ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

2D V2C MXene/ 2D g-C3N⁴ nanosheet heterojunctions constructed via - one-pot method for remedying water pollution through highefficient adsorption cooperated with in-situ photocatalytic degradation

Shishan Xue, *a Dengliang He, *a Herong Zhang, a Yuning Zhang, a Yu Wang, a Yurong Zeng, a Shuxin Liu, a Ning Chen^a

Experimental Section

Materials

Urea (AR≥99%) and hydrofluoric acid (HF, 49%) were purchased from Shanghai Macklin Biochemical Co., Ltd. to synthesis the graphitic carbon nitride ($g - C_3N_4$). V₂AlC Max (≥99%) was purchased from Jinzhou Haixin Metal Materials Co., Ltd. as the precursor to prepare V_2C MXene. Rhodamine B (RhB), crystal violet (CV), methylene blue (MB) were obtained from Fuchen (Tianjin) Chemical Reagent Co., LTD. Hydrochloric acid (HCl, 37%) and sodium hydroxide (NaOH, AR) were acquired from Merck & Co. Inc. All the chemicals were used directly without refinement. Deionized water was used throughout the experiment.

Synthesis of bulk g-C3N⁴

The thermal polycondensation approach was carried out to synthesis $g - C_3N_4$ using urea as precursor.^{1,} 2Urea (10.0 g) was placed in a corundum crucible with lid and heated in muffle furnace at 550 ℃ with the heating rate of 10 ℃/min for 2 h in air atmosphere. The fine faint yellow powder was the asprepared bulk $g-C_3N_4$ which was preserved in sealed vessels for following fabrication of heterojunction.

Synthesis of V2C MXene

The V_2C MXene nanosheets was obtained by etching V_2AIC Max with HF solution in Teflon tank to remove Al layer.³ Firstly, V₂AlC Max (1.0 g) was added to HF (20 mL) in Teflon tank magnetically stirred for different etching time (12 h, 24 h, 48 h) at room temperature. Then, all the V_2C MXene suspensions were centrifuged to gather the powder and washed by deionized water until the pH value of the supernatant reached ~6 (Scheme 1a). The best etching time of V_2C MXene was 48 h. Finally, the product was freezing-dried for 3 days to obtain V_2C MXene nanosheets.

Synthesis of 2D/2D V2C MXene/g-C3N⁴ nanosheet heterojunctions

The novel and simple strategy of one-pot simultaneously etching and self-assembling method was firstly employed to fabricate 2D/2D V₂C MXene/g-C₃N₄ nanosheet composite. The best synthesis route of V_2C MXene was ascertained in the previous etching step which was employed in this procedure to construct the 2D/2D V₂C MXene/g-C₃N₄ nanosheet heterojunction (2D/2D $V_2C/g-C_3N_4$ heterojunction). Briefly, V_2 AlC Max and the obtained bulk $g-C_3N_4$ was added in the HF solution (20 mL) with different mass ratio (V₂AlC: $g - C_3N_4 = 2:1$, 1:1, 1:2, 1:5, 1:7) in Teflon tank magnetically stirred for 48 h at room temperature. During the procedure, the Al layer of V_2 AlC Max was removed to get V₂C MXene and the bulk $g-C_3N_4$ was etching exfoliated to $g - C_3N_4$ nanosheets. Meanwhile, V₂C MXene and $g - C_3N_4$ nanosheets self-assembled to receive the $2D/2D$ V₂C/g-C₃N₄ heterojunction. Subsequently, the suspensions were centrifuged and washed by deionized water until the pH value of the supernatant reached ~6 to gather the $V_2C/g-C_3N_4$ powder. Afterward, the final products were freezing-dried for 3 days to obtain 2D/2D $V_2C/g-C_3N_4$ heterojunction (Scheme 1b). The 2D/2D $V_2C/g-C_3N_4$ heterojunction were noted as V_xG_y , where V defined as V_2C MXene, G reflected as $g - C_3N_4$ nanosheets, x and y were the mass ratio of V_2 AlC: $g - C_3N_4$ (2:1, 1:1, 1:2, 1:5, 1:7).

Characterization

The crystalline phase and structure of the composites were determined by X-ray diffraction (XRD, Rigaku Ultima IV) using Cu K_α radiation, $λ=1.5406$ Å with the scanning rate of 10°/min from 5° to 90°. Fourier Transform Infrared (FT-IR) spectroscopy (Nicolet 6700 FTIR) recorded the functional moieties of the composite hydrogel in the wavenumber range from 400-4000 cm-1 . The Raman analysis was performed by Raman spectroscopy (Renishaw-inVia) with laser emission wavelength of 532 nm. The X-ray photoelectron spectra (XPS) were

a.Chemistry and Chemical Engineering School, Mianyang Teachers' College, Mianxing Road No. 166, Mianyang City, Sichuan Province, China. 621000. E-mail: [xueshishancarol@163.com;](mailto:xueshishancarol@163.com) 449011902@163.com

Supplementary Information available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

collected on Thermo Scientific ESCALAB Xi+ X-ray Photoelectron Spectrometer. Zeiss EVO MA15 scanning electronic microscope (SEM) was employed to observe the microstructure of the materials, while elemental composition was carried out using Energy Dispersive X-ray spectroscopy (EDX). Zeta Potential was performed by the dynamic light scattering measurement (Nano ZS, Malvern Instruments Ltd) at room temperature in the neutral environment. The specific surface area of the materials was calculated by N_2 adsorption-desorption isotherm data measured by Brunauer-Emmett-Teller (BET) analysis conducted with a surface area analyzer (Quantachrome Instruments v10.0). Photoluminescence (PL, Dual-FL) was carried out to investigate the effects of rate of recombination of the 2D/2D $V_2C/g-C_3N_4$ heterojunction. The light adsorption and gap were estimated by diffuse reflectance spectra (DRS, UV-3600Plus) in the ultraviolet-visible (UV-vis) range. Electrochemical experiments were made with 0.1 M $Na₂SO₄$ or 0.5M KCl in an electrode system consisting of Pt wire, Ag/AgCl electrode, and sample electrode (reference electrode) using an electrochemical workstation (CHI 660D) under dark environment or visible light environment.

Adsorption Test

The different amounts of dye contaminants (RhB, CV, MB) were dissolved in the deionized water with different pH value (4, 7, or 10) regulated by HCl or NaOH to obtain the dye solution with the concentration of 15, 20, or 25 mg/L. The V_xG_y (0.1 g) was added to the different dye solutions (100 mL) under dark environment. The concentrations of the dye solutions at different time were calculated by a predetermined calibration curve versus dye concentrations of a standard solution which were surveyed by UV-Visible spectrophotometry (PerkinElmer, model Lambda 650, Shelton, Connecticut, U.S.A) at λ_{max} (RhB for 554 nm, CV for 584 nm and MB for 660 nm). The adsorption rate was calculated. $\frac{\hbar Q}{G_0}$ the following ff θ thala:

$$
0 \qquad (\text{E-1})
$$

where *C^o* is the original concentration of the dye solutions, *Ct* is the concentration of the solution after the adsorption by V_xG_y at different times.

Kinetics of dyes adsorption on 2D/2D V2C/g-C3N⁴ heterojunction

The adsorption experiments in different dye solutions were executed to evaluate the adsorption kinetics. The adsorption capacity of obtained V_xG_y for RhB, CV or MB at equilibrium (Q_e , mg/g) and different time intervals $(\mathsf{Q}_t, \mathsf{mg/g})$ were calculated via the following equation<u>s:</u> (E-2) $(\overline{C}_0 - \overline{C}_e) \times V$ \boldsymbol{m}

ARTICLE

\nCollected on Thermo Scientific ESCALAB Xi+ X-ray Photoelectron

\n
$$
Q_t = \frac{(C_0 - C_t) \times V}{m}
$$
\n[E-3]

Where, C_0 (mg/L) is the initial concentration of RhB, CV or MB solutions, C_e (mg/L) and C_t (mg/L) are the concentration of RhB, CV or MB solutions at equilibrium and a given time t, respectively. V (L) is the volume of RhB, CV or MB solutions and m (g) represents the weight of obtained V_xG_y .

The adsorption behavior of as-prepared V_xG_y for RhB, CV or MB was investigated through pseudo-first-order kinetic model, pseudo-second-order kinetic model and intraparticle diffusion model, of which formulas were shown as follow:

$$
\ln \frac{(\rho_e - \rho_d)}{Q_t} = \frac{lnQ_e - K_1t}{K_2Q_e^2} + \frac{lnQ_e - K_1t}{Q_e}
$$
 (E-6)
\n
$$
Q_t = K_p t^{0.5} + C
$$
 (E-8)

Where K₁ (min⁻¹), K₂ (min⁻¹) and K_p (g/mg/min) was the adsorption rate constant of pseudo-first-order kinetic model, pseudo-second-order kinetic model and intraparticle diffusion model, respectively. C reflects a constant associated with the boundary layer. The implications of Q_e and Q_t were displayed in previous paragraph.

Photocatalysis Degradation Test

The photodegradation of dye pollutants (RhB, CV and MB with the different original concentrations of 15, 20 and 25 mg/L at different pH values of 4, 7 and 10) was researched using by V_xG_y composites which were beforehand put in the dye solution for 50 min in dark environment under magnetic stirring at room temperature to exclude the influence of adsorption. The light with full spectrum to visible light was supplied by metal halide lamp (50 W). The dye solutions equipping with V_xG_y composites in the beaker were placed between two lamps from which were at the distance of 20 cm (the intensity of light irradiation was controlled at $100 \, \text{W/m}^2$). The solutions underwent the photodegradation procedure were measured by UV-vis spectrophotometry (PerkinElmer, model Lambda 650, Shelton, Connecticut, U.S.A) at λ_{max} (RhB for 554 nm, CV for 584 nm and MB for 660 nm). The photodegradation ratio was calculated by the equation: $DR = \frac{C}{C_0} \times 100\%$

(E-9)

where *C^o* is the concentration of the solution before illumination, C_t is the concentration of the solution after illumination.

Results

Fig. S5 EDX plots of g-C₃N₄, V₂AlC, V₂C MXene and V₂C/ g-C₃N₄ heterojunction

Fig. S7 Electrochemical impedance spectra (in the dark environment) of $g - C_3N_4$, V_1G_5 and V_1G_7 heterojunctions

Fig. S8 Adsorption capacity (Q_t) of V_xG_y heterojunctions for CV (original content of 20 mg L⁻¹) at (a) pH=4, (b) pH=7, (c) pH=10; for RhB (original content of 20 mg L⁻¹) at (d) pH=4, (e) pH=7, (f) pH=10; for MB (original content of 20 mg L⁻¹) at (g) pH=4, (h) pH=7, (i) pH=10.

with the original contents of 20 mg L⁻¹ onto V_xG_y heterojunctions fitted by the pseudo-first-order kinetic model

Fig. S10 Adsorption kinetics on the adsorption of CV (original content of 20 mg L⁻¹) at (a) pH=4, (b) pH=10; RhB (original content of 20 mg L⁻¹) at (c) pH=4, (d) pH=10; MB (original content of 20 mg L⁻¹) at (e) pH=4, (f) pH=10 onto V_xG_y heterojunctions fitted by the pseudo-second-order kinetic model

8 | *J. Name*., 2012, **00**, 1-3 This journal is © The Royal Society of Chemistry 20xx

Fig. S11 Adsorption capacity (Q_t) of V_xG_y heterojunctions for CV (pH=7) with the original content of (a) 15 mg L⁻¹, (b) 20 mg L⁻¹, (c) 25 mg L⁻¹; for RhB (pH=7) with the original content of (d) 15 mg L⁻¹, (e) 20 mg L⁻¹, (f) 25 mg L⁻¹; for MB (pH=7) with the original content of (g) 15 mg L⁻¹, (h) 20 mg L⁻¹, (i) 25 mg L⁻¹.

10 | *J. Name*., 2012, **00**, 1-3 This journal is © The Royal Society of Chemistry 20xx

Journal Name ARTICLE

Fig. S12 Adsorption kinetics on the adsorption of CV with the original content of (a) 15 mg L⁻¹, (b) 25 mg L⁻¹; RhB with the original content of (c) 15 mg L⁻¹, (d) 25 mg L⁻¹; MB with the original content of (e) 15 mg L⁻¹, (f) 25 mg L⁻¹ onto V_xG_y heterojunctions at pH value of 7 fitted by the pseudo-first-order kinetic model

Fig. S13 Removal ratios of CV with the original content of (a) 15 mg L⁻¹, (b) 25 mg L⁻¹; RhB with the original content of (c) 15 mg L⁻¹ ¹, (d) 25 mg L⁻¹; MB with the original content of (e) 15 mg L⁻¹, (f) 25 mg L⁻¹ onto V_xG_y heterojunctions at pH value of 7.

Notes and references

- 1 S.S. Xue, D.L. He, X.C. Hu, Y.Q. Cao, J.L. Ge, S.X. Liu, *J. Polym. Eng.*, 2023, **43**, 594.
- 2 J.Y. Li, X. Yu, Y. Zhu, X.H. Fu, Y.M. Zhang, *J. Alloy Compd.*, 2021, **850**, 156778.
- 3 M. Madi, M. Tahir, Z.Y. Zakaria, *J. CO² Util.*, 2022, **65**, 102238.