+

Optimization of CsPbBr₃/PVDF composite for enhanced UV photodetection application

Amr Elattar^{a*}, Okenwa Okoli^{a,b}, Tarik Dickens^a

^{a.} Industrial & Manufacturing Engineering, FAMU-FSU College of Engineering, 2525 Pottsdamer St., Tallahassee, Florida, 32310, USA.

^{b.} Herff College of Engineering, University of Memphis, Memphis, TN, 38111, USA.

Supporting Figures

CsPbBr₃. (b) CsPb₂Br₅. (c) Cs₄PbBr₆.¹⁻³

Supporting Notes

Equations used for calculation of Photodetector parameters are shown through the following equations:

$$R_{\lambda} = \frac{\Delta I}{P_{\lambda} \times A} \tag{1}$$

$$\xi = \frac{I_{Photo} - I_{Dark}}{I_{Dark}}$$
(2)

$$IQE (\%) = \frac{h \times c \times R_{\lambda}}{e \times \lambda} \times 100\%$$
 (3)

$$D^* = \frac{R_{\lambda}}{\left(2 \times e \times J_{Dark}\right)^{\frac{1}{2}}}$$
(4)

Where:

 R_{λ} : The photoresponsivity of a photodetector which is the photo-current generated through the effective photodetector area per incident light unit power.

 ξ : The photosensitivity of a photodetector which is the ratio between the photo-current change under the effect of light illumination and the dark current.

IQE (%): The internal quantum efficiency of a photodetector to estimate the efficiency of the carrier transport.

 D^* : The detectivity of a photodetector which is related to the photodetector quality.

 I_{Photo} : The current under light illumination.

*I*_{Dark}: The current under no illumination.

 ΔI : The photo-current change under the effect of light illumination.

 P_{λ} : The incident light intensity (W/cm²).

A: The effective area of photodetector (cm²).

h: The plank's constant.

c: The light speed.

e: The electron charge.

 λ : The wavelength of the incident light (nm).

References

- 1 M. Rodová, J. Brožek, K. Knížek and K. Nitsch, *J Therm Anal Calorim*, 2003, 71, 667–673.
- 2 V. Drushliak and M. Szafrański, *Inorg Chem*, 2022, 61, 14389–14396.
- M. De Bastiani, I. Dursun, Y. Zhang, B. A. Alshankiti, X.-H. Miao, J. Yin, E. Yengel, E. Alarousu, B. Turedi, J. M. Almutlaq, M. I. Saidaminov, S. Mitra, I. Gereige, A. AlSaggaf, Y. Zhu, Y. Han, I. S. Roqan, J.-L. Bredas, O. F. Mohammed and O. M. Bakr, *Chemistry of Materials*, 2017, 29, 7108–7113.