Supplementary Information (SI) for RSC Advances. This journal is © The Royal Society of Chemistry 2024

Supporting Information

For

 Microwave-Assisted Synthesis of Base-Modified Fluorescent 1,4-Dihydropyridine Nucleosides: Photophysical Characterization and Insights
 Aditi Arora,^a Sumit Kumar,^a Jyotirmoy Maity,^{a,b} and Brajendra K. Singh^{*,a}
 ^aBioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110007
 ^bDepartment of Chemistry, St. Stephen's College, University of Delhi, Delhi-110 007
 *Corresponding Author: Brajendra K Singh, Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110 007, India; E-mail: singhbk@chemistry.du.ac.in.

Experimental Part and NMR Spectra

Table of Contents

Experimental	3
General method for the synthesis of compounds 5a-i	3
General method for the synthesis of compounds 6a-i	11
¹ H and ¹³ C NMR Spectra of compound 5a	18
¹ H- ¹ H COSY and ¹ H- ¹³ C HETCOR NMR Spectra of compound 5a	19
DEPT-135 NMR Spectra of compound 5a	20
¹ H and ¹³ C NMR Spectra of compound 5b	21
¹ H and ¹³ C NMR Spectra of compound 5 c	22
¹ H and ¹³ C NMR Spectra of compound 5d	23
¹ H and ¹³ C NMR Spectra of compound 5 e	24
¹ H and ¹³ C NMR Spectra of compound 5 f	25
¹ H and ¹³ C NMR Spectra of compound 5g	26
¹ H and ¹³ C NMR Spectra of compound 5h	27
¹⁹ F NMR Spectra of compound 5h	28
¹ H and ¹³ C NMR Spectra of compound 5 i	29
¹ H and ¹³ C NMR Spectra of compound 6a	30
¹ H and ¹³ C NMR Spectra of compound 6b	31
¹ H and ¹³ C NMR Spectra of compound 6c	32
¹ H and ¹³ C NMR Spectra of compound 6d	33
¹ H and ¹³ C NMR Spectra of compound 6e	34
D ₂ O Exchange NMR Spectra of compound 6e	35
¹ H and ¹³ C NMR Spectra of compound 6f	36
¹ H and ¹³ C NMR Spectra of compound 6g	37
¹ H and ¹³ C NMR Spectra of compound 6h	38
¹⁹ F NMR Spectra of compound 6h	39
¹ H and ¹³ C NMR Spectra of compound 6i	40
¹ H and ¹³ C NMR Spectra of unsymmetrical 1,4-dihydropyridine	41
Absorption and Emission Spectra of compounds 6a-i	42

1. Experimental

Unless otherwise noted, all chemicals and solvents were used directly without further purification and were acquired from Sigma-Aldrich Chemicals Pvt. Limited India and Alfa-Aesar (Thermo Fischer Scientific India Pvt. Limited), as well as from local commercial sources. Solvents used in column chromatography were dried and distilled prior to use. Solvents were removed using a rotary evaporator at low pressure, and the remaining solvent was removed thereafter under high vacuum. The column chromatography method used silica gel (100-200 mesh). Using a Buchi M-560 instrument that was not adjusted, melting points were determined. An Agilent G6530AA LC Q-TOF mass spectrometer was used to conduct the HRMS analysis using the ESI method. Using a PerkinElmer model 2000 FT-IR spectrometer, the IR spectra of various compounds were recorded and represented as wavenumbers (cm⁻¹). The compounds were visible under UV irradiation or by charring with a 5% alcoholic sulfuric acid solution. The Rf values of the compounds were reported from an analytical TLC examination utilizing the indicated solvents and 0.25 mm silica gel 60 F254 plates. Using tetramethylsilane (TMS) as an internal standard, the ¹H-, ¹³C-, and other 2D NMR spectra were recorded on the JEOL alpha-400 and Bruker-Avance Neo 400 FT-NMR spectrometers. The coupling constant (J) is expressed in Hz while the chemical shift values are on the δ scale. All microwave assisted experiments were performed in a closed vial reaction vial applying a dedicated CEM-Discover monomode microwave apparatus operating at a frequency of 2.45 GHz with continuous irradiation power from 0 to 300 W (CEM Corporation, P.O. Box 200, Matthews, NC 28106).

1.1.

General method for the synthesis of 3',5'-

di-O-acetyl-5-(dialkyl 2'',6''-dimethyl-1'',4''-dihydropyridine-3'',5''-dicarboxylate)-4''yl-2'-deoxyuridine (5a-h) and 3',5'-di-O-acetyl-5-(3'',5''-Diacetyl-2'',6''-dimethyl-1'',4''-dihydropyridine)-4''-yl-2'-deoxyuridine (5i)

A mixture of 3',5'-di-O-acetyl-5-formyl-2'-deoxyuridine (**3**, 1 mmol), β -keto ester (**4a-h**, 3 mmol) or acetyl acetone **4i**, ammonium acetate (1.2 mmol) and Ba(NO₃)₂ (0.1 mmol) was stirred in a microwave vial at 60 °C for 20 minutes under solvent-free conditions at 150 W and 1 atm pressure. After completion of the reaction (as indicated by TLC examination), the residue was extracted with chloroform (3 x 20 mL) and the organic layer was washed with brine solution (3 x 20 mL). The organic layer was dried over anhydrous sodium sulphate and excess

solvent was removed under reduced pressure. The crude product thus obtained was purified by column chromatography using MeOH in chloroform as the gradient solvent system to afford the desired products **5a-i** in 86-96% yields.

1.1.1. 3',5'-Di-O-acetyl-5-(diethyl 2'',6''-dimethyl-1'',4''-dihydropyridine-3'',5''dicarboxylate)-4''-yl-2'-deoxyuridine (5a)

It was obtained as a white solid in 93% yield (0.52 g). $R_f = 0.42$ (5% MeOH in chloroform); Melting Point = 202-204 °C; IR (KBr, cm⁻¹): 3328, 2976, 1743, 1674, 1492, 1465, 1375, 1271, 1200, 1092, 1056, 1020, 774, 597, 552, 424; ¹H NMR (CDCl₃, 400 MHz): δ 9.54 (brs, 1H, N-3H), 7.46 (brs, 1H, C-6H), 6.76 (s, 1H, N-1"H), 6.34-6.31 (m, 1H, C-1'H), 5.25-5.24 (m, 1H, C-3'H), 4.72 (s, 1H, C-4"H), 4.35-4.31 (m, 1H, C-4'H), 4.28-4.24 (m, 1H, C-5'H), 4.22-4.20 (m, 1H, C-5'H), 4.12-4.02 (m, 4H, 2 x CH₂CH₃), 2.41-2.36 (m, 1H, C-2'H_{a+b}), 2.28-2.26 (m, 1H, C-2'H), 2.23 (s, 3H, CH₃), 2.22 (s, 3H, CH₃), 2.20 (s, 3H, CH₃), 2.10 (s, 3H, CH₃), 1.23 (t, *J* = 7.1 Hz, 3H, CH₂CH₃), 1.17 (t, *J* = 7.1 Hz, 3H, CH₂CH₃); ¹³C NMR (CDCl₃, 100 MHz): δ 170.9 (OCOCH₃), 170.4 (OCOCH₃), 167.6 (COOEt), 167.4 (COOEt), 162.3 (CONH), 150.3 (CONH), 146.7 (C-2"), 146.3 (C-6"), 137.3 (C-6), 117.3 (C-5), 98.6 (C-5"), 98.4 (C-3"), 84.6 (C-1'), 81.9 (C-4'), 74.5 (C-3'), 64.2 (C-5'), 59.7 (CH₂CH₃), 59.6 (CH₂CH₃), 37.4 (C-2'), 36.1 (C-4"), 20.9 (CH₃), 20.9 (CH₃), 19.8 (CH₃), 19.3 (CH₃), 14.5 (CH₂CH₃), 14.3 (CH₂CH₃); HRMS (ESI): *m/z* calculated for C₂₆H₃₄N₃O₁₁⁺ [M+H]⁺: 564.2193, found: 564.2218.

1.1.2. 3',5'-Di-O-acetyl-5-(dimethyl 2'',6''-dimethyl-1'',4''-dihydropyridine-3'',5''dicarboxylate)-4''-yl-2'-deoxyuridine (5b)

It was obtained as a white solid in 96% yield (0.51 g). $R_f = 0.41$ (5% MeOH in chloroform); Melting Point = 196-198 °C; IR (KBr, cm⁻¹): 3278, 2916, 1728, 1658, 1457, 1363, 1266, 1054, 1009, 761, 603, 562; ¹H NMR (CDCl₃, 400 MHz): δ 9.40 (brs, 1H, N-3H), 7.43 (brs, 1H, C-6H), 6.76 (s, 1H, N-1"H), 6.38-6.34 (m, 1H, C-1"H), 5.27-5.25 (m, 1H, C-3"H), 4.72 (s, 1H, C-4"H), 4.33-4.31 (m, 2H, C-4"H, C-5"H), 4.24-4.22 (m, 1H, C-5"H), 3.65 (s, 3H, CH₃), 3.59 (s, 3H, CH₃), 2.44-2.39 (m, 1H, C-2"H_a), 2.27-2.24 (m, 1H, C-2"H_b), 2.23 (s, 3H, CH₃), 2.22 (s, 3H, CH₃), 2.21 (s, 3H, CH₃), 2.11 (s, 3H, CH₃); ¹³C NMR (CDCl₃, 100 MHz): δ 170.8 (OCOCH₃), 170.5 (OCOCH₃), 168.0 (COOMe), 167.8 (COOMe), 162.3 (CONH), 150.3 (CONH), 146.9 (C-2", C-6"), 137.0 (C-6), 117.3 (C-5), 98.5 (C-3", C-5"), 84.4 (C-1'), 81.9 (C-4'), 74.5 (C-3'), 64.3 (C-5'), 51.0 (CH₃), 50.9 (CH₃), 37.4 (C-2'), 35.9 (C-4"), 21.0 (CH₃), 20.8 (CH₃), 19.6 (CH₃), 19.3 (CH₃); HRMS (ESI): *m/z* calculated for C₂₄H₂₉N₃O₁₁Na⁺ [M+Na]⁺: 558.1700, found: 558.1729.

1.1.3. 3',5'-Di-O-acetyl-5-(di^tbutyl 2'',6''-dimethyl-1'',4''-dihydropyridine-3'',5''dicarboxylate)-4''-yl-2'-deoxyuridine (5c)

It was obtained as a white solid in 90% yield (0.56 g). $R_f = 0.45$ (5% MeOH in chloroform); Melting Point = 199-200 °C; IR (KBr, cm⁻¹): 3296, 2936, 1711, 1622, 1488, 1354, 1228, 1026, 785, 583, 548, 496; ¹H NMR (CDCl₃, 400 MHz): δ 9.46 (brs, 1H, N-3H), 7.48 (brs, 1H, C-6H), 6.38 (s, 1H, N-1"H), 6.36-6.32 (m, 1H, C-1"H), 5.26-5.24 (m, 1H, C-3"H), 4.65 (s, 1H, C-4"H), 4.36-4.31 (m, 1H, C-4"H), 4.22-4.21 (m, 1H, C-5"H), 4.21-4.19 (m, 1H, C-5"H), 2.36-2.31 (m, 1H, C-2"H_{a+b}), 2.23 (s, 3H, CH₃), 2.21 (s, 3H, CH₃), 2.14 (s, 3H, CH₃), 2.10 (s, 3H, CH₃), 2.01-2.00 (m, 1H, C-2H), 1.41 (s, 9H, C(CH₃)₃), 1.38 (s, 9H, C(CH₃)₃); ¹³C NMR (CDCl₃, 100 MHz): δ 171.0 (OCOCH₃), 170.4 (OCOCH₃), 166.9 (COOBu^t), 162.4 (CONH), 150.5 (CONH), 145.7 (C-2"), 144.9 (C-6"), 137.1 (C-6), 117.2 (C-5), 99.9 (C-3"), 99.5 (C-5"), 84.4 (C-1'), 81.9 (C-4'), 79.6 (C(CH₃)₃), 79.4 (C(CH₃)₃), 74.7 (C-3'), 64.2 (C-5'), 37.3 (C-2'), 36.5 (C-4"), 28.5 (CH₃), 28.4 (CH₃), 21.0 (CH₃), 20.9 (CH₃), 20.0 (CH₃), 19.3 (CH₃); HRMS (ESI): *m/z* calculated for C₃₀H₄₂N₃O₁₁⁺ [M+H]⁺: 620.2819, found: 620.2818. 1.1.4. 3',5'-Di-O-acetyl-5-(diisopropyl 2'',6''-dimethyl-1'',4''-dihydropyridine-3'',5''dicarboxylate)-4''-yl-2'-deoxyuridine (5d)

It was obtained as a white solid in 92% yield (0.54 g). $R_f = 0.43$ (5% MeOH in chloroform); Melting Point = 208-209 °C; IR (KBr, cm⁻¹): 3324, 1710, 1683, 1656, 1584, 1557, 1512, 1458, 1412, 1304, 1277, 1232, 1169, 1105, 1051, 825, 780, 591; ¹H NMR (CDCl₃, 400MHz): δ 9.41 (brs, 1H, N-3H), 7.50 (brs, 1H, C-6H), 6.54 (s, 1H, N-1"H), 6.34-6.30 (m, 1H, C-1'H), 5.26-5.24 (m, 1H, C-3'H), 4.99-4.92 (m, 2H, CH(CH₃)₂), 4.69 (s, 1H, C-4"H), 4.37-4.33 (m, 1H, C-4"H), 4.28-4.24 (m, 1H, C-5'H), 4.23-4.20 (m, 1H, C-5'H), 2.39-2.34 (m, 1H, C-2'H_a), 2.30-2.26 (m, 1H, C-2'H_b), 2.22 (s, 6H, CH₃), 2.18 (s, 3H, CH₃), 2.10 (s, 3H, CH₃), 1.22-1.19 (m, 3H, CH₃), 1.19-1.17 (m, 6H, 2 x CH₃), 1.13-1.12 (m, 3H, CH₃); ¹³C NMR (CDCl₃, 100MHz): δ 171.0 (OCOCH₃), 170.5 (OCOCH₃), 167.1 (COOCH(CH₃)₂), 162.3 (CONH), 150.4 (CONH), 146.4 (C-2"), 145.8 (C-6"), 137.5 (C-6), 117.2 (C-5), 98.9 (C-3"), 98.6 (C-5"), 84.6 (C-1'), 82.0 (C-4'), 74.7 (C-3'), 67.0 (CH(CH₃)₂), 66.7 (CH(CH₃)₂), 64.2 (C-5'), 37.5 (C-2'), 36.3 (C-4"), 22.2 (CH₃), 22.1 (CH₃), 22.1 (CH₃), 21.0 (CH₃), 20.9 (CH₃), 20.0 (CH₃), 19.4 (CH₃); HRMS (ESI): *m/z* calculated for C₂₈H₃₈N₃O₁₁⁺ [M+H]⁺: 592.2506, found: 592.2525.

1.1.5. 3',5'-Di-O-acetyl-5-(diallyl 2'',6''-dimethyl-1'',4''-dihydropyridine-3'',5''dicarboxylate)-4''-yl-2'-deoxyuridine (5e)

It was obtained as a white solid in 94% yield (0.55 g). $R_f = 0.40$ (5% MeOH in chloroform); Melting Point = 214-216 °C; IR (KBr, cm⁻¹): 3319, 2949, 1739, 1665, 1492, 1456, 1384, 1230, 1194, 1104, 1014, 783, 734, 597, 561, 434; ¹H NMR (CDCl₃, 400 MHz): δ 9.50 (brs, 1H, N-3H), 7.46 (brs, 1H, C-6H), 6.83 (s, 1H, N-1"H), 6.34-6.31 (m, 1H, C-1'H), 5.95-5.89 (m, 1H, C-3'H), 5.88-5.82 (m, 1H, -CH=CH₂), 5.29-5.26 (m, 1H, -CH=CH₂), 5.24-5.21 (m, 2H, -CH=CH₂), 5.20-5.19 (m, 1H, -CH=CH₂a), 5.17-5.13 (m, 2H, -CH=CH₂b, C-4'H), 4.76 (s, 1H, C-4"H), 4.63-4.58 (m, 1H, CH₂a), 4.53-4.52 (m, 2H, CH₂), 4.36-4.32 (m, 1H, CH₂b), 4.27-4.24 (m, 1H, C-5'H), 4.22-4.20 (m, 1H, C-5'H), 2.38-2.33 (m, 1H, C-2'H_a), 2.27-2.25 (m, 1H, C-2'H_b), 2.24 (s, 3H, CH₃), 2.22 (s, 3H, CH₃), 2.19 (s, 3H, CH₃), 2.10 (s, 3H, CH₃); ¹³C NMR (CDCl₃, 100 MHz): δ 170.8 (OCOCH₃), 170.4 (OCOCH₃), 167.1 (COOCH₂CH=CH), 167.0 (COOCH₂CH=CH), 162.3 (CONH), 150.3 (CONH), 147.1 (C-2"), 147.1 (C-6"), 137.3 (C-6), 133.1 (-CH=CH₂), 132.9 (-CH=CH₂), 117.7 (-CH=CH₂), 117.6 (-CH=CH₂), 67.0 (CH(CH₃)₂), 66.7 (CH(CH₃)₂), 64.2 (C-5'), 37.4 (C-2'), 36.2 (C-4"), 20.9 (CH₃), 20.9 (CH₃), 19.8 (CH₃), 19.5 (CH₃); HRMS (ESI): *m/z* calculated for C₂₈H₃₄N₃O₁₁⁺ [M+H]⁺: 588.2193, found: 588.2176.

1.1.6. 3',5'-Di-O-acetyl-5-(diisobutyl 2'',6''-dimethyl-1'',4''-dihydropyridine-3'',5''dicarboxylate)-4''-yl-2'-deoxyuridine (5f)

It was obtained as a white solid in 92% yield (0.57 g). $R_f = 0.46$ (5% MeOH in chloroform); Melting Point = 204-205 °C; IR (KBr, cm⁻¹): 3314, 1717, 1675, 1641, 1529, 1422, 1297, 1214, 1151, 1101, 1069, 833, 786, 577; ¹H NMR (CDCl₃, 400 MHz): δ 9.42 (brs, 1H, N-3H), 7.50 (brs, 1H, C-6H), 6.79 (s, 1H, N-1"H), 6.33-6.30 (m, 1H, C-1'H), 5.27-5.25 (m, 1H, C-3'H), 4.78 (s, 1H, C-4"H), 4.37-4.34 (m, 1H, C-4'H), 4.29-4.24 (m, 2H, 2 x C-5'H), 3.89-3.85 (m, 2H, CH₂), 3.83-3.78 (m, 2H, CH₂), 2.41-2.36 (m, 1H, C-2'H_a), 2.32-2.28 (m, 1H, C-2'H_b), 2.26 (s, 3H, CH₃), 2.23 (s, 3H, CH₃), 2.22 (s, 3H, CH₃), 2.12 (s, 3H, CH₃), 1.94-1.88 (m, 2H, 2 x C<u>H</u>(CH₃)₂), 0.94-0.93 (m, 6H, 2 x CH₃), 0.90-0.87 (m, 6H, 2 x CH₃); ¹³C NMR (CDCl₃, 100 MHz): δ 171.0 (OCOCH₃), 170.4 (OCOCH₃), 167.7 (COOCH₂CH(CH₃)₂), 167.6 (COOCH₂CH(CH₃)₂), 162.4 (CONH), 150.3 (CONH), 146.5 (C-2"), 146.0 (C-6"), 137.4 (C-6), 117.1 (C-5), 98.8 (C-3"), 98.6 (C-5"), 84.8 (C-1'), 82.0 (C-4'), 74.6 (C-3'), 70.3 (CH₂), 70.2 (CH₂), 64.2 (C-5'), 37.3 (C-2'), 36.0 (C-4"), 27.8 (<u>C</u>H(CH₃)₂), 27.7 (<u>C</u>H(CH₃)₂), 20.9 (CH₃), 20.9 (CH₃), 19.4 (CH₃), 19.3 (CH₃); HRMS (ESI): m/z calculated for C₃₀H₄₂N₃O₁₁⁺ [M+H]⁺: 620.2819, found: 620.2821.

1.1.7. 3',5'-Di-O-acetyl-5-(diethyl 2'',6''-dipropyl-1'',4''-dihydropyridine-3'',5''dicarboxylate)-4''-yl-2'-deoxyuridine (5g)

It was obtained as a white solid in 88% yield (0.55 g). $R_f = 0.47$ (5% MeOH in chloroform); Melting Point = 216-218 °C; IR (KBr, cm⁻¹): 3333, 2921, 1719, 1639, 1472, 1435, 1362, 1226, 1182, 1011, 771, 727, 596, 552; ¹H NMR (CDCl₃, 400 MHz): δ 9.31 (brs, 1H, N-3H), 7.45 (brs, 1H, C-6H), 6.36-6.32 (m, 1H, C-1'H), 6.29 (s, 1H, N-1"H), 5.25-5.23 (m, 1H, C-3'H), 4.75 (s, 1H, C-4"H), 4.36-4.32 (m, 1H, C-4'H), 4.28-4.24 (m, 1H, C-5'H), 4.22-4.20 (m, 1H, C-5'H), 4.14-4.05 (m, 4H, 2 x CH₂CH₃), 2.76-2.68 (m, 2H, CH₂), 2.47-2.43 (m, 1H, CH₂a), 2.41-2.35 (m, 2H, C-2'H_a, CH₂b), 2.27-2.25 (m, 1H, C-2'H_b), 2.23 (s, 3H, CH₃), 2.10 (s, 3H, CH₃), 1.62-1.52 (m, 4H, 2 x CH₂), 1.24 (t, *J* = 7.1 Hz, 3H, CH₂CH₃), 1.18 (t, *J* = 7.1 Hz, 3H, CH₂CH₃), 0.96-0.93 (m, 6H, 2 x CH₃); ¹³C NMR (CDCl₃, 100 MHz): δ 170.9 (OCOCH₃), 170.4 (OCOCH₃), 167.3 (COOEt), 167.0 (COOEt), 161.9 (CONH), 150.7 (CONH), 150.3 (C-2"), 150.3 (C-6"), 137.1 (C-6), 117.4 (C-5), 98.3 (C-5"), 98.1 (C-3"), 84.5 (C-1'), 81.9 (C-4'), 74.6 (C-3'), 64.2 (C-5'), 59.7 (CH₂CH₃), 59.6 (CH₂CH₃), 37.4 (C-2'), 36.2 (C-4"), 35.1 (CH₂), 34.5 (CH₂), 22.0 (CH₂), 21.9 (CH₂), 20.9 (CH₃), 20.9 (CH₃), 14.5 (CH₂CH₃), 14.3 (CH₂CH₃), 14.0 (CH₂CH₃); HRMS (ESI): *m/z* calculated for C₃₀H₄₂N₃O₁₁⁺ [M+H]⁺: 620.2819, found: 620.2819.

1.1.8. 3',5'-di-O-acetyl-5-(diethyl 2'',6''-bisdifluoromethyl-1'',4''-dihydropyridine-3'',5''dicarboxylate)-4''-yl-2'-deoxyuridine (5h)

It was obtained as a white solid in 86% yield (0.55 g). $R_f = 0.42$ (5% MeOH in chloroform); Melting Point = 212-213 °C; IR (KBr, cm⁻¹): 3338, 1712, 1650, 1583, 1517, 1422, 1313, 1267, 1228, 1164, 1121, 1049, 774, 563; ¹H NMR (CDCl₃, 400 MHz): δ 9.22-9.20 (m, 1H, N-3H), 7.39 (brs, 1H, N-1"H), 7.28-7.06 (m, 1H, C-6H), 6.35-6.30 (m, 1H, C-1'H), 5.95-5.72 (m, 1H, CHF₂), 5.67-5.54 (m, 1H, CHF₂), 5.24-5.19 (m, 1H, C-3'H), 4.43-4.38 (m, 1H, C-4"H), 4.28-4.23 (m, 2H, 2 x C-5'H), 4.18-4.11 (m, 4H, 2 x CH₂CH₃), 4.05-4.00 (m, 1H, C-4'H), 2.47-2.39 (m, 1H, C-2'H_a), 2.18-2.16 (m, 3H, CH₃), 2.12 (s, 3H, CH₃), 2.10-2.05 (m, 1H, C-2'H_b), 1.21-1.16 (m, 3H, CH₂CH₃), 1.15-1.10 (m, 3H, CH₂CH₃); ¹³C NMR (CDCl₃, 100 MHz): δ 172.6 (OCOCH₃), 172.4 (OCOCH₃), 170.6-170.4 (m, COOEt), 164.9 (d, *J* = 18.8 Hz, COOEt), 161.6 (CONH), 150.1-149.9 (m, C-2" & C-6"), 137.2 (C-6), 116.3 (d, *J* = 7.8 Hz, CHF₂), 113.8 (d, *J* = 6.6 Hz, C-5), 111.3 (d, *J* = 6.8 Hz, C-5"), 109.3 (d, *J* = 6.6 Hz, C-3"), 103.3 (d, *J* = 5.0 Hz, CHF₂), 84.8 (C-1'), 82.3 (d, *J* = 7.6 Hz, C-4'), 74.3 (d, *J* = 42.1 Hz, C-3'), 63.9 (d, *J* = 32.3 Hz, CHF₂), 62.3 (d, *J* = 20.7 Hz, CH₂CH₃), 60.6 (d, *J* = 1.9 Hz, CH₂CH₃), 37.5 (C-2'), 37.5 (C-4"), 20.9 (CH₃), 20.9-20.7 (m, CH₃), 14.1-13.9 (m, CH₂CH₃); HRMS (ESI): *m/z* calculated for C₂₆H₂₉F₄N₃O₁₁Na⁺ [M+Na]⁺: 658.1636, found: 658.1635.

1.1.9.3',5'-di-O-acetyl-5-(3'',5''-Diacetyl-2'',6''-dimethyl-1'',4''-dihydropyridine)-4''-yl-2'deoxyuridine (5i)

It was obtained as a yellow solid in 94% yield (0.47 g). $R_f = 0.46$ (5% MeOH in chloroform); Melting Point = 256-258 °C; IR (KBr, cm⁻¹): 3318, 1747, 1718, 1450, 1221, 1124, 1008, 786, 628; ¹H NMR (CDCl₃, 400 MHz): δ 9.40 (brs, 1H, N-3H), 7.15 (brs, 1H, C-6H), 6.75-6.67 (brs, 1H, N-1"H), 6.23-6.20 (m, 1H, C-1'H), 5.19-5.16 (m, 1H, C-3'H), 5.00 (s, 1H, C-4"H), 4.30-4.26 (m, 1H, C-4'H), 4.24-4.22 (m, 1H, C-5'H), 4.17-4.13 (m, 1H, C-5'H), 2.50-2.45 (m, 1H, C-2'H_a), 2.34 (s, 3H, CH₃), 2.32 (s, 3H, CH₃), 2.28 (s, 3H, CH₃), 2.27 (s, 3H, CH₃), 2.15 (s, 3H, CH₃), 2.10 (s, 3H, CH₃), 2.06-2.01 (m, 1H, C-2'H_b); ¹³C NMR (CDCl₃, 100 MHz): δ 198.3 (CO), 197.9 (CO), 171.1 (OCOCH₃), 170.4 (OCOCH₃), 162.7 (CONH), 150.0 (CONH), 144.0 (C-2"), 143.9 (C-6"), 136.8 (C-6), 117.6 (C-5), 110.6 (C-3"), 110.4 (C-3"), 85.3 (C-1'), 82.0 (C-4'), 74.3 (C-3'), 64.1 (C-5'), 37.3 (C-2'), 34.1 (C-4"), 29.9 (CH₃), 29.5 (CH₃), 20.9 (CH₃), 19.9 (CH₃), 19.6 (CH₃); HRMS (ESI): *m/z* calculated for C₂₄H₃₀N₃O₉⁺ [M+H]⁺: 504.1982, found: 504.1901.

1.2. General method for the synthesis of 5-(diethyl 2'',6''-dimethyl-1'',4''dihydropyridine-3'',5''-dicarboxylate)-4''-yl-2'-deoxyuridine (6a-h) and 5-(3'',5''-Diacetyl-2'',6''-dimethyl-1'',4''-dihydropyridine)-4''-yl-2'-deoxyuridine (6i)

To a solution of 3',5'-di-O-acetyl-5-(dialkyl 2",6"-dimethyl-1",4"-dihydropyridine-3",5"dicarboxylate)-2'-deoxyuridine (**5a-h**, 1mmol) or 3',5'-di-O-acetyl-5-(3'',5''-Diacetyl-2",6"dimethyl-1",4"-dihydropyridine)-4"-yl-2'-deoxyuridine (**5i**, 1mmol) in MeOH (10 mL), NaOMe (2.2 mmol) was added. The reaction mixture was stirred for 10-15 minutes at 25 °C. The progress of the reaction mixture was monitored through TLC. After completion of the reaction, the reaction mixture was neutralized with seralite (H⁺) resin. The solution was then filtered through a cotton plug and removed under reduced pressure. The crude product thus obtained was purified by column chromatography using MeOH in chloroform as the solvent system to afford the desired products **6a-i** in 97-99% yields.

1.2.1. 5-(Diethyl 2'',6''-dimethyl-1'',4''-dihydropyridine-3'',5''-dicarboxylate)-4''-yl-2'deoxyuridine (6a)

It was obtained as a white solid in 98% yield (0.47 g). $R_f = 0.37$ (10% MeOH in chloroform); Melting Point = 226-227 °C; IR (KBr, cm⁻¹): 3328, 3216, 1724, 1676, 1444, 1358, 1047, 775, 599, 556; ¹H NMR (DMSO- d_6 , 400 MHz): δ 11.05 (brs, 1H, N-3H), 8.76 (brs, 1H, N-1"H), 7.36 (s, 1H, C-6H), 6.17-6.14 (m, 1H, C-1'H), 5.27-5.26 (m, 1H, C-4'H), 4.93-4.91 (m, 1H, C-3'H), 4.66 (s, 1H, C-4"H), 4.21 (brs, 1H, OH), 4.06-4.02 (m, 2H, CH₂CH₃), 4.00-3.93 (m, 2H, CH₂CH₃), 3.79 (brs, 1H, OH), 3.55-3.51 (m, 1H, C-5'H), 3.51-3.47 (m, 1H, C-5'H), 2.17 (s, 3H, CH₃), 2.15 (s, 3H, CH₃), 2.10-2.06 (m, 1H, C-2'H_a), 1.90-1.87 (m, 1H, C-2'H_b), 1.17-1.15 (m, 3H, CH₂CH₃), 1.15-1.13 (m, 3H, CH₂CH₃); ¹³C NMR (DMSO- d_6 , 100 MHz): δ 167.5 (COOEt), 167.4 (COOEt), 162.1 (CONH), 150.6 (CONH), 146.7 (C-2"), 146.4 (C-6"), 137.1 (C-6), 118.0 (C-5), 99.1 (C-5"), 98.9 (C-3"), 87.8 (C-1'), 84.3 (C-4'), 71.4 (C-3'), 62.3 (C-5'),

59.3 (<u>CH</u>₂CH₃), 59.2 (<u>CH</u>₂CH₃), 34.0 (C-2'), 18.6 (CH₃), 18.5 (CH₃), 14.8 (CH₂<u>C</u>H₃), 14.7 (CH₂<u>C</u>H₃); HRMS (ESI): *m/z* calculated for C₂₂H₃₀N₃O₉⁺ [M+H]⁺: 480.1982, found: 480.1992. 1.2.2. 5-(Dimethyl 2'',6''-dimethyl-1'',4''-dihydropyridine-3'',5''-dicarboxylate)-4''-yl-2'- deoxyuridine (6b)

It was obtained as a white solid in 97% yield (0.44 g). $R_f = 0.38$ (10% MeOH in chloroform); Melting Point = 222-224 °C; IR (KBr, cm⁻¹): 3278, 3196, 1718, 1648, 1450, 1353, 1256, 1054, 778, 610, 566; ¹H NMR (DMSO- d_6 , 400 MHz): δ 11.06 (brs, 1H, N-3H), 8.85 (brs, 1H, N-1"H), 7.32 (s, 1H, C-6H), 6.21-6.10 (m, 1H, C-1'H), 5.34-5.24 (m, 1H, C-4'H), 5.02-4.90 (m, 1H, C-3'H), 4.68 (s, 1H, C-4"H), 4.27-4.16 (m, 1H, C-5'H), 3.82-3.75 (m, 1H, C-5'H), 3.44-3.31 (m, 6H, 2 x CH₃), 2.17 (s, 6H, 2 x CH₃), 2.08-2.03 (m, 1H, C-2'H_a), 1.94-1.85 (m, 1H, C-2'H_b); ¹³C NMR (DMSO- d_6 , 100 MHz): δ 167.9 (COOMe), 167.9 (COOMe), 162.3 (CONH), 150.6 (CONH), 146.8 (C-2"), 146.6 (C-6"), 136.9 (C-6), 117.6 (C-5), 98.9 (C-3"), 98.7 (C-5"), 87.8 (C-1'), 84.3 (C-4'), 71.4 (C-3'), 62.3 (C-5'), 51.0 (CH₃), 33.8 (C-2'), 18.4 (CH₃); HRMS (ESI): *m/z* calculated for C₂₀H₂₆N₃O₉⁺ [M+H]⁺: 452.1669, found: 452.1639.

1.2.3. 5-(Di-^tbutyl 2'',6''-dimethyl-1'',4''-dihydropyridine-3'',5''-dicarboxylate)-4''-yl-2'deoxyuridine (6c)

It was obtained as a white solid in 98% yield (0.53 g). $R_f = 0.42$ (10% MeOH in chloroform); Melting Point = 229-231 °C; IR (KBr, cm⁻¹): 3210, 1720, 1638, 1464, 1319, 1229, 1008, 783, 577, 512; ¹H NMR (DMSO- d_6 , 400 MHz): δ 11.08 (brs, 1H, N-3H), 8.57 (brs, 1H, N-1"H), 7.10 (s, 1H, C-6H), 6.15-6.12 (m, 1H, C-1'H), 5.30-5.28 (m, 1H, C-4'H), 4.88 (brs, 1H, OH), 4.66 (s, 1H, C-4"H), 4.18-4.14 (m, 1H, C-3'H), 3.76 (brs, 1H, OH), 3.52-3.45 (m, 1H, C-5'H), 3.45-3.35 (m, 1H, C-5'H), 2.13 (s, 3H, CH₃), 2.11 (s, 3H, CH₃), 2.07-2.04 (m, 1H, C-2'H_a), 1.84-1.77 (m, 1H, C-2'H_b), 1.39 (s, 9H, C(CH₃)₃), 1.37 (s, 9H, C(CH₃)₃); ¹³C NMR (DMSO- d_6 , 100 MHz): δ 167.1 (COOBu^{*t*}), 167.0 (COOBu^{*t*}), 162.2 (CONH), 150.6 (CONH), 145.3 (C-2"), 144.4 (C-6"), 136.1 (C-6), 118.6 (C-5), 101.0 (C-3"), 100.4 (C-5"), 87.7 (C-1'), 84.2 (C-4'), 79.0 (C(CH₃)₃), 78.9 (C(CH₃)₃), 71.3 (C-3'), 62.4 (C-5'), 33.6 (C-2'), 28.5 (CH₃), 28.5 (CH₃), 18.5 (CH₃), 18.4 (CH₃); HRMS (ESI): *m/z* calculated for C₂₆H₃₈N₃O₉⁺ [M+H]⁺: 536.2608, found: 536.2582.

1.2.4. 5-(Diisopropyl 2'',6''-dimethyl-1'',4''-dihydropyridine-3'',5''-dicarboxylate)-4''-yl-2'deoxyuridine (6d)

It was obtained as a white solid in 99% yield (0.50 g). $R_f = 0.41$ (10% MeOH in chloroform); Melting Point = 236-237 °C; IR (KBr, cm⁻¹): 3318, 3214, 1712, 1646, 1627, 1572, 1443, 1318, 1262, 1168, 781, 563; ¹H NMR (DMSO-*d*₆, 400 MHz): δ 11.04 (brs, 1H, N-3H), 8.71 (brs, 1H, N-1"H), 7.25 (s, 1H, C-6H), 6.15-6.12 (m, 1H, C-1'H), 4.89-4.83 (m, 3H, C-4'H, 2 x C<u>H</u>(CH₃)₂), 4.65 (s, 1H, C-4"H), 4.20 (brs, 1H, OH), 3.78 (brs, 1H, OH), 3.54-3.52 (m, 1H, C-3'H), 3.48-3.45 (m, 1H, C-5'H), 3.18-3.16 (m, 1H, C-5'H), 2.16 (s, 3H, CH₃), 2.15 (s, 3H, CH₃), 2.10-2.06 (m, 1H, C-2'H_a), 1.89-1.83 (m, 1H, C-2'H_b), 1.18 (m, 3H, CH(C<u>H₃)₂), 1.17 (m, 3H, CH(CH₃)₂), 1.14-1.12 (m, 3H, CH(CH₃)₂), 1.11-1.09 (m, 3H, CH(C<u>H₃)₂); ¹³C NMR (DMSO-*d*₆, 100 MHz): δ 167.1 (COOCH(CH₃)₂), 167.0 (COOCH(CH₃)₂), 162.1 (CONH), 150.6 (CONH), 146.2 (C-2"), 145.8 (C-6"), 136.8 (C-6), 118.8 (C-5), 99.7 (C-3"), 99.4 (C-5"), 87.8 (C-1'), 84.4 (C-4'), 71.3 (C-3'), 66.4 (<u>C</u>H(CH₃)₂), 66.3 (<u>C</u>H(CH₃)₂), 62.3 (C-5'), 49.1 (C-4"), 33.6 (C-2'), 22.3 (CH₃), 22.2 (CH₃), 22.1 (CH₃), 18.7 (CH₃), 18.6 (CH₃); HRMS (ESI): *m/z* calculated for C₂₄H₃₄N₃O₉⁺ [M+H]⁺: 508.2295, found: 508.2282.</u></u>

1.2.5. 5-(Diallyl 2'',6''-dimethyl-1'',4''-dihydropyridine-3'',5''-dicarboxylate)-4''-yl-2'deoxyuridine (6e)

It was obtained as a white solid in 97% yield (0.49 g). $R_f = 0.40$ (10% MeOH in chloroform); Melting Point = 220-222 °C; IR (KBr, cm⁻¹): 3269, 1727, 1635, 1482, 1456, 1368, 1246, 1074, 739, 592, 545; ¹H NMR (CDCl₃, 400 MHz): δ 11.08 (brs, 1H, N-3H), 8.90 (brs, 1H, N-1"H), 7.27 (s, 1H, C-6H), 6.15-6.12 (m, 1H, C-1'H), 5.95-5.88 (m, 2H, 2 x -C<u>H</u>=CH₂), 5.27-5.26 (m, 1H, -CH=CH_{2a}), 5.25-5.22 (m, 1H, -CH=CH_{2b}), 5.20-5.17 (m, 1H, -CH=CH_{2a}), 5.17-5.14 (m, 1H, -CH=CH_{2b}), 5.14-5.11 (m, 1H, C-3'H), 4.90 (brs, 1H, OH), 4.75 (s, 1H, C-4"H), 4.53-4.50 (m, 3H, CH₂ & CH_{2a}), 4.21-4.16 (m, 1H, CH_{2b}), 3.80-3.76 (m, 1H, C-4'H), 3.53-3.45 (m, 2H, C-5'H), 3.36 (brs, 1H, OH), 2.19-2.18 (m, 6H, 2 x CH₃), 2.09-2.04 (m, 1H, C-2'H_a), 1.90-1.83 (m, 1H, C-2'H_b); ¹³C NMR (CDCl₃, 100 MHz): δ 167.1 (COOCH₂CH=CH₂), 167.0 (COOCH₂CH=CH₂), 162.2 (CONH), 150.6 (CONH), 147.2 (C-2"), 146.9 (C-6"), 136.9 (C-6), 134.0 (-<u>C</u>H=CH₂), 117.6 (-CH=CH₂), 117.4 (-CH=CH₂), 117.3 (C-5), 98.9 (C-3"), 98.5 (C-5"), 87.8 (C-1'), 84.4 (C-4'), 71.3 (C-3'), 64.1 (CH₂), 62.3 (CH₂), 33.8 (C-2'), 18.6 (CH₃); HRMS (ESI): *m/z* calculated for C₂₄H₃₀N₃O₉⁺ [M+H]⁺: 504.1982, found: 504.1975.

1.2.6. (5-(Diisobutyl 2'',6''-dimethyl-1'',4''-dihydropyridine-3'',5''-dicarboxylate)-4''-yl-2'deoxyuridine (6f)

It was obtained as a white solid in 98% yield (0.53 g). $R_f = 0.43$ (10% MeOH in chloroform); Melting Point = 231-232 °C; IR (KBr, cm⁻¹): 3280, 1732, 1616, 1534, 1411, 1252, 1212, 1126, 1043, 807, 556; ¹H NMR (CDCl₃, 400 MHz): δ 11.07 (brs, 1H, N-3H), 8.84 (brs, 1H, N-1"H), 7.14 (s, 1H, C-6H), 6.14-6.11 (m, 1H, C-1'H), 5.30-5.25 (m, 1H, C-3'H), 4.86 (brs, 1H, OH), 4.80 (s, 1H, C-4"H), 4.19-4.15 (m, 1H, C-4'H), 3.80-3.73 (m, 5H, 2 x CH₂, OH), 3.51-3.48 (m, 1H, C-5'H), 3.44-3.40 (m, 1H, C-5'H), 2.20 (s, 3H, CH₃), 2.18 (s, 3H, CH₃), 2.10-2.07 (m, 1H, C-2'H_a), 1.88-1.83 (m, 3H, C-2'H_b, 2 x C<u>H</u>(CH₃)₂), 0.86-0.85 (m, 12H, 4 x CH₃); ¹³C NMR (CDCl₃, 100 MHz): δ 167.6 (<u>COOCH₂CH(CH₃)₂</u>), 167.4 (<u>COOCH₂CH(CH₃)₂</u>), 162.2 (CONH), 150.6 (CONH), 146.6 (C-2"), 145.9 (C-6"), 136.3 (C-6), 118.3 (C-5), 99.7 (C-3"), 99.1 (C-5"), 87.7 (C-1'), 84.3 (C-4'), 71.3 (C-3'), 69.7 (CH₂), 69.6 (CH₂), 62.4 (C-5'), 33.1 (C-2'), 27.8 (<u>CH</u>(CH₃)₂), 27.7 (<u>CH</u>(CH₃)₂), 19.6 (CH₃), 19.5 (CH₃), 19.5 (CH₃), 19.5 (CH₃), 18.4 (CH₃); HRMS (ESI): *m/z* calculated for C₂₆H₃₈N₃O₉⁺ [M+H]⁺: 536.2608, found: 536.2607.

1.2.7. 5-(Diethyl 2'',6''-propyl-1'',4''-dihydropyridine-3'',5''-dicarboxylate)-4''-yl-2'deoxyuridine (6g)

It was obtained as a white solid in 98% yield (0.53 g). $R_f = 0.46$ (10% MeOH in chloroform); Melting Point = 238-240 °C; IR (KBr, cm⁻¹): 3378, 3262, 1736, 1646, 1466, 1238, 1156, 1028, 732, 610, 559; ¹H NMR (CDCl₃, 400 MHz): δ 11.05 (brs, 1H, N-3H), 8.99 (brs, 1H, N-1"H), 7.29 (s, 1H, C-6H), 6.16-6.12 (m, 1H, C-1'H), 5.31 (brs, 2H, OH), 4.71 (s, 1H, C-4"H), 4.20-4.19 (m, 1H, C-3'H), 4.05-3.96 (m, 4H, 2 x CH₂), 3.78-3.75 (m, 1H, C-4'H), 3.53-3.50 (m, 1H, C-5'H), 3.46-3.42 (m, 1H, C-5'H), 2.73-2.64 (m, 2H, C-2'H_{a+b}), 2.48-2.41 (m, 2H, CH₂), 2.10-2.04 (m, 1H, CH_{2a}), 1.88-1.82 (m, 1H, CH_{2b}), 1.51-1.44 (m, 4H, 2 x CH₂), 1.15 (t, 6H, *J* = 7.1 Hz, 2 x OCH₂CH₃), 0.87 (t, 6H, *J* = 7.3 Hz, 2 x CH₂CH₃); ¹³C NMR (CDCl₃, 100 MHz): δ 167.2 (COOEt), 167.2 (COOEt), 162.0 (CONH), 150.7 (CONH), 150.6 (C-2", C-6"), 136.8 (C-6), 119.3 (C-5), 99.3 (C-3", C-5"), 87.7 (C-1'), 84.1 (C-4'), 71.4 (C-3'), 62.3 (C-5'), 59.3 (CH₂CH₃), 59.3 (CH₂CH₃), 14.2 (CH₂CH₃); HRMS (ESI): *m*/*z* calculated for C₂₆H₃₈N₃O₉⁺ [M+H]⁺: 536.2608, found: 536.2601.

1.2.8. 5-(Diethyl 2'',6''-bisdifluorodimethyl-1'',4''-dihydropyridine-3'',5''-dicarboxylate)-4''-yl-2'-deoxyuridine (6h)

It was obtained as a white solid in 98% yield (0.54 g). $R_f = 0.39$ (10% MeOH in chloroform); Melting Point = 213-214 °C; IR (KBr, cm⁻¹): 3323, 1731, 1640, 1551, 1412, 1337, 1236, 1148, 1107, 1062, 756, 568; ¹H NMR (CDCl₃, 400 MHz): δ 11.25 (brs, 1H, N-3H), 7.67-7.55 (m, 1H, C-6H), 7.45-7.33 (m, 1H, CHF₂), 7.24 (brs, 1H, N-1"H), 6.18-6.13 (m, 1H, CHF₂), 4.82 (brs, 2H, OH), 4.28-4.22 (m, 1H, C-1'H), 4.15-4.06 (m, 1H, C-3'H), 4.05-4.00 (m, 2H, C-5'H), 3.95-3.87 (m, 2H, CH₂CH₃), 3.83-3.79 (m, 1H, C-4"H), 3.59-3.49 (m, 2H, CH₂CH₃), 3.27-3.17 (m, 1H, C-4'H), 2.10-2.04 (m, 1H, C-2'H_a), 1-93-1.85 (m, 1H, C-2'H_b), 1.09-1.01 (m, 6H, CH₂CH₃); ¹³C NMR (CDCl₃, 100 MHz): δ 170.3-170.2 (m, COOEt), 165.9-165.5 (m, COOEt), 163.2 (d, *J* = 8.6 Hz, CONH), 162.1 (CONH), 150.5-150.4 (m, C-2" & C-6"), 138.2 (C-6), 115.3 (C-5), 114.5-114.2 (m, CHF₂), 112.6-110.0 (m, CHF₂), 109.4 (C-5"), 88.1 (d, *J* = 3.5 Hz, C-3"), 84.8 (d, *J* = 9.3 Hz, C-1'), 79.2-78.9 (m, C-4'), 71.5-71.2 (m, C-3'), 62.3-62.1 (m, C-5'), 61.1-60.7 (m, CH₂CH₃), 60.0-59.9 (m, CH₂CH₃), 33.7 (C-2'), 14.5-14.2 (m, CH₂CH₃), ;HRMS (ESI): *m/z* calculated for C₂₂H₂6F₄N₃O₉⁺ [M+H]⁺: 552.1605, found: 552.1653.

1.2.9. 5-(3",5"-Diacetyl-2",6"-dimethyl-1",4"-dihydropyridine)-4"-yl-2'-deoxyuridine (6i)

It was obtained as a yellow solid in 98% yield (0.41 g). $R_f = 0.44$ (10% MeOH in chloroform); Melting Point = 224-225 °C; IR (KBr, cm⁻¹): 3334, 3274, 1719, 1616, 1448, 1223, 1147, 1022, 747, 619; ¹H NMR (CDCl₃, 400 MHz): δ 11.23 (brs, 1H, N-3H), 8.97 (brs, 1H, N-1"H), 7.02 (s, 1H, C-6H), 6.13-6.10 (m, 1H, C-1'H), 5.28 (brs, 1H, OH), 5.03 (brs, 1H, OH), 4.87 (s, 1H, C-4"H), 4.18-4.15 (m, 1H, C-3'H), 3.78-3.75 (m, 1H, C-4'H), 3.51-3.47 (m, 1H, C-5'H), 3.44-3.40 (m, 1H, C-5'H), 2.26 (s, 3H, CH₃), 2.25 (s, 3H, CH₃), 2.21 (s, 3H, CH₃), 2.19 (s, 3H, CH₃), 2.11-2.06 (m, 1H, C-2'H_a), 1.87-1.80 (m, 1H, C-2'H_b; ¹³C NMR (CDCl₃, 100 MHz): δ 197.7 (<u>CO</u>CH₃), 197.5 (<u>CO</u>CH₃), 163.1 (CONH), 150.4 (CONH), 144.5 (C-2"), 144.0 (C-6"), 136.3 (C-6), 117.5 (C-5), 110.4 (C-3"), 109.9 (C-5"), 87.9 (C-1'), 84.6 (C-4'), 71.3 (C-3'), 62.3 (C-5'), 32.7 (C-2'), 29.8 (CO<u>CH₃</u>), 18.9 (CH₃), 18.8 (CH₃); HRMS (ESI): *m/z* calculated for C₂₀H₂₆N₃O₇⁺ [M+H]⁺: 420.1771, found: 420.1751.

Figure S2: ¹³C NMR Spectra of compound 5a (CDCl₃, 100 MHz).

Figure S4: ¹H -¹³C HETCOR NMR Spectra of compound 5a.

Figure S5: DEPT-135 NMR Spectra of compound 5a (CDCl₃, 400 MHz).

Figure S7: ¹³C NMR Spectra of compound 5b (CDCl₃, 100 MHz).

Figure S9: ¹³C NMR Spectra of compound 5c (CDCl₃, 100 MHz).

Figure S11: ¹³C NMR Spectra of compound 5d (CDCl₃, 100 MHz).

Figure S13: ¹³C NMR Spectra of compound 5e (CDCl₃, 100 MHz).

Figure S15: ¹³C NMR Spectra of compound 5f (CDCl₃, 100 MHz).

Figure S17: ¹³C NMR Spectra of compound 5g (CDCl₃, 100 MHz).

Figure S19: ¹³C NMR Spectra of compound 5h (CDCl₃, 100 MHz).

Figure S20: ¹⁹F NMR Spectra of compound 5h (CDCl₃, 377 MHz).

Figure S21: ¹H NMR Spectra of compound 5i (CDCl₃, 400 MHz).

Figure S22: ¹³C NMR Spectra of compound 5i (CDCl₃, 100 MHz).

Figure S23: ¹H NMR Spectra of compound 6a (DMSO-*d*₆, 400 MHz).

Figure S24: ¹³C NMR Spectra of compound 6a (DMSO-*d*₆, 100 MHz).

Figure S25: ¹H NMR Spectra of compound 6b (DMSO-*d*₆, 400 MHz).

Figure S26: ¹³C NMR Spectra of compound 6b (DMSO-*d*₆, 100 MHz).

Figure S27: ¹H NMR Spectra of compound 6c (DMSO-*d*₆, 400 MHz).

Figure S28: ¹³C NMR Spectra of compound 6c (DMSO- d_6 , 100 MHz).

Figure S29: ¹H NMR Spectra of compound 6d (DMSO-*d*₆, 400 MHz).

Figure S30: ¹³C NMR Spectra of compound 6d (DMSO-*d*₆, 100 MHz).

Figure S31: ¹H NMR Spectra of compound 6e (DMSO-*d*₆, 400 MHz).

Figure S33: D₂O Exchange NMR Spectra of compound 6e (DMSO-*d*₆, 100 MHz).

Figure S35: ¹³C NMR Spectra of compound 6f (DMSO- d_6 , 100 MHz).

Figure S37: ¹³C NMR Spectra of compound 6g (DMSO- d_6 , 100 MHz).

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm)

Figure S38: ¹H NMR Spectra of compound 6h (DMSO-*d*₆, 400 MHz).

Figure S39: ¹³C NMR Spectra of compound 6h (DMSO-*d*₆, 100 MHz).

Figure S40: ¹⁹F NMR Spectra of compound 6h (DMSO- d_6 , 377 MHz).

Figure S41: ¹H NMR Spectra of compound 6i (DMSO-*d*₆, 400 MHz).

Figure S42: ¹³C NMR Spectra of compound 6i (DMSO-*d*₆, 100 MHz).

Figure S43: ¹H NMR Spectra of unsymmetrical 1,4-dihydropyridine (CDCl₃, 400 MHz).

Figure S44: ¹³C NMR Spectra of unsymmetrical 1,4-dihydropyridine (CDCl₃,100 MHz).

2. Absorption and Emission Spectra of Compounds 6a-i.

Figure S45: Absorption and Emission Spectra for compounds 6a-i.