃,𝑋,𝜀𝑟(∂𝑇
∂𝑋)𝑃,𝜀𝑟

(1.3)

We now have three equations and three unknowns, namely , , and  
(∂∆𝐺 ‡

∂𝜀𝑟
)𝑃,𝑇,𝑋 (∂∆𝐺 ‡

∂𝑋 )𝑃,𝑇,𝜀𝑟

 (which is ). We can solve the equations for any one of these. Solving for 
‒ ∆𝑆 ‡

𝑃,𝑋,𝜀𝑟 (∂∆𝐺 ‡

∂𝑇 )𝑃,𝑋,𝜀𝑟

 yields the following rather unwieldy expression:
(∂∆𝐺 ‡

∂𝜀𝑟
)𝑃,𝑇,𝑋
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(∂∆𝐺 ‡

∂𝜀𝑟
)𝑃,𝑇,𝑋(∂𝜀𝑟

∂𝑇)𝑃,𝑋 ‒ (∂∆𝐺 ‡

∂𝑇 )𝑃,𝑋

= (∂𝜀𝑟

∂𝑇)𝑃,𝑋(∂𝑋
∂𝜀𝑟

)𝑃,𝑇(∂∆𝐺 ‡

∂𝑋 )𝑃,𝜀𝑟
‒ (∂𝜀𝑟

∂𝑇)𝑃,𝑋(∂∆𝐺 ‡

∂𝜀𝑟
)𝑃,𝑇 +                                                                 (∂∆𝐺 ‡

∂𝜀𝑟
)𝑃,𝑇,𝑋

(∂𝜀𝑟

∂𝑇)𝑃,𝑋

      (1.4)

We immediately see that the terms containing  cancel, dashing our hopes of finding 
(∂∆𝐺 ‡

∂𝜀𝑟
)𝑃,𝑇,𝑋

an expression for . 
(∂∆𝐺 ‡

∂𝜀𝑟
)𝑃,𝑇,𝑋

Solving for the other two intrinsic terms or performing a similar analysis using another 
set of independent equations all render the same results. But while this analysis is rather 
disappointing, it is pedagogically useful as we have proven that mathematical expressions for 
intrinsic terms cannot be obtained.  

2 Comparisons with the Conventional Equation

The conventional equation for the activation free energy at constant pressure and mole fraction 
is1:

 (2.1)
∆𝐺 ‡

𝑃,𝑋 = ∆𝐺 ‡
𝑃,𝑋,0 ‒ ∆𝑆 ‡

𝑃,𝑋,0(𝑇 ‒ 𝑇0) ‒ 𝑇∆𝐶 ‡
𝑃,𝑋(ln

𝑇
𝑇0

+
𝑇0

𝑇
‒ 1)

We can compare this equation with the following fundamental isobaric/iso-mole fraction 
equation, in which the intrinsic activation heat capacity term has been added:

   (2.2)
∆𝐺 ‡

𝑃,𝑋 = ∆𝐺 ‡
𝑃,𝑋,0 ‒ ∆𝑆 ‡

𝑃,𝑋,𝜀𝑟,0(𝑇 ‒ 𝑇0) ‒ 𝑇∆𝐶 ‡
𝑃,𝑋,𝜀𝑟(ln

𝑇
𝑇0

+
𝑇0

𝑇
‒ 1) ‒

3𝐴𝑄(𝜀𝑟 ‒ 𝜀𝑟,0)
(2𝜀𝑟 + 1)(2𝜀𝑟,0 + 1)
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In the following paragraphs we discuss the fundamental differences associated with  and 
∆𝐶 ‡

𝑃,𝑋,𝜀𝑟

, and the benefits of Equation (2.2).∆𝐶 ‡
𝑃,𝑋

We begin with a rather bold statement, namely that the intrinsic activation heat capacity 
term is unlikely to make significant contributions for most reactions. In one of our early articles, 
we presented an equation (not shown here) that relates the activation heat capacity to the suite of 
reactant and transition state modes2. From this equation we can determine that for unimolecular 
reactions there is essentially no contribution from the translational and internal rotational modes. 
For bimolecular reactions the contribution from these modes is about 25 JK1mol1, which 
accounts for 0.1 kJmol1 change in activation free energy over a 50C range. The contributions 
from the internal and intermolecular vibrational modes are difficult to estimate, but probably 
contribute no more than 0.13 kJmol1 over a 50C range. We base this estimate on the 
difference in molar heat capacities between liquid water and ice. The conclusion here is these 
numbers are negligible unless the change in the activation free energy over a 50C range is 4 
kJmol1 or less.

Reported values for  are almost always larger than our estimates for , which ∆𝐶 ‡
𝑃,𝑋

∆𝐶 ‡
𝑃,𝑋,𝜀𝑟

is not surprising since  accounts for changes in relative permittivity as well as temperature. ∆𝐶 ‡
𝑃,𝑋

However, literature values for , notably those for enzymatic reactions, range from 1 to ∆𝐶 ‡
𝑃,𝑋

20 kJK1mol1 .2-6 We believe these numbers are unreasonably large. To be fair, we have used 
Equation (1.1) in some of our work, but either for comparative purposes7, or before we 
introduced the fundamental equation to the scientific community.8, 9 Several researchers have in 
fact raised concerns and objections over these inordinately large activation heat capacities.10-12

The intrinsic activation heat capacity and electrostatic terms in Equation (1.2) both can 
accommodate nonlinear behavior, making this equation quite versatile for modeling curvature. 

 vs. T plots generally exhibit minimal curvature for non-enzymatic reactions, so the use of ∆𝐺 ‡
𝑃,𝑋

both nonlinear terms may be hard to justify. In this case the electrostatic term is probably more 
defensible. Even for enzymatic reactions, for which the plots are substantially more curved, 
electrostatic effects are likely responsible for much of the curvature. If it is deemed that the 
intrinsic activation heat capacity may be significant for an enzymatic system, then both terms can 
be used in the analysis.

3 Deriving a Relationship that Correlates the Mole Fraction Term with the 
Solute-Solvent Interactions Associated with the Solvation Shell

The following analysis correlates the mole fraction term in Equation (1) with the close-
range solute-solvent interactions associated with the solvation shell. Differential solvation, 
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       𝑋
𝑅𝑆
0

𝑋𝑏𝑢𝑙𝑘

 𝑟𝑅𝑆
0 𝑟𝑅𝑆𝑏𝑢𝑙𝑘

  𝑋𝑇𝑆
0

𝑋𝑏𝑢𝑙𝑘

defined as the difference in the mole fraction between the solvation shell and the bulk solvent13, 
forms the bedrock for this analysis.

Figures 3.1 and 3.2 show representative graphs for the solvent mole fraction vs. the radial 
distance from the reactant molecule and transition state, respectively. These graphs illustrate the 
variation of the mole fractions within the solvation shell, which may be several molecular 
diameters deep. At some radial distance, represented by  and  , the mole fraction 𝑟𝑅𝑆𝑏𝑢𝑙𝑘 𝑟𝑇𝑆𝑏𝑢𝑙𝑘

becomes that of the bulk solvent, which is the same for both graphs. The activation free energy 
associated with the influence of the solvation shell is given as:

  (3.1)
∆𝐺 ‡

𝑃,𝑇,𝜀𝑟
= 𝐺 𝑇𝑆

𝑃,𝑇,𝜀𝑟
(𝑋𝑇𝑆

0 ) ‒ 𝐺 𝑅𝑆
𝑃,𝑇,𝜀𝑟

(𝑋𝑅𝑆
0 )

in which the right-hand-side terms are those for the mole fraction at the inner layer of the

 

     

         X

       r

Figure 3.1. Graph of the solvent mole fraction vs. the radial distance (r) from the center of the 

reactant molecule having a radius  (RS refers to the reactant state).  is the mole fraction 𝑟𝑅𝑆
0 𝑋𝑅𝑆

0

for the inner layer of the solvation shell, and  is the bulk-phase mole fraction. The depth of 𝑋𝑏𝑢𝑙𝑘

the solvation shell is , and  is the radial distance at which the mole fraction 𝑟𝑅𝑆𝑏𝑢𝑙𝑘 ‒ 𝑟𝑅𝑆
0 𝑟𝑅𝑆𝑏𝑢𝑙𝑘

becomes .    𝑋𝑏𝑢𝑙𝑘



S7

      𝑟𝑇𝑆
0 𝑟𝑇𝑆𝑏𝑢𝑙𝑘

        X

r

Figure 3.2. Graph of the solvent mole fraction vs. the radial distance from the center of the 

transition state having a radius .  is the mole fraction for the inner layer of the solvation 𝑟𝑇𝑆
0 𝑋𝑇𝑆

0

shell, and  is the bulk-phase mole fraction. The depth of the solvation shell is .     𝑋𝑏𝑢𝑙𝑘 𝑟𝑇𝑆𝑏𝑢𝑙𝑘 ‒ 𝑟𝑇𝑆
0
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solvation shells. Note that in general, , , and . The mole 𝑟𝑇𝑆
0 ≠ 𝑟𝑅𝑆

0 𝑟𝑇𝑆𝑏𝑢𝑙𝑘 ≠ 𝑟𝑅𝑆𝑏𝑢𝑙𝑘 𝑋𝑇𝑆
0 ≠ 𝑋𝑅𝑆

0

fraction term evaluated from Equation (3.1) is:

 (3.2)(∂∆𝐺 ‡

∂𝑋 )𝑃,𝑇,𝜀𝑟
= (∂𝐺𝑇𝑆

∂𝑋 )𝑃,𝑇,𝜀𝑟
(𝑋𝑇𝑆

0 ) ‒ (∂𝐺𝑅𝑆

∂𝑋 )𝑃,𝑇,𝜀𝑟
(𝑋𝑅𝑆

0 )

in which X represents the bulk-phase mole fraction, and the first and second right-hand-side 

terms are evaluated at  and , respectively. Equation (3.2) can be written implicitly as:𝑋𝑇𝑆
0 𝑋𝑅𝑆

0

 (3.3)
(∂∆𝐺 ‡

∂𝑋 )𝑃,𝑇,𝜀𝑟
= (∂𝐺𝑇𝑆

∂𝑋𝑇𝑆
0

)𝑃,𝑇,𝜀𝑟(∂𝑋𝑇𝑆
0

∂𝑋 )𝑃,𝑇,𝜀𝑟
‒ (∂𝐺𝑅𝑆

∂𝑋𝑅𝑆
0

)𝑃,𝑇,𝜀𝑟(∂𝑋𝑅𝑆
0

∂𝑋 )𝑃,𝑇,𝜀𝑟

 and  represent free energy changes at the inner layer of the solvation 
(∂𝐺𝑇𝑆

∂𝑋𝑇𝑆
0

)𝑃,𝑇,𝜀𝑟 (∂𝐺𝑅𝑆

∂𝑋𝑅𝑆
0

)𝑃,𝑇,𝜀𝑟

shells, and  and , which are differential solvation terms, represent the 
(∂𝑋𝑇𝑆

0

∂𝑋 )𝑃,𝑇,𝜀𝑟 (∂𝑋𝑅𝑆
0

∂𝑋 )𝑃,𝑇,𝜀𝑟

inner layer mole fraction variations with the bulk-phase mole fraction. These differential 

solvation terms directly correlate the mole fraction term, , with the effect of the (∂∆𝐺 ‡

∂𝑋 )𝑃,𝑇,𝜀𝑟

solvation-shell inner layers.
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