Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

2D V₂C MXene/ 2D g-C₃N₄ nanosheet heterojunctions constructed via - one-pot method for remedying water pollution through high-efficient adsorption cooperated with in-situ photocatalytic degradation

Shishan Xue, *^a Dengliang He, *^a Herong Zhang, ^a Yuning Zhang, ^a Yu Wang, ^a Yurong Zeng, ^a Shuxin Liu, ^a Ning Chen^a

Experimental Section

Materials

Urea (AR≥99%) and hydrofluoric acid (HF, 49%) were purchased from Shanghai Macklin Biochemical Co., Ltd. to synthesis the graphitic carbon nitride (g-C₃N₄). V₂AlC Max (≥99%) was purchased from Jinzhou Haixin Metal Materials Co., Ltd. as the precursor to prepare V₂C MXene. Rhodamine B (RhB), crystal violet (CV), methylene blue (MB) were obtained from Fuchen (Tianjin) Chemical Reagent Co., LTD. Hydrochloric acid (HCl, 37%) and sodium hydroxide (NaOH, AR) were acquired from Merck & Co. Inc. All the chemicals were used directly without refinement. Deionized water was used throughout the experiment.

Synthesis of bulk $g-C_3N_4$

The thermal polycondensation approach was carried out to synthesis g-C₃N₄ using urea as precursor.^{1,} 2Urea (10.0 g) was placed in a corundum crucible with lid and heated in muffle furnace at 550 °C with the heating rate of 10 °C/min for 2 h in air atmosphere. The fine faint yellow powder was the asprepared bulk g-C₃N₄ which was preserved in sealed vessels for following fabrication of heterojunction.

Synthesis of V₂C MXene

The V₂C MXene nanosheets was obtained by etching V₂AlC Max with HF solution in Teflon tank to remove Al layer.³ Firstly, V₂AlC Max (1.0 g) was added to HF (20 mL) in Teflon tank magnetically stirred for different etching time (12 h, 24 h, 48 h) at room temperature. Then, all the V₂C MXene suspensions were centrifuged to gather the powder and washed by deionized water until the pH value of the supernatant reached ~6 (Scheme 1a). The best etching time of V₂C MXene was 48 h.

Finally, the product was freezing-dried for 3 days to obtain $V_2 C$ MXene nanosheets.

Synthesis of 2D/2D V_2C MXene/g-C₃N₄ nanosheet heterojunctions

The novel and simple strategy of one-pot simultaneously etching and self-assembling method was firstly employed to fabricate 2D/2D V₂C MXene/g-C₃N₄ nanosheet composite. The best synthesis route of V2C MXene was ascertained in the previous etching step which was employed in this procedure to construct the 2D/2D V₂C MXene/g-C₃N₄ nanosheet heterojunction (2D/2D $V_2C/g-C_3N_4$ heterojunction). Briefly, V_2AIC Max and the obtained bulk $g-C_3N_4$ was added in the HF solution (20 mL) with different mass ratio (V₂AIC: g-C₃N₄=2:1, 1:1, 1:2, 1:5, 1:7) in Teflon tank magnetically stirred for 48 h at room temperature. During the procedure, the Al layer of V₂AlC Max was removed to get V_2C MXene and the bulk $g-C_3N_4$ was etching exfoliated to g-C₃N₄ nanosheets. Meanwhile, V₂C MXene and g-C₃N₄ nanosheets self-assembled to receive the 2D/2D $V_2C/g-C_3N_4$ heterojunction. Subsequently, the suspensions were centrifuged and washed by deionized water until the pH value of the supernatant reached ~6 to gather the $V_2C/g-C_3N_4$ powder. Afterward, the final products were freezing-dried for 3 days to obtain $2D/2D V_2C/g-C_3N_4$ heterojunction (Scheme 1b). The 2D/2D $V_2C/g-C_3N_4$ heterojunction were noted as V_xG_y , where V defined as V_2C MXene, G reflected as $g-C_3N_4$ nanosheets, x and y were the mass ratio of V₂AlC: g-C₃N₄ (2:1, 1:1, 1:2, 1:5, 1:7).

Characterization

The crystalline phase and structure of the composites were determined by X-ray diffraction (XRD, Rigaku Ultima IV) using Cu K_{α} radiation, λ =1.5406 Å with the scanning rate of 10°/min from 5° to 90°. Fourier Transform Infrared (FT-IR) spectroscopy (Nicolet 6700 FTIR) recorded the functional moieties of the composite hydrogel in the wavenumber range from 400-4000 cm⁻¹. The Raman analysis was performed by Raman spectroscopy (Renishaw-inVia) with laser emission wavelength of 532 nm. The X-ray photoelectron spectra (XPS) were

^{a.} Chemistry and Chemical Engineering School, Mianyang Teachers' College, Mianxing Road No. 166, Mianyang City, Sichuan Province, China. 621000. E-mail: <u>xueshishancarol@163.com</u>; 449011902@163.com

Supplementary Information available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

collected on Thermo Scientific ESCALAB Xi+ X-ray Photoelectron Spectrometer. Zeiss EVO MA15 scanning electronic microscope (SEM) was employed to observe the microstructure of the materials, while elemental composition was carried out using Energy Dispersive X-ray spectroscopy (EDX). Zeta Potential was performed by the dynamic light scattering measurement (Nano ZS, Malvern Instruments Ltd) at room temperature in the neutral environment. The specific surface area of the materials was calculated by $N_{2}% \left(A_{1}^{2}\right) =0$ adsorption-desorption isotherm data measured by Brunauer-Emmett-Teller (BET) analysis conducted with a surface area analyzer (Quantachrome Instruments v10.0). Photoluminescence (PL, Dual-FL) was carried out to investigate the effects of rate of recombination of the 2D/2D V₂C/g-C₃N₄ heterojunction. The light adsorption and gap were estimated by diffuse reflectance spectra (DRS, UV-3600Plus) in the ultraviolet-visible (UV-vis) range. Electrochemical experiments were made with 0.1 M Na₂SO₄ or 0.5M KCl in an electrode system consisting of Pt wire, Ag/AgCl electrode, and electrode (reference electrode) sample using an electrochemical workstation (CHI 660D) under dark environment or visible light environment.

Adsorption Test

The different amounts of dye contaminants (RhB, CV, MB) were dissolved in the deionized water with different pH value (4, 7, or 10) regulated by HCl or NaOH to obtain the dye solution with the concentration of 15, 20, or 25 mg/L. The V_xG_v (0.1 g) was added to the different dye solutions (100 mL) under dark environment. The concentrations of the dye solutions at different time were calculated by a predetermined calibration curve versus dye concentrations of a standard solution which were surveyed by UV-Visible spectrophotometry (PerkinElmer, model Lambda 650, Shelton, Connecticut, U.S.A) at λ_{max} (RhB for 554 nm, CV for 584 nm and MB for 660 nm). The adsorption rate was calculated AR the follow ing 100 was:

where C_o is the original concentration of the dye solutions, C_t is the concentration of the solution after the adsorption by V_xG_v at different times.

Kinetics of dyes adsorption on 2D/2D $V_2C/g-C_3N_4$ heterojunction

The adsorption experiments in different dye solutions were executed to evaluate the adsorption kinetics. The adsorption capacity of obtained V_xG_y for RhB, CV or MB at equilibrium (Q_e, mg/g) and different time intervals (Q_t, mg/g) were calculated via the following equation $C_0 - C_e > V$

(E-2)

$$_{t} = \frac{(C_{0} - C_{t}) \times V}{m}$$
(E-3)

Q

Journal Name

Where, C_0 (mg/L) is the initial concentration of RhB, CV or MB solutions, Ce (mg/L) and Ct (mg/L) are the concentration of RhB, CV or MB solutions at equilibrium and a given time t, respectively. V (L) is the volume of RhB, CV or MB solutions and m (g) represents the weight of obtained $V_x G_y$.

The adsorption behavior of as-prepared V_xG_y for RhB, CV or MB was investigated through pseudo-first-order kinetic model, pseudo-second-order kinetic model and intraparticle diffusion model, of which formulas were shown as follow:

$$\frac{\ln (tQ_e - Q_t) = lnQ_e - K_1 t}{Q_t = \frac{K_2Q_e^2}{K_2Q_e^2} + \frac{Q_e}{Q_e}}$$
(E-6)
(E-7)
$$Q_t = K_p t^{0.5} + C$$
(E-8)

Where K_1 (min⁻¹), K_2 (min⁻¹) and K_p (g/mg/min) was the adsorption rate constant of pseudo-first-order kinetic model, pseudo-second-order kinetic model and intraparticle diffusion model, respectively. C reflects a constant associated with the boundary layer. The implications of Qe and Qt were displayed in previous paragraph.

Photocatalysis Degradation Test

The photodegradation of dye pollutants (RhB, CV and MB with the different original concentrations of 15, 20 and 25 mg/L at different pH values of 4, 7 and 10) was researched using by V_xG_y composites which were beforehand put in the dye solution for 50 min in dark environment under magnetic stirring at room temperature to exclude the influence of adsorption. The light with full spectrum to visible light was supplied by metal halide lamp (50 W). The dye solutions equipping with V_xG_y composites in the beaker were placed between two lamps from which were at the distance of 20 cm (the intensity of light irradiation was controlled at 100 W/m²). The solutions underwent the photodegradation procedure were measured by UV-vis spectrophotometry (PerkinElmer, model Lambda 650, Shelton, Connecticut, U.S.A) at λ_{max} (RhB for 554 nm, CV for 584 nm and MB for 660 nm). The photodegradation ratio was calculated bythe equation: $DR = \frac{0}{C_0} \times 100\%$ (E-9)

where C_o is the concentration of the solution before illumination, C_t is the concentration of the solution after illumination.

Results

Journal Name

Fig. S5 EDX plots of g-C_3N_4, V_2AlC, V_2C MXene and V_2C/ g-C_3N_4 heterojunction

Table S1 The texture property of V ₂ AIC Max, V ₂ C Mxene, g-C ₃ N ₄ and V ₂ C/g-C ₃ N ₄ heterojunct	ions
---	------

Sample	S _{BET} (m ² /g)	V _p (cm ³ /g)	Pore Diameter (nm)
V ₂ AIC Max	0.102	0.015	10.86
V ₂ C Mxene	7.135	0.063	13.94
g-C ₃ N ₄	115.636	0.47	9.09
$V_2C/g-C_3N_4$	70.122	0.51	14.64

Journal Name

Fig. S7 Electrochemical impedance spectra (in the dark environment) of $g-C_3N_4$, V_1G_5 and V_1G_7 heterojunctions

6 | J. Name., 2012, 00, 1-3

Fig. S8 Adsorption capacity (Q_t) of V_xG_y heterojunctions for CV (original content of 20 mg L⁻¹) at (a) pH=4, (b) pH=7, (c) pH=10; for RhB (original content of 20 mg L⁻¹) at (d) pH=4, (e) pH=7, (f) pH=10; for MB (original content of 20 mg L⁻¹) at (g) pH=4, (h) pH=7, (i) pH=10.

Fig. S9 Adsorption kinetics on the adsorption of CV at (a) pH=4, (b) pH=10; RhB at (c) pH=4, (d) pH=10; MB at (e) pH=4, (f) pH=10 with the original contents of 20 mg L⁻¹ onto V_xG_y heterojunctions fitted by the pseudo-first-order kinetic model

Fig. S10 Adsorption kinetics on the adsorption of CV (original content of 20 mg L⁻¹) at (a) pH=4, (b) pH=10; RhB (original content of 20 mg L⁻¹) at (c) pH=4, (d) pH=10; MB (original content of 20 mg L⁻¹) at (e) pH=4, (f) pH=10 onto V_xG_y heterojunctions fitted by the pseudo-second-order kinetic model

		Table S2 kinet	ic parameters of	f CV by V _x G _y het	erojunctions (p	0H=4, 20 mg L ⁻¹)		
			Pseudo-first-order Kinetic Model			Pseudo-second-order Kinetic Model		
	C ₀ (mg L ⁻¹)	Q _{e, exp} (mg g ⁻ 1)	Q _{e, cal} (mg g⁻ ¹)	K ₁ (min ⁻¹)	R ²	$Q_{e, cal} (mg g^{-1})$	K ₂ (g mg ⁻¹ min ⁻¹)	R ²
$g-C_3N_4$	20	19.4	19.59	0.027	0.93897	19.52	0.048	0.99865
V_2G_1	20	19.4	19.47	0.033	0.98355	19.52	0.048	0.99956
V_1G_1	20	18.4	18.50	0.031	0.94266	18.52	0.050	0.99938
V_1G_2	20	18.4	19.04	0.020	0.81299	18.51	0.052	0.99863
V_1G_5	20	18.9	18.94	0.036	0.89978	19.03	0.046	0.95461
V_1G_7	20	19.3	19.86	0.021	0.84989	19.42	0.050	0.99855
		Table S3 kinet	ic parameters of	f CV by V _x G _y het	erojunctions (p	0H=7, 20 mg L ⁻¹)		
			Pseudo-fir:	st-order Kinetic	Model	Pseudo-se	cond-order Kine	etic Model
	C ₀ (mg L ⁻¹)	Q _{e, exp} (mg g⁻ ¹)	$Q_{e, cal} (mg g^{-1})$	K₁ (min ⁻¹)	R ²	Q _{e, cal} (mg g⁻ ¹)	K₂ (g mg⁻¹ min⁻¹)	R ²
$g-C_3N_4$	20	19.9	20.10	0.027	0.93897	20.02	0.049	0.99985
V_2G_1	20	19.7	19.77	0.033	0.98355	19.82	0.049	0.99991
V_1G_1	20	13.9	13.97	0.031	0.94266	13.99	0.061	0.99551
V_1G_2	20	18.3	18.93	0.020	0.81299	18.41	0.052	0.99802
V_1G_5	20	19.7	19.74	0.036	0.89978	19.82	0.049	0.9999
V_1G_7	20	18.5	19.04	0.021	0.84989	18.62	0.049	0.99558
		Table S4 kineti				H=10, 20 mg L ⁻¹)		
		Pseudo-first-order Kinetic Model				Pseudo-se	cond-order Kine	etic Model
	C ₀ (mg L ⁻¹)	Q _{e, exp} (mg g⁻ ¹)	Q _{e, cal} (mg g⁻ ¹)	K₁ (min ⁻¹)	R ²	Q _{e, cal} (mg g⁻ ¹)	K ₂ (g mg⁻¹ min⁻¹)	R ²
$g-C_3N_4$	20	16.2	16.32	0.029	0.81275	16.32	0.048	0.98498
V_2G_1	20	19.6	19.80	0.027	0.935	19.72	0.048	0.99859
V_1G_1	20	13.8	14.13	0.022	0.90501	14.03	0.025	0.24713
V_1G_2	20	19.8	19.81	0.043	0.96602	19.92	0.048	0.99957
V_1G_5	20	19.3	19.47	0.028	0.87406	19.42	0.050	0.99939
V_1G_7	20	18.5	18.63	0.029	0.95732	18.62	0.050	0.99935
		Table S5 kineti				pH=4, 20 mg L ⁻¹)		
			Pseudo-fir	st-order Kinetic	Model	Pseudo-se	cond-order Kine	etic Model
	C ₀ (mg L ⁻¹)	Q _{e, exp} (mg g⁻ ¹)	Q _{e, cal} (mg g⁻ ¹)	K₁ (min ⁻¹)	R ²	$Q_{e, cal} (mg g^{-1})$	K ₂ (g mg⁻¹ min⁻¹)	R ²

This journal is © The Royal Society of Chemistry 20xx

Journal Name								ARTICLE
g-C ₃ N ₄	20	19.1	19.38	0.025	0.68938	19.21	0.052	0.9996
V_2G_1	20	15.9	16.22	0.023	0.95019	16.03	0.046	0.96105
V_1G_1	20	16.1	16.89	0.018	0.88771	16.21	0.053	0.97009
V_1G_2	20	13	13.13	0.027	0.82867	13.08	0.075	0.99958
V_1G_5	20	19.7	19.73	0.039	0.93138	19.82	0.050	0.99998
V ₁ G ₇	20	15	15.13	0.028	0.88404	15.09	0.064	0.99923
		Table S6 kinetic	parameters of	RhB by V _x G _y he	terojunctions (oH=7, 20 mg L ⁻¹)		
				st-order Kinetic	Model		cond-order Kin	etic Model
	C ₀ (mg L ⁻¹)	Q _{e, exp} (mg g⁻ ¹)	Q _{e, cal} (mg g⁻ ¹)	K ₁ (min⁻¹)	R ²	Q _{e, cal} (mg g⁻ ¹)	K ₂ (g mg ⁻¹ min ⁻¹)	R ²
g-C ₃ N ₄	20	12.6	12.96	0.021	0.6527	12.67	0.078	0.99854
V_2G_1	20	11.1	11.20	0.028	0.91449	11.18	0.075	0.99574
V ₁ G ₁	20	8.1	8.43	0.019	0.91749	8.15	0.112	0.99687
V ₁ G ₂	20	12.2	12.50	0.022	0.97868	12.29	0.068	0.99359 0.99997
V_1G_5 V_1G_7	20 20	18.3 5	18.39 5.75	0.031 0.012	0.73205 0.88355	18.41 4.60	0.054 -0.016	-0.1022
V ₁ 07						H=10, 20 mg L ⁻¹)	-0.010	-0.1022
		Table 37 Killetic		st-order Kinetic			cond-order Kin	etic Model
	C ₀ (mg L ⁻¹)	Q _{e, exp} (mg g ⁻ 1)	Q _{e, cal} (mg g ⁻ 1)	K ₁ (min ⁻¹)	R ²	Q _{e, cal} (mg g ⁻ ¹)	K ₂ (g mg ⁻¹ min ⁻¹)	R ²
g-C ₃ N ₄	20	13.5	13.97	0.020	0.65741	13.58	0.073	0.99847
V_2G_1	20	11.9	11.96	0.031	0.99629	11.98	0.075	0.99871
V_1G_1	20	11.5	11.54	0.033	0.92992	11.58	0.070	0.9796
V_1G_2	20	15.1	15.62	0.020	0.82096	15.19	0.064	0.9974
V_1G_5	20	18.8	19.18	0.023	0.72631	18.91	0.052	0.99903
V ₁ G ₇	20	7.3	8.63	0.011	0.95697	7.36	0.103	0.91208
		Table S8 kinetio	c parameters of	MB by V _x G _y het	erojunctions (0H=4, 20 mg L ⁻¹)		
			Pseudo-firs	st-order Kinetic	Model	Pseudo-se	cond-order Kin	etic Model
	C ₀ (mg L ⁻¹)	Q _{e, exp} (mg g⁻ 1)	Q _{e, cal} (mg g⁻ ¹)	K ₁ (min ⁻¹)	R ²	Q _{e, cal} (mg g⁻ ¹)	K ₂ (g mg ⁻¹ min ⁻¹)	R ²
g-C ₃ N ₄	20	8.1	11.39	0.0073	-0.0628	8.30	0.128	0.9971
V_2G_1	20	14.3	14.89	0.019	0.87333	14.39	0.062	0.98784
V_1G_1	20	13.1	13.64	0.019	0.93378	13.18	0.069	0.9966
V ₁ G ₂	20	12.9	13.66	0.017	0.93355	12.99	0.068	0.99476
V ₁ G ₅	20	16.2	16.76	0.020	0.85924	16.30	0.059	0.99773
V ₁ G ₇	20	9.6	9.74	0.025	0.9866	9.67	0.089	0.99826
		Table S9 kinetio		MB by V _x G _y het st-order Kinetic		0H=7, 20 mg L ⁻¹)	and order Kin	
		Q _{e, exp} (mg g ⁻				Q _{e, cal} (mg g ⁻	Cond-order Kin K ₂ (g mg ⁻¹	
	C ₀ (mg L ⁻¹)	Q _{e, exp} (mg g 1)	Q _{e, cal} (mg g⁻ ¹)	K ₁ (min ⁻¹)	R ²	1)	min ⁻¹)	R ²
g-C ₃ N ₄	20	13.9	13.94	0.035	0.94839	13.99	0.068	0.99947
V_2G_1	20	19.1	20.22	0.017	0.87692	19.22	0.048	0.99188
V_1G_1	20	14.5	14.92	0.021	0.85077	14.59	0.065	0.99489
V ₁ G ₂	20	15.2	15.72	0.020	0.95328	15.30	0.056	0.99418
V ₁ G ₅	20	16.8	16.90	0.030	0.93135	16.92	0.048	0.992
V ₁ G ₇	20	8.6	8.67	0.028	0.96278	8.66	0.101	0.99816
		Table S10 kinetio				0H=10, 20 mg L ⁻¹)		
		0 (mg.g ⁻		st-order Kinetio		Q _{e, cal} (mg g ⁻	cond-order Kir K ₂ (g mg ⁻¹	
	C ₀ (mg L ⁻¹)	Q _{e, exp} (mg g⁻ ¹)	Q _{e, cal} (mg g⁻ ¹)	K ₁ (min ⁻¹)	R ²	1)	min⁻¹)	R ²
g-C ₃ N ₄	20	18.9	19.17	0.025	0.80034	19.01	0.052	0.99921
V_2G_1	20	15.6	16.14	0.020	0.93686	15.71	0.051	0.97465
V_1G_1	20	18.6	20.50	0.014	0.76007	18.72	0.049	0.9471
V ₁ G ₂	20	14.2	14.44	0.024	0.8747	14.29	0.068	0.99947
V_1G_5 V_1G_7	20	14	14.48	0.020	0.88601	14.09	0.067	0.99756
V (-	20	9.1	9.74	0.016	0.93286	9.17	0.087	0.9695

Journal Name

Fig. S11 Adsorption capacity (Q_t) of V_xG_y heterojunctions for CV (pH=7) with the original content of (a) 15 mg L⁻¹, (b) 20 mg L⁻¹, (c) 25 mg L⁻¹; for RhB (pH=7) with the original content of (d) 15 mg L⁻¹, (e) 20 mg L⁻¹, (f) 25 mg L⁻¹; for MB (pH=7) with the original content of (g) 15 mg L⁻¹, (h) 20 mg L⁻¹, (i) 25 mg L⁻¹.

10 | J. Name., 2012, **00**, 1-3

This journal is © The Royal Society of Chemistry 20xx

Journal Name

Fig. S12 Adsorption kinetics on the adsorption of CV with the original content of (a) 15 mg L^{-1} , (b) 25 mg L^{-1} ; RhB with the original
content of (c) 15 mg L ⁻¹ , (d) 25 mg L ⁻¹ ; MB with the original content of (e) 15 mg L ⁻¹ , (f) 25 mg L ⁻¹ onto V _x G _v heterojunctions at pH
value of 7 fitted by the pseudo-first-order kinetic model
Table S11 kinetic parameters of CV by V_xG_y heterojunctions (pH=7, 15 mg L ⁻¹)

		Table S11 kin						
			Pseudo-firs	t-order Kinetic	Vodel	Pseudo-sec	ond-order Kine	tic Model
	C ₀ (mg L ⁻¹)	$Q_{e, exp}$ (mg g ⁻¹)	$Q_{e, cal}$ (mg g ⁻¹)	K ₁ (min ⁻¹)	R ²	$Q_{e, cal}$ (mg g ⁻¹)	K₂ (g mg⁻¹ min⁻¹)	R ²
V_2G_1	15	14.9	14.95	0.03352	0.90111	14.99	0.06489	0.99971
V_1G_1	15	14.7	14.71	0.04083	0.90136	14.79	0.06615	0.99941
V_1G_2	15	14.5	14.65	0.02698	0.93453	14.59	0.06516	0.99955
V_1G_5	15	14.4	14.42	0.03891	0.95752	14.49	0.06721	0.9999
V_1G_7	15	14.2	14.32	0.02803	0.94933	14.29	0.0621	0.99245
-1-/						(pH=7, 25 mg L ⁻¹)		
				st-order Kinetic	-		cond-order Kine	etic Model
	C ₀ (mg L ⁻¹)	Q _{e, exp} (mg g ⁻ 1)	Q _{e, cal} (mg g⁻ ¹)	K₁ (min ⁻¹)	R ²	Q _{e, cal} (mg g⁻ ¹)	K ₂ (g mg⁻¹ min⁻¹)	R ²
V_2G_1	25	22.8	23.04	0.02677	0.86549	22.94	0.04265	0.99982
V_1G_1	25	23.1	23.21	0.03156	0.93466	23.25	0.04013	0.99878
V_1G_2	25	20.1	20.29	0.0274	0.93502	20.22	0.04697	0.99903
V_1G_5	25	24.9	24.92	0.04179	0.8349	25.05	0.03981	0.99999
$V_1 G_5$ $V_1 G_7$	25	18.8	21.92	0.01138	0.8349	18.96	0.03659	0.96075
V ₁ G ₇	25							0.90075
		Table S13 Kine		f RNB by V _x G _y h st-order Kinetic	-	(pH=7, 15 mg L ⁻¹) Pseudo-se	cond-order Kine	etic Model
		Q _{e, exp} (mg g⁻	Q _{e, cal} (mg g ⁻			Q _{e, cal} (mg g ⁻	K ₂ (g mg ⁻¹	
	C ₀ (mg L ⁻¹)	¹)	1)	K ₁ (min ⁻¹)	R ²	1)	min⁻¹)	R ²
V_2G_1	15	10.4	10.52	0.0259	0.84439	10.46	0.09351	0.99953
V_1G_1	15	11.4	11.61	0.02361	0.94714	11.47	0.08087	0.99887
V_1G_2	15	11	11.09	0.02807	0.88116	11.07	0.0866	0.99929
V_1G_5	15	13.9	13.93	0.03596	0.89928	13.98	0.07028	0.99995
V ₁ G ₇	15	8.8	8.84	0.03173	0.9345	8.89	0.06726	0.69462
		Table S14 kine	etic parameters o	f RhB by V _x G _y h	eterojunctions	s (pH=7, 25 mg L ⁻¹)		
				st-order Kinetic	Model	etic Model		
	C ₀ (mg L ⁻¹)	Q _{e, exp} (mg g⁻ 1)	Q _{e, cal} (mg g⁻ ¹)	K ₁ (min⁻¹)	R ²	Q _{e, cal} (mg g⁻ ¹)	K₂ (g mg⁻¹ min⁻¹)	R ²
		16.3	16.56	0.02453	0.90353	16.40	0.0576	0.99856
V_2G_1	25	10.5						
	25 25	18.8	19.88	0.01714	0.8119	18.92	0.04955	0.98536
V_1G_1				0.01714 0.02449	0.8119 0.85089	18.92 17.20	0.04955 0.05661	
V_1G_1 V_1G_2	25 25	18.8 17.1	19.88 17.37			17.20	0.05661	0.99967
V_1G_1 V_1G_2 V_1G_5	25	18.8	19.88	0.02449	0.85089			0.99967 0.99998
V_1G_1 V_1G_2 V_1G_5	25 25 25	18.8 17.1 23.5 18.1	19.88 17.37 23.50 18.13	0.02449 0.07374 0.03822	0.85089 0.92168 0.96475	17.20 23.64	0.05661 0.04237 0.0526	0.99967 0.99998
V_1G_1 V_1G_2 V_1G_5	25 25 25	18.8 17.1 23.5 18.1 Table S15 kind	19.88 17.37 23.50 18.13 etic parameters o Pseudo-fir	0.02449 0.07374 0.03822	0.85089 0.92168 0.96475 eterojunctions	17.20 23.64 18.21 (pH=7, 15 mg L ⁻¹) Pseudo-se	0.05661 0.04237 0.0526 cond-order Kine	0.99967 0.99998 0.99945
V ₁ G ₁ V ₁ G ₂ V ₁ G ₅ V ₁ G ₇	25 25 25 25 C ₀ (mg L ⁻¹)	18.8 17.1 23.5 18.1 Table S15 kind Q _{e, exp} (mg g ⁻ ¹)	19.88 17.37 23.50 18.13 etic parameters o Pseudo-fir Q _{e, cal} (mg g ⁻ ¹)	0.02449 0.07374 0.03822 f MB by V _x G _y he st-order Kinetic K ₁ (min ⁻¹)	0.85089 0.92168 0.96475 eterojunctions Model R ²	17.20 23.64 18.21 (pH=7, 15 mg L ⁻¹) Pseudo-se Q _{e, cal} (mg g ⁻ ¹)	0.05661 0.04237 0.0526 cond-order Kine K ₂ (g mg ⁻¹ min ⁻¹)	0.99967 0.99998 0.99945 etic Model R ²
V ₁ G ₁ V ₁ G ₂ V ₁ G ₅ V ₁ G ₇	25 25 25 25	18.8 17.1 23.5 18.1 Table S15 kind Q _{e, exp} (mg g ⁻	19.88 17.37 23.50 18.13 etic parameters o Pseudo-fir Q _{e, cal} (mg g ⁻	0.02449 0.07374 0.03822 f MB by V _x G _y ho st-order Kinetic	0.85089 0.92168 0.96475 eterojunctions Model	17.20 23.64 18.21 (pH=7, 15 mg L ⁻¹) Pseudo-se Q _{e, cal} (mg g ⁻	0.05661 0.04237 0.0526 cond-order Kine K ₂ (g mg ⁻¹	0.99967 0.99998 0.99945 etic Model
V ₁ G ₁ V ₁ G ₂ V ₁ G ₅ V ₁ G ₇	25 25 25 25 C ₀ (mg L ⁻¹)	18.8 17.1 23.5 18.1 Table S15 kind Q _{e, exp} (mg g ⁻ ¹)	19.88 17.37 23.50 18.13 etic parameters o Pseudo-fir Q _{e, cal} (mg g ⁻ ¹)	0.02449 0.07374 0.03822 f MB by V _x G _y he st-order Kinetic K ₁ (min ⁻¹)	0.85089 0.92168 0.96475 eterojunctions Model R ²	17.20 23.64 18.21 (pH=7, 15 mg L ⁻¹) Pseudo-se Q _{e, cal} (mg g ⁻ ¹)	0.05661 0.04237 0.0526 cond-order Kine K ₂ (g mg ⁻¹ min ⁻¹)	0.99967 0.99998 0.99945 etic Model R ²
V_1G_1 V_1G_2 V_1G_5 V_1G_7 V_2G_1 V_1G_1	25 25 25 25 C ₀ (mg L ⁻¹) 15	18.8 17.1 23.5 18.1 Table S15 kind Q _{e, exp} (mg g ⁻ 1) 12.9	19.88 17.37 23.50 18.13 etic parameters o Pseudo-fir Q _{e, cal} (mg g ⁻ 1) 12.93	0.02449 0.07374 0.03822 f MB by V _x G _y he st-order Kinetic K ₁ (min ⁻¹) 0.03513	0.85089 0.92168 0.96475 eterojunctions Model R ² 0.93206	17.20 23.64 18.21 (pH=7, 15 mg L ⁻¹) Pseudo-se Q _{e, cal} (mg g ⁻ 1) 12.98	0.05661 0.04237 0.0526 cond-order Kine K ₂ (g mg ⁻¹ min ⁻¹) 0.07508	0.99967 0.99998 0.99945 etic Model R ² 0.9999 0.9974
V_1G_1 V_1G_2 V_1G_5 V_1G_7 V_2G_1 V_1G_1 V_1G_2	25 25 25 25 C ₀ (mg L ⁻¹) 15 15 15	18.8 17.1 23.5 18.1 Table S15 kind Q _{e, exp} (mg g ⁻ ¹) 12.9 14.7 13.2	19.88 17.37 23.50 18.13 etic parameters of Pseudo-fir Q _{e, cal} (mg g ⁻ 1) 12.93 15.28 13.24	0.02449 0.07374 0.03822 f MB by V _x G _y he st-order Kinetic K ₁ (min ⁻¹) 0.03513 0.01924 0.03438	0.85089 0.92168 0.96475 eterojunctions Model R ² 0.93206 0.89199 0.96514	17.20 23.64 18.21 (pH=7, 15 mg L ⁻¹) Pseudo-se Q _{e, cal} (mg g ⁻ 1) 12.98 14.79 13.28	0.05661 0.04237 0.0526 cond-order Kine K ₂ (g mg ⁻¹ min ⁻¹) 0.07508 0.06331 0.07076	0.99967 0.99998 0.99945 etic Model R ² 0.9999 0.9974 0.99965
V_1G_1 V_1G_2 V_1G_5 V_1G_7 V_2G_1 V_1G_1 V_1G_2 V_1G_5	25 25 25 25 C ₀ (mg L ⁻¹) 15	18.8 17.1 23.5 18.1 Table S15 kind Q _{e, exp} (mg g ⁻ 1) 12.9 14.7	19.88 17.37 23.50 18.13 etic parameters o Pseudo-fir Q _{e, cal} (mg g ⁻ 1) 12.93 15.28	0.02449 0.07374 0.03822 f MB by V _x G _y he st-order Kinetic K ₁ (min ⁻¹) 0.03513 0.01924	0.85089 0.92168 0.96475 eterojunctions Model R ² 0.93206 0.89199	17.20 23.64 18.21 (pH=7, 15 mg L ⁻¹) Pseudo-se Q _{e, cal} (mg g ⁻ 1) 12.98 14.79	0.05661 0.04237 0.0526 cond-order Kine K ₂ (g mg ⁻¹ min ⁻¹) 0.07508 0.06331	0.99967 0.99998 0.99945 etic Model R ² 0.9999 0.9974 0.99965 0.99154
V_1G_1 V_1G_2 V_1G_5 V_1G_7 V_2G_1 V_1G_1 V_1G_2 V_1G_5	25 25 25 25 C ₀ (mg L ⁻¹) 15 15 15 15 15	18.8 17.1 23.5 18.1 Table S15 kind Q _{e, exp} (mg g ⁻¹) 12.9 14.7 13.2 11.9 11.5	19.88 17.37 23.50 18.13 etic parameters of Pseudo-fir Q _{e, cal} (mg g ⁻ 1) 12.93 15.28 13.24 12.42 12.42 12.10	0.02449 0.07374 0.03822 f MB by V _x G _y he st-order Kinetic K ₁ (min ⁻¹) 0.03513 0.01924 0.03438 0.01869 0.01768	0.85089 0.92168 0.96475 eterojunctions Model R ² 0.93206 0.89199 0.96514 0.91954 0.84378	17.20 23.64 18.21 (pH=7, 15 mg L ⁻¹) Pseudo-se Q _{e, cal} (mg g ⁻ 1) 12.98 14.79 13.28 11.98	0.05661 0.04237 0.0526 cond-order Kine K ₂ (g mg ⁻¹ min ⁻¹) 0.07508 0.06331 0.07076 0.07309 0.07836	R ² 0.9999
	25 25 25 25 C ₀ (mg L ⁻¹) 15 15 15 15 15	18.8 17.1 23.5 18.1 Table S15 kind Q _{e, exp} (mg g ⁻¹) 12.9 14.7 13.2 11.9 11.5	19.88 17.37 23.50 18.13 etic parameters o Pseudo-fir Q _{e, cal} (mg g ⁻ 1) 12.93 15.28 13.24 12.42 12.10 etic parameters o	0.02449 0.07374 0.03822 f MB by V _x G _y he st-order Kinetic K ₁ (min ⁻¹) 0.03513 0.01924 0.03438 0.01869 0.01768	0.85089 0.92168 0.96475 eterojunctions Model R ² 0.93206 0.89199 0.96514 0.91954 0.84378 eterojunctions	17.20 23.64 18.21 (pH=7, 15 mg L ⁻¹) Pseudo-se Q _{e, cal} (mg g ⁻¹) 12.98 14.79 13.28 14.79 13.28 11.98 11.57 (pH=7, 25 mg L ⁻¹)	0.05661 0.04237 0.0526 cond-order Kine K ₂ (g mg ⁻¹ min ⁻¹) 0.07508 0.06331 0.07076 0.07309 0.07836 cond-order Kine	0.99967 0.99998 0.99945 etic Model R ² 0.9999 0.9974 0.99965 0.99154 0.98159
V_1G_1 V_1G_2 V_1G_5 V_1G_7 V_2G_1 V_1G_1 V_1G_2 V_1G_5	25 25 25 25 C ₀ (mg L ⁻¹) 15 15 15 15 15	18.8 17.1 23.5 18.1 Table S15 kind Q _{e, exp} (mg g ⁻¹) 12.9 14.7 13.2 11.9 11.5	19.88 17.37 23.50 18.13 etic parameters o Pseudo-fir Q _{e, cal} (mg g ⁻ 1) 12.93 15.28 13.24 12.42 12.10 etic parameters o	0.02449 0.07374 0.03822 f MB by V _x G _y he st-order Kinetic K ₁ (min ⁻¹) 0.03513 0.01924 0.03438 0.01869 0.01768 f MB by V _x G _y he	0.85089 0.92168 0.96475 eterojunctions Model R ² 0.93206 0.89199 0.96514 0.91954 0.84378 eterojunctions	17.20 23.64 18.21 (pH=7, 15 mg L ⁻¹) Pseudo-se Q _{e, cal} (mg g ⁻¹) 12.98 14.79 13.28 14.79 13.28 11.98 11.57 (pH=7, 25 mg L ⁻¹)	0.05661 0.04237 0.0526 cond-order Kine K ₂ (g mg ⁻¹ min ⁻¹) 0.07508 0.06331 0.07076 0.07309 0.07836	0.99967 0.99998 0.99945 etic Model R ² 0.9999 0.9974 0.99965 0.99154 0.98159
V ₁ G ₁ V ₁ G ₂ V ₁ G ₅ V ₁ G ₇ V ₂ G ₁ V ₁ G ₁ V ₁ G ₂ V ₁ G ₅ V ₁ G ₇	25 25 25 25 C ₀ (mg L ⁻¹) 15 15 15 15 15	18.8 17.1 23.5 18.1 Table S15 kind Q _{e, exp} (mg g ⁻ 1) 12.9 14.7 13.2 11.9 11.5 Table S16 kind Q _{e, exp} (mg g ⁻	19.88 17.37 23.50 18.13 etic parameters of Pseudo-fir Q _{e, cal} (mg g ⁻ 1) 12.93 15.28 13.24 12.42 12.10 etic parameters of Pseudo-fir Q _{e, cal} (mg g ⁻	0.02449 0.07374 0.03822 f MB by V _x G _y he st-order Kinetic K ₁ (min ⁻¹) 0.03513 0.01924 0.03438 0.01869 0.01768 f MB by V _x G _y he st-order Kinetic	0.85089 0.92168 0.96475 eterojunctions Model R ² 0.93206 0.89199 0.96514 0.91954 0.91954 0.84378 eterojunctions Model	17.20 23.64 18.21 (pH=7, 15 mg L ⁻¹) Pseudo-se Q _{e, cal} (mg g ⁻ 1) 12.98 14.79 13.28 11.98 11.57 (pH=7, 25 mg L ⁻¹) Pseudo-se Q _{e, cal} (mg g ⁻	0.05661 0.04237 0.0526 cond-order Kine K ₂ (g mg ⁻¹ min ⁻¹) 0.07508 0.06331 0.07076 0.07309 0.07836 cond-order Kine K ₂ (g mg ⁻¹	0.99967 0.99998 0.99945 etic Model R ² 0.9999 0.9974 0.99965 0.99154 0.98159 etic Model
V_1G_1 V_1G_2 V_1G_5 V_1G_7 V_2G_1 V_1G_2 V_1G_5 V_1G_5 V_1G_7 V_2G_1	25 25 25 25 C ₀ (mg L ⁻¹) 15 15 15 15 15 15 25	18.8 17.1 23.5 18.1 Table S15 kind Q _{e, exp} (mg g ⁻¹) 12.9 14.7 13.2 11.9 11.5 Table S16 kind Q _{e, exp} (mg g ⁻¹)	$\begin{array}{c} 19.88 \\ 17.37 \\ 23.50 \\ 18.13 \\ \hline \\ etic parameters of \\ \hline \\ Pseudo-fir \\ \hline \\ Q_{e, cal} (mg \ g^{-1}) \\ 12.93 \\ 15.28 \\ 13.24 \\ 12.42 \\ 12.42 \\ 12.10 \\ \hline \\ etic parameters of \\ \hline \\ Pseudo-fir \\ \hline \\ Q_{e, cal} (mg \ g^{-1}) \\ \hline \end{array}$	0.02449 0.07374 0.03822 f MB by V _x G _y he st-order Kinetic K ₁ (min ⁻¹) 0.03513 0.01924 0.03438 0.01869 0.01768 f MB by V _x G _y he st-order Kinetic K ₁ (min ⁻¹)	0.85089 0.92168 0.96475 eterojunctions Model R ² 0.93206 0.89199 0.96514 0.91954 0.84378 eterojunctions Model R ²	17.20 23.64 18.21 (pH=7, 15 mg L ⁻¹) Pseudo-se Q _{e, cal} (mg g ⁻ 1) 12.98 14.79 13.28 11.98 11.57 (pH=7, 25 mg L ⁻¹) Pseudo-se Q _{e, cal} (mg g ⁻ 1)	0.05661 0.04237 0.0526 cond-order Kine K ₂ (g mg ⁻¹ min ⁻¹) 0.07508 0.06331 0.07076 0.07309 0.07836 cond-order Kine K ₂ (g mg ⁻¹ min ⁻¹)	0.99967 0.99998 0.99945 etic Model R ² 0.9999 0.9974 0.99965 0.99154 0.98159 etic Model R ² 0.99823
V ₁ G ₁ V ₁ G ₂ V ₁ G ₅ V ₁ G ₇ V ₂ G ₁ V ₁ G ₁ V ₁ G ₂ V ₁ G ₅ V ₁ G ₇ V ₂ G ₁ V ₂ G ₁ V ₂ G ₁	25 25 25 25 5 5 5 15 15 15 15 15 15 25 25	18.8 17.1 23.5 18.1 Table S15 kind Q _{e, exp} (mg g ⁻¹) 12.9 14.7 13.2 11.9 11.5 Table S16 kind Q _{e, exp} (mg g ⁻¹) 19 16.6	19.88 17.37 23.50 18.13 etic parameters of Pseudo-fir Q _{e, cal} (mg g ⁻ 1) 12.93 15.28 13.24 12.42 12.10 etic parameters of Pseudo-fir Q _{e, cal} (mg g ⁻ 1) 19.44 19.58	0.02449 0.07374 0.03822 f MB by V _x G _y he st-order Kinetic K ₁ (min ⁻¹) 0.03513 0.01924 0.03438 0.01869 0.01768 f MB by V _x G _y he st-order Kinetic K ₁ (min ⁻¹) 0.02234 0.01108	0.85089 0.92168 0.96475 eterojunctions Model R ² 0.93206 0.89199 0.96514 0.91954 0.84378 eterojunctions Model R ² 0.91727 0.68271	17.20 23.64 18.21 (pH=7, 15 mg L ⁻¹) Pseudo-se Q _{e, cal} (mg g 1) 12.98 14.79 13.28 11.98 11.57 (pH=7, 25 mg L ⁻¹) Pseudo-se Q _{e, cal} (mg g 1) 19.12 16.70	0.05661 0.04237 0.0526 cond-order Kine K ₂ (g mg ⁻¹ min ⁻¹) 0.07508 0.06331 0.07076 0.07309 0.07836 cond-order Kine K ₂ (g mg ⁻¹ min ⁻¹) 0.04922 0.05817	0.99967 0.99998 0.99945 etic Model R ² 0.99974 0.99965 0.99154 0.99154 0.98159 etic Model R ² 0.99823 0.96205
V_1G_1 V_1G_2 V_1G_5 V_1G_7 V_2G_1 V_1G_1 V_1G_2 V_1G_5	25 25 25 25 C ₀ (mg L ⁻¹) 15 15 15 15 15 15 15 25	18.8 17.1 23.5 18.1 Table S15 kind Q _{e, exp} (mg g ⁻ 1) 12.9 14.7 13.2 11.9 11.5 Table S16 kind Q _{e, exp} (mg g ⁻ 1) 1.5	19.88 17.37 23.50 18.13 etic parameters of Pseudo-fir Q _{e, cal} (mg g ⁻ 1) 12.93 15.28 13.24 12.42 12.10 etic parameters of Pseudo-fir Q _{e, cal} (mg g ⁻ 1) 19.44	0.02449 0.07374 0.03822 f MB by V _x G _y he st-order Kinetic K ₁ (min ⁻¹) 0.03513 0.01924 0.03438 0.01869 0.01768 f MB by V _x G _y he st-order Kinetic K ₁ (min ⁻¹) 0.02234	0.85089 0.92168 0.96475 eterojunctions Model R ² 0.93206 0.89199 0.96514 0.91954 0.84378 eterojunctions Model R ² 0.91727	17.20 23.64 18.21 (pH=7, 15 mg L ⁻¹) Pseudo-se Q _{e, cal} (mg g ⁻ 1) 12.98 14.79 13.28 11.98 11.57 (pH=7, 25 mg L ⁻¹) Pseudo-se Q _{e, cal} (mg g ⁻ 1) 19.12	0.05661 0.04237 0.0526 cond-order Kine K ₂ (g mg ⁻¹ min ⁻¹) 0.07508 0.06331 0.07076 0.07309 0.07836 cond-order Kine K ₂ (g mg ⁻¹ min ⁻¹) 0.04922	0.99967 0.99998 0.99945 etic Model R ² 0.9999 0.9974 0.99965 0.99154 0.98159 etic Model R ²

Journal Name

Fig. S13 Removal ratios of CV with the original content of (a) 15 mg L⁻¹, (b) 25 mg L⁻¹; RhB with the original content of (c) 15 mg L⁻¹, (d) 25 mg L⁻¹; MB with the original content of (e) 15 mg L⁻¹, (f) 25 mg L⁻¹ onto V_xG_y heterojunctions at pH value of 7.

Notes and references

- 1 S.S. Xue, D.L. He, X.C. Hu, Y.Q. Cao, J.L. Ge, S.X. Liu, *J. Polym. Eng.*, 2023, **43**, 594.
- 2 J.Y. Li, X. Yu, Y. Zhu, X.H. Fu, Y.M. Zhang, *J. Alloy Compd.*, 2021, **850**, 156778.
- 3 M. Madi, M. Tahir, Z.Y. Zakaria, J. CO₂ Util., 2022, 65, 102238.