Ir-Catalyzed Reductive Amination and antifer Hydrogenation of

Diketones: Access to β -and γ -Amino Alcohols

Jinghui Tong, a Shilin Guo, Huajie Zhu, Lu Ouyang, Jianhua Liao*, A Youchun Li,*, b

 ^a School of Pharmacy, Gannan Medical University, Ganzhou 341000, Jiangxi Province, P. R. China. Corresponding author: liaojianhua715@163.com
 ^b The Affiliated Ganzhou Hospital, Jiangxi Medical College, Nanchang University, Ganzhou 341000, Jiangxi Province, P. R. China.liyouchun2007@163.com

Supporting Information

Table of Contents

A. General Information	S1
B. General Procedure for Synthesis of products 3	S1
C. General Procedure for Synthesis of products 4	S1
D. Large scale synthesis of 3aa	
E. Analysis Data for the Products	S2
F. References	S12
G. Enantioselectivities as Determined by Chiral HPLC	S13
H. NMR Spectra	S15

A. General information

All the reactions were conducted in oven dried Schlenk tubes. All available reagents and anhydrous solvents were purchased from commercial sources and used without further purification. Flash chromatography was performed over Silica gel (100–200 mesh) bought from commercial sources. ¹H NMR, ¹³C NMR, and ¹⁹F NMR spectra were collected on a Bruker DRX-400 spectrometer (400 MHz for ¹H; 101 MHz for ¹³C, 376 MHz for ¹⁹F) and referenced internally with TMS. And the syn/anti relationship was determined by ¹HNMR spectra. High-resolution mass spectra (HRMS) were recorded by an LCMS-IT-TOF mass spectrometer. Melting points were performed by using a melting point instrument without correcting. Chiral HPLC analyses were performed on an Aglient 1100 system using a Chiralcel OD-H column. Thin-layer chromatography (TLC) was conducted using commercially available 100-300 mesh silica gel plates with visualization at 254 nm.

B. General procedure for synthesis of products 3.

To a 25.0 mL dried Schlenk tube were added 1 (0.5 mmol, 1.0 equiv.), 2 (0.6 mmol, 1.1 equiv.), TC-4 (0.005 mmol, 1.0 mol%), HCO₂H (12.5 mmol, 25.0 equiv.), and H₂O (2.0 mL) under air at 80 °C for 12 h. After completion, the reaction was quenched by saturated brines and then extracted with EtOAc (3×10.0 mL). The combined ethyl acetate layer was then dried over anhydrous MgSO₄ and concentrated in vacuum. After evaporating, the mixture was purified by flash column chromatography to obtain the desired products **3**.

C. General procedure for synthesis of products 5.

A dried 25.0 mL Schlenk tube was charged with 4 (0.5 mmol, 1.0 equiv.), 2 (0.6 mmol, 1.1 equiv.), TC-4 (0.005 mmol, 1.0 mol%), HCO₂H (12.5 mmol, 25.0 equiv.), and H₂O (2.0 mL) under air at 80 °C for 12 h. After completion, the reaction was quenched by saturated brines and then extracted with EtOAc (3×10.0 mL). The combined ethyl acetate layer was then dried over anhydrous MgSO₄ and concentrated in vacuum. After evaporating, the mixture was purified by flash column chromatography to obtain the

desired products 5.

D. Large scale synthesis of 3aa.

To a 100.0 mL dried round bottom Schlenk was added **1a** (10.0 mmol, 1.0 equiv.), **2a** (11.0 mmol, 1.1 equiv.), **TC-4** (0.1 mmol, 1.0 mol%), HCO₂H (25.0 mmol, 25.0 equiv.), and H₂O (30.0 mL), then the reaction was stirred at 80 °C for 12 h. The organic layer was dried over anhydrous Na₂SO₄. The residue was purified by chromatography on silica gel with hexane to afford the product of **3aa**.

E. Analysis Data for the Products.

3-(phenylamino)butan-2-ol (3aa)^[1]:

76.73 mg, 93% total yield, mixture of the *anti* and *syn* isomers in the ratio of 72:28; Yellow oil.

anti: TLC (petroleum ether/ethyl acetate = 5/1, v/v): $R_f = 0.23$. ¹H NMR (400 MHz, CDCl₃) δ 7.18-7.14 (m, 2H), 6.75-6.71 (m, 1H), 6.69-6.61 (m, 2H), 3.98-3.92 (m, 1H), 3.49-3.43 (m, 1H), 2.91 (b, 2H), 1.25-1.17 (m, 3H), 1.14-1.11 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 147.2, 129.2, 117.6, 113.6, 68.6, 53.5, 19.4, 14.0.

syn: TLC (petroleum ether/ethyl acetate = 5/1, v/v): $R_f = 0.25$. ¹H NMR (400 MHz, CDCl₃) δ 7.18-7.14 (m, 2H), 6.75-6.71 (m, 1H), 6.69-6.61 (m, 2H), 3.65-3.58 (m, 1H), 3.34-3.28 (m, 1H), 2.91 (b, 2H), 1.25-1.17 (m, 3H), 1.14-1.11 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 147.6, 129.2, 118.0, 114.1, 71.2, 55.8, 19.4, 17.1.

3-(p-tolylamino)butan-2-ol (3ba)^[1]:

49.9 mg, 56% total yield, mixture of the *anti* and *syn* isomers in the ratio of 73:27. Pale yellow oil.

anti: TLC (petroleum ether/ethyl acetate = 5/1, v/v): $R_f = 0.38$. ¹H NMR (400 MHz, CDCl₃) δ 6.98 (dd, J = 8.1, 5.2 Hz, 2H), 6.55 (d, J = 8.0 Hz, 2H), 3.97-3.91 (m, 1H), 3.45-3.39 (m, 1H), 2.89 (s, 2H), 2.23 (s, 3H), 1.17 (d, J = 6.4 Hz, 3H), 1.10 (d, J = 6.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 145.2, 129.7, 126.9, 114.0, 68.5, 53.9, 20.3, 19.3, 14.1.

syn: TLC (petroleum ether/ethyl acetate = 5/1, v/v): $R_f = 0.40$. ¹H NMR (400 MHz,

CDCl₃) δ 7.02-6.94 (m, 2H), 6.60 (d, J = 8.0 Hz, 2H), 3.61 - 3.55 (m, 1H), 3.28-3.22 (m, 1H), 2.89 (s, 2H), 2.24 (s, 3H), 1.23 (d, J = 6.1 Hz, 3H), 1.11 (d, J = 6.5 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 145.2, 129.7, 127.5, 114.5, 71.2, 56.5, 20.3, 19.3, 17.0.

3-((4-methoxyphenyl)amino)butan-2-ol (3ca)^[1]:

52.5 mg, 57% total yield, mixture of the *anti* and *syn* isomers in the ratio of 66:34. Pale yellow oil.

anti: TLC (petroleum ether/ethyl acetate = 5/1, v/v): $R_f = 0.20$. ¹H NMR (400 MHz, CDCl3) δ 6.79 - 6.76 (m, 2H), 6.64 - 6.60 (m, 2H), 3.98 - 3.92 (m, 1H), 3.74 (s, 3H), 3.42 - 3.35 (m, 1H), 2.63 (s, 2H), 1.18 (dd, J = 6.7, 2.1 Hz, 3H), 1.10 (dd, J = 6.8, 2.0 Hz, 2H).; ¹³C NMR (101 MHz, CDCl₃) δ 152.4, 141.3, 115.5, 114.8, 68.6, 55.7, 54.9, 18.8, 14.3.

syn: TLC (petroleum ether/ethyl acetate = 5/1, v/v): $R_f = 0.22$. ¹H NMR (400 MHz, CDCl₃) δ 6.80-6.77 (m, 2H), 6.68 - 6.65 (m, 2H), 3.75 (s, 3H), 3.60-3.53 (m, 1H), 3.21-3.14 (m, 1H), 2.71 (b, 2H), 1.26 (d, J = 6.1 Hz, 1H), 1.12 (d, J = 6.5 Hz, 1H).; ¹³C NMR (101 MHz, CDCl₃) δ 152.8, 141.5, 116.3, 114.8, 71.3, 58.0, 55.7, 19.4, 17.1.

3-((4-fluorophenyl)amino)butan-2-ol (3da)^[1]:

75.0 mg, 82% total yield, mixture of the *anti* and *syn* isomers in the ratio of 65:35. Yellow oil.

anti: TLC (petroleum ether/ethyl acetate = 5/1, v/v): $R_f = 0.18$. ¹H NMR (400 MHz, CDCl₃) δ 6.92-6.85 (m, 2H), 6.64-6.56 (m, 2H), 3.99-3.93 (m, 1H), 3.44-3.38 (m, 1H), 1.27-1.20 (m, 3H), 1.15-1.11 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 155.9 (d, J = 235.4 Hz), 143.6, 115.7 (d, J = 22.3 Hz), 114.8 (d, J = 7.6 Hz), 68.7, 54.5, 19.0, 14.1; ¹⁹F NMR (377 MHz, CDCl₃) δ -127.4 (s, 1F).

syn: TLC (petroleum ether/ethyl acetate = 5/1, v/v): $R_f = 0.21$. ¹H NMR (400 MHz, CDCl₃) δ 6.92-6.85 (m, 2H), 6.64-6.56 (m, 2H), 3.65-3.58 (m, 1H), 3.25-3.18 (m, 1H), 1.27-1.20 (m, 3H), 1.15-1.11 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 155.9 (d, J = 235.4 Hz), 143.9, 115.7 (d, J = 22.3 Hz), 115.5 (d, J = 7.4 Hz), 71.3, 57.2, 19.5, 17.1; ¹⁹F NMR (377 MHz, CDCl₃) δ -127.4 (s, 1F).

3-((4-chlorophenyl)amino)butan-2-ol (3ea)^[1]:

73.8, 74% total yield, mixture of the anti and syn isomers in the ratio of 83:17. Yellow

oil.

anti: TLC (petroleum ether/ethyl acetate = 5/1, v/v): $R_f = 0.33$. ¹H NMR (400 MHz, CDCl₃) δ 7.13-7.08 (m, 2H), 6.55 (d, J = 8.8 Hz, 2H), 3.99-3.93 (m, 1H), 3.46-3.40 (m, 1H), 1.21 (d, J = 6.5 Hz, 3H), 1.13 (d, J = 6.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 145.8, 129.1, 122.1, 114.7, 68.8, 53.7, 19.1, 13.9.

syn: TLC (petroleum ether/ethyl acetate = 5/1, v/v): $R_f = 0.35$. ¹H NMR (400 MHz, CDCl₃) δ 7.13-7.08 (m, 2H), 6.59 (d, J = 8.8 Hz, 0H), 3.68- 3.62 (m, 1H), 3.31-3.24 (m, 1H), 1.21 (d, J = 6.5 Hz, 2H), 1.13 (d, J = 6.6 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 145.8, 129.1, 122.1, 115.2, 71.2, 56.0, 19.6, 17.2.

3-((4-bromophenyl)amino)butan-2-ol (3fa) [1]:

83.84 mg, 69% total yield, mixture of the *anti* and *syn* isomers in the ratio of 87:13. Pale yellow oil.

anti: TLC (petroleum ether/ethyl acetate = 10/1, v/v): $R_f = 0.25$. ¹H NMR (400 MHz, CDCl₃) δ 7.26-7.22 (m, 2H), 6.57-6.49 (m, 2H), 3.99-3.93 (m, 1H), 3.46-3.40 (m, 1H), 1.21 (d, J = 6.5 Hz, 3H), 1.13 (d, J = 6.7 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 146.3, 132.0, 115.2, 109.1, 68.8, 53.6, 19.2, 13.9.

syn: TLC (petroleum ether/ethyl acetate = 10/1, v/v): $R_f = 0.27$. ¹H NMR (400 MHz, CDCl₃) δ 7.26-7.22 (m, 2H), 6.57-6.49 (m, 2H), 3.69-3.63 (m, 1H), 3.32-3.25 (m, 1H), 1.21 (d, J = 6.5 Hz, 3H), 1.13 (d, J = 6.7 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 146.3, 132.0, 115.7, 109.1, 55.8, 19.6, 17.2.

3-((2-methoxyphenyl)amino)butan-2-ol (3ga)^[1]:

97.5 mg, 73% total yield, mixture of the *anti* and *syn* isomers in the ratio of 80:20. Pale yellow oil.

anti: TLC (petroleum ether/ethyl acetate = 10/1, v/v): $R_f = 0.23$. ¹H NMR (400 MHz, CDCl₃) δ 7.11-7.06 (m, 1H), 6.32-6.24 (m, 2H), 6.19 (t, J = 2.1 Hz, 1H), 4.0-3.95 (m, 1H), 3.77 (s, 3H), 3.49-3.44 (m, 1H), 1.20 (d, J = 6.5 Hz, 3H), 1.13 (d, J = 6.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.9, 148.7, 130.1, 106.8, 102.7, 99.7, 68.8, 55.1, 53.6, 19.1, 14.2.

syn: TLC (petroleum ether/ethyl acetate = 10/1, v/v): $R_f = 0.26$. ¹H NMR (400 MHz, CDCl₃) δ 7.11-7.06 (m, 1H), 6.32-6.24 (m, 2H), 6.19 (t, J = 2.1 Hz, 1H), 3.77 (s, 3H),

3.67-3.61 (m, 1H), 3.35-3.28 (m, 1H), 1.25 (d, J = 6.3 Hz, 3H), 1.13 (d, J = 6.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.9, 149.2, 130.1, 107.3, 103.2, 100.2, 71.3, 55.9, 53.6, 19.6, 17.3.

3-((2-iodophenyl)amino)butan-2-ol (3ha)^[1]:

94.0 mg, 65% total yield, mixture of the *anti* and *syn* isomers in the ratio of 85:15. Brown oil.

anti: TLC (petroleum ether/ethyl acetate = 10/1, v/v): $R_f = 0.33$. ¹H NMR (400 MHz, CDCl₃) δ 7.67-7.64 (m, 1H), 7.21-7.16 (m, 1H), 6.61 (d, J = 8.3 Hz, 1H), 6.48-6.41 (m, 1H), 4.22 (b, 1H), 4.00-3.94 (m, 1H), 3.56-3.50 (m, 1H), 2.00 (s, 1H), 1.23 (dd, J = 6.5, 2.3 Hz, 3H), 1.18 (dd, J = 6.6, 2.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 146.4, 139.2, 129.4, 118.9, 111.6, 86.5, 68.9, 54.1, 18.9, 14.4.

syn: TLC (petroleum ether/ethyl acetate = 10/1, v/v): $R_f = 0.35$. ¹H NMR (400 MHz, CDCl₃) δ 7.67-7.64 (m, 1H), 7.21-7.16 (m, 1H), 6.67 (d, J = 9.8 Hz, 1H), 6.48-6.41 (m, 1H), 4.22 (b, 1H), 3.78 - 3.72 (m, 1H), 3.42 - 3.36 (m, 1H), 2.00 (s, 1H), 1.23 (dd, J = 6.5, 2.3 Hz, 3H), 1.18 (dd, J = 6.6, 2.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 146.9, 139.2, 129.4, 119.2, 112.1, 87.0, 71.1, 56.0, 19.5, 17.3.

3-((2-fluoro-4-methylphenyl)amino)butan-2-ol (3ia):

98.5 mg, 69% total yield, mixture of the *anti* and *syn* isomers in the ratio of 85:15. Pale yellow oil.

anti: TLC (petroleum ether/ethyl acetate = 10/1, v/v): $R_f = 0.30$. ¹H NMR (400 MHz, CDCl₃) δ 6.75-6.70 (m, 2H), 6.56 (t, J = 8.8 Hz, 1H), 3.91 -3.85 (m, 1H), 3.40-3.34 (m, 1H), 2.16 (s, 3H), 1.13 (dd, J = 6.5, 1.6 Hz, 3H), 1.07 (dd, J = 6.6, 1.7 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 151.9 (d, J = 238.2 Hz), 133.1 (d, J = 11.7 Hz), 127.1 (d, J = 6.7 Hz), 124.7 (d, J = 3.0 Hz), 115.4 (d, J = 18.6 Hz), 113.5 (d, J = 3.5 Hz), 68.8, 54.0, 20.3 (d, J = 1.5 Hz), 18.8, 14.4; ¹⁹F NMR (377 MHz, CDCl₃) δ -135.9 (s, 1F). HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₁H₁₆FNO, 198.1294; found, 198.1292.

syn: TLC (petroleum ether/ethyl acetate = 10/1, v/v): $R_f = 0.32$. ¹H NMR (400 MHz, CDCl₃) δ 6.75-6.70 (m, 2H), 6.62 (t, J = 8.7 Hz, 1H), 3.60 - 3.54 (m, 1H), 3.22-3.16 (m, 1H), 2.16 (s, 3H), 1.18 (dd, J = 6.5, 1.6 Hz), 1.07 (dd, J = 6.6, 1.7 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 151.9 (d, J = 238.2 Hz), 133.1 (d, J = 11.7 Hz), 127.1 (d, J

= 6.7 Hz), 124.7 (d, J = 3.0 Hz), 114.1 (d, J = 3.4 Hz), 71.2, 56.4, 20.3 (d, J = 1.5 Hz), 19.3, 17.2; ¹⁹F NMR (377 MHz, CDCl₃) δ -131.5 (s, 1F). HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₁H₁₆FNO, 198.1294; found, 198.1292.

3-(naphthalen-2-ylamino)butan-2-ol (3ja)^[1]:

44.1 mg, 41% total yield, mixture of the *anti* and *syn* isomers in the ratio of 85:15. Red oil.

anti: TLC (petroleum ether/ethyl acetate = 5/1, v/v): $R_f = 0.23$. ¹H NMR (400 MHz, CDCl₃) δ 7.68-7.58 (m, 3H), 7.38-7.34 (m, 1H), 7.22-7.17 (m, 1H), 6.93-6.83 (m, 2H), 4.09-4.03 (m, 1H), 3.66-3.59 (m, 1H), 1.25 (dd, J = 6.5, 2.1 Hz, 3H), 1.19 (dd, J = 6.6, 2.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 144.9, 135.0, 129.1, 127.6, 127.5, 126.3, 125.8, 122.1, 118.4, 105.4, 68.7, 53.5, 19.1, 14.0.

syn: TLC (petroleum ether/ethyl acetate = 5/1, v/v): $R_f = 0.26$. ¹H NMR (400 MHz, CDCl₃) δ 7.68-7.58 (m, 3H), 7.36 (td, J = 7.4, 2.8 Hz, 1H), 7.19 (t, J = 7.6 Hz, 1H), 6.93-6.83 (m, 2H), 3.75 - 3.69 (m, 1H), 3.52-3.45 (m, 1H), 1.29 (dd, J = 6.3, 2.2 Hz, 3H), 1.19 (dd, J = 6.6, 2.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 145.3, 135.0, 129.1, 127.6, 127.5, 126.3, 125.9, 122.3, 118.6, 106.2, 71.3, 55.7, 19.6, 17.1.

3-((4-cyclohexylphenyl)amino)butan-2-ol (3ka):

56.8 mg, 46% total yield, mixture of the *anti* and *syn* isomers in the ratio of 64:26. Red oil.

anti: TLC (petroleum ether/ethyl acetate = 5/1, v/v): $R_f = 0.36$. ¹H NMR (400 MHz, CDCl₃) δ 7.05-6.99 (m, 2H), 6.66-6.57 (m, 2H), 4.00-3.93 (m, 1H), 3.49-3.42 (m, 1H), 2.73 (b, 2H), 2.39 (s, 1H), 1.82 (s, 4H), 1.72 (d, J = 10.3 Hz, 1H), 1.43-1.33 (m, 5H), 1.24-1.18 (m, 3H), 1.14-1.18 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 145.2, 137.7, 127.5, 115.2, 113.7, 68.6, 53.9, 43.5, 34.7, 26.9, 26.1, 18.7, 14.4. HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₆H₂₅NO, 248.2014; found, 248.2014.

syn: TLC (petroleum ether/ethyl acetate = 5/1, v/v): $R_f = 0.39$. ¹H NMR (400 MHz, CDCl₃) δ 7.05-6.99 (m, 2H), 6.66-6.57 (m, 2H), 3.62-3.55 (m, 1H), 3.31-3.23 (m, 1H), 2.73 (b, 2H), 2.39 (s, 1H), 1.82 (s, 4H), 1.72 (d, J = 10.3 Hz, 1H), 1.43-1.33 (m, 5H), 1.24-1.18 (m, 3H), 1.14-1.18 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 145.5, 138.3,

127.5, 115.2, 114.4, 71.3, 56.6, 43.5, 34.7, 26.9, 26.1, 19.4, 17.2. HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₆H₂₅NO, 248.2014; found, 248.2014.

3-((5,6,7,8-tetrahydronaphthalen-2-yl)amino)butan-2-ol (3la):

45.6 mg, 57% total yield, mixture of the *anti* and *syn* isomers in the ratio of 75:25. Red oil.

anti: TLC (petroleum ether/ethyl acetate = 5/1, v/v): $R_f = 0.39$. ¹H NMR (400 MHz, CDCl₃) δ 6.88 (d, J = 8.1 Hz, 1H), 6.49-6.43 (m, 1H), 6.37 (s, 1H), 3.99-3.93 (m, 1H), 3.48-3.42 (m, 1H), 2.67 (d, J = 10.3 Hz, 6H), 1.75 (s, 4H), 1.19 (dd, J = 6.6, 2.1 Hz, 3H), 1.13-1.11 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 145.0, 137.8, 129.8, 126.7, 114.0, 112.0, 68.6, 54.0, 29.6, 28.4, 23.5, 23.3, 18.7, 14.4. HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₄H₂₁NO, 220.1701; found, 220.1711.

syn: TLC (petroleum ether/ethyl acetate = 5/1, v/v): $R_f = 0.41$. ¹H NMR (400 MHz, CDCl₃) δ 6.88 (d, J = 8.1 Hz, 1H), 6.49-6.43 (m, 1H), 6.37 (s, 1H), 3.60 - 3.54 (m, 1H), 3.29-3.22 (m, 1H), 2.67 (d, J = 10.3 Hz, 6H), 1.75 (s, 4H), 1.25 (dd, J = 6.1, 2.1 Hz, 1H), 1.13-1.11 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 145.2, 137.9, 130.0, 127.2, 114.6, 112.6, 71.3, 56.7, 29.6, 28.4, 23.5, 23.2, 19.3, 17.2. HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₄H₂₁NO, 220.1701; found, 220.1711.

4-(phenylamino)hexan-3-ol (3ab):

57.9 mg, 60% total yield, mixture of the *anti* and *syn* isomers in the ratio of 75:25. Colorless oil.

anti: TLC (petroleum ether/ethyl acetate = 5/1, v/v): $R_f = 0.38$. ¹H NMR (400 MHz, CDCl₃) δ 7.16 (t, J = 7.9 Hz, 2H), 6.69 (t, J = 7.9 Hz, 1H), 6.64 (d, J = 4.4 Hz, 2H), 3.67-6.63 (m, 1H), 3.54 (b, 1H), 3.36-3.32 (m, 1H), 1.69 - 1.64 (m, 1H), 1.59-1.52 (m, 1H), 1.49 - 1.42 (m, 2H), 1.02 (t, J = 7.6 Hz, 3H), 0.97 (t, J = 7.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 148.3, 129.3, 117.4, 113.4, 74.2, 59.3, 25.8, 22.7, 11.1, 10.7. HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₂H₁₉NO, 194.1545; found, 194.1532.

syn: TLC (petroleum ether/ethyl acetate = 5/1, v/v): $R_f = 0.41$. ¹H NMR (400 MHz, CDCl₃) δ 7.16 (t, J = 7.9 Hz, 2H), 6.71 (d, J = 7.2 Hz, 1H), 6.67 (d, J = 7.2 Hz, 2H), 3.57-3.52 (m, 1H), 3.26-3.21 (m, 1H), 1.72 - 1.58 (m, 2H), 1.56-1.47 (m, 2H), 1.00 (t, J = 7.4 Hz, 3H), 0.94 (t, J = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 148.4, 129.3,

117.6, 113.6, 74.4, 59.3, 26.9, 25.1, 10.6, 10.2. HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₂H₁₉NO, 194.1545; found, 194.1532.

1-phenyl-2-(phenylamino)propan-1-ol (3ac)^[1]:

72.6 mg, 64% yield, mixture of the *anti* and *syn* isomers in the ratio of > 99:1. White solid, m.p. 119-121 °C. *anti*: TLC (petroleum ether/ethyl acetate = 10/1, v/v): $R_f = 0.24$. ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 4.4 Hz, 4H), 7.32-7.26 (m, 1H), 7.24-7.18 (m, 2H), 6.77 - 6.69 (m, 3H), 4.98 (d, J = 3.0 Hz, 1H), 3.80-3.75 (m, 1H), 2.50 (b, 1H), 1.01 (dd, J = 6.6, 1.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 147.0, 141.3, 129.4, 128.3, 127.4, 125.9, 118.0, 113.9, 74.2, 54.3, 13.9.

4-(phenylamino)pentan-2-ol (5aa)^[2]:

67.1 mg, 75% total yield, mixture of the *anti* and *syn* isomers in the ratio of 60:40. Colorless oil.

anti: TLC (petroleum ether/ethyl acetate = 5/1, v/v): $R_f = 0.35$. ¹H NMR (400 MHz, CDCl₃) δ 7.20-7.15 (m, 2H), 6.79-6.70 (m, 2H), 6.69 - 6.63 (m, 2H), 4.09-3.99 (m, 1H), 3.70-3.63 (m, 1H), 3.40 (b, 1H), 1.71-1.52 (m, 2H), 1.22-1.14 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 146.8, 129.2, 118.7, 115.1, 67.9, 49.8, 45.5, 23.8, 21.3.

syn: TLC (petroleum ether/ethyl acetate = 5/1, v/v): $R_f = 0.37$. ¹H NMR (400 MHz, CDCl₃) δ 7.20-7.15 (m, 2H), 6.79 - 6.70 (m, 2H), 6.69 - 6.63 (m, 2H), 4.09 - 3.99 (m, 1H), 3.79 - 3.71 (m, 1H), 3.40 (b, 1H), 1.71 - 1.52 (m, 2H), 1.22 - 1.14 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 147.4, 129.2, 117.5, 113.6, 65.0, 46.1, 45.5, 23.8, 21.0.

4-(p-tolylamino)pentan-2-ol (5ba):

58.7 mg, 61% total yield, mixture of the *anti* and *syn* isomers in the ratio of 65:35. Pink oil.

anti: TLC (petroleum ether/ethyl acetate = 5/1, v/v): $R_f = 0.26$. ¹H NMR (400 MHz, CDCl₃) δ 7.00 (t, J = 8.4 Hz, 2H), 6.66-6.58 (m, 2H), 4.11-4.02 (m, 1H), 3.69-3.60 (m, 1H), 3.23 (b, 2H), 2.26-2.24 (m, 3H), 1.73-1.49 (m, 2H), 1.23-1.13 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 144.3, 129.7, 128.5, 115.8, 68.3, 51.0, 45.5, 23.8, 21.4, 20.4. HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₂H₁₉NO, 194.1545; found, 194.1560. *syn*: TLC (petroleum ether/ethyl acetate = 5/1, v/v): $R_f = 0.28$. ¹H NMR (400 MHz, CDCl₃) δ 7.00 (t, J = 8.4 Hz, 2H), 6.66-6.58 (m, 2H), 4.11-4.02 (m, 1H), 3.76-3.70 (m, CDCl₃) δ 7.00 (t, J = 8.4 Hz, 2H), 6.66-6.58 (m, 2H), 4.11-4.02 (m, 1H), 3.76-3.70 (m, CDCl₃) δ 7.00 (t, J = 8.4 Hz, 2H), 6.66-6.58 (m, 2H), 4.11-4.02 (m, 1H), 3.76-3.70 (m, CDCl₃) δ 7.00 (t, J = 8.4 Hz, 2H), 6.66-6.58 (m, 2H), 4.11-4.02 (m, 1H), 3.76-3.70 (m, CDCl₃) δ 7.00 (t, J = 8.4 Hz, 2H), 6.66-6.58 (m, 2H), 4.11-4.02 (m, 1H), 3.76-3.70 (m, CDCl₃) δ 7.00 (t, J = 8.4 Hz, 2H), 6.66-6.58 (m, 2H), 4.11-4.02 (m, 1H), 3.76-3.70 (m, CDCl₃) δ 7.00 (t, J = 8.4 Hz, 2H), 6.66-6.58 (m, 2H), 4.11-4.02 (m, 1H), 3.76-3.70 (m, CDCl₃) δ 7.00 (t, J = 8.4 Hz, 2H), 6.66-6.58 (m, 2H), 4.11-4.02 (m, 1H), 3.76-3.70 (m, CDCl₃) δ 7.00 (t, J = 8.4 Hz, 2H), 6.66-6.58 (m, 2H), 4.11-4.02 (m, 1H), 3.76-3.70 (m, CDCl₃) δ 7.00 (t, J = 8.4 Hz, 2H), 6.66-6.58 (m, 2H), 4.11-4.02 (m, 1H), 3.76-3.70 (m, CDCl₃) δ 7.00 (t, J = 8.4 Hz, 2H), 6.66-6.58 (m, 2H), 4.11-4.02 (m, 1H), 3.76-3.70 (m, CDCl₃) δ 7.00 (t, J = 8.4 Hz, 2H), 6.66-6.58 (m, 2H), 4.11-4.02 (m, 1H), 3.76-3.70 (m, CDCl₃) δ 7.00 (t, J = 8.4 Hz, 2H), 6.66-6.58 (m, 2H), 4.11-4.02 (m, 1H), 3.76-3.70 (m, CDCl₃) δ 7.00 (t, J = 8.4 Hz, 2H), 4.11-4.02 (m, 2H), 4.11-4.0

1H), 3.23 (b, 2H), 2.26-2.24 (m, 3H), 1.73 - 1.49 (m, 2H), 1.23-1.13 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 145.0, 129.7, 127.1, 114.2, 65.2, 46.7, 45.1, 23.7, 21.1, 20.3. HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₂H₁₉NO, 194.1545; found, 194.1560.

4-((4-methoxyphenyl)amino)pentan-2-ol (5ca):

71.1 mg, 68% total yield, mixture of the *anti* and *syn* isomers in the ratio of 60:40. Brown oil.

anti: TLC (petroleum ether/ethyl acetate = 5/1, v/v): $R_f = 0.26$. ¹H NMR (400 MHz, CDCl₃) δ 6.81-6.77 (m, 2H), 6.72-6.69 (m, 2H), 4.12 - 4.04 (m, 1H), 3.75 (s, 3H), 3.60-3.53 (m, 1H), 3.39 (s, 2H), 1.68-1.46 (m, 2H), 1.21 - 1.11 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 153.4, 140.5, 117.6, 114.7, 68.5, 55.6, 52.3, 45.4, 23.8, 21.5. HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₂H₁₉NO₂, 210.1494; found, 210.1508. *syn*: TLC (petroleum ether/ethyl acetate = 5/1, v/v): $R_f = 0.28$. ¹H NMR (400 MHz, CDCl₃) δ 6.81-6.77 (m, 2H), 6.67-6.64 (m, 2H), 4.12-4.04 (m, 1H), 3.75 (s, 3H), 3.70-3.65 (m, 1H), 3.39 (s, 2H), 1.68-1.46 (m, 2H), 1.21-1.11 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 152.6, 141.3, 115.9, 114.8, 65.3, 55.7, 47.8, 44.7, 23.7, 21.1.

HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₂H₁₉NO₂, 210.1494; found, 210.1508.

4-((4-fluorophenyl)amino)pentan-2-ol (5da):

41.5 mg, 42% total yield, mixture of the *anti* and *syn* isomers in the ratio of 60:40. Yellow oil.

anti: TLC (petroleum ether/ethyl acetate = 5/1, v/v): $R_f = 0.23$. ¹H NMR (400 MHz, CDCl₃) δ 6.92-6.85 (m, 2H), 6.66-6.63 (m, 2H), 4.11-4.00 (m, 1H), 3.61-3.55 (m, 1H), 3.31 (b, 1H), 1.60-1.51 (m, 2H), 1.23-1.12 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 156.5 (d, J = 236.8 Hz), 143.0 (d, J = 2.1 Hz), 116.4 (d, J = 7.4 Hz), 115.7 (d, J = 22.4 Hz), 68.0, 51.0, 45.4, 23.8, 21.2; ¹⁹F NMR (377 MHz, CDCl₃) δ -125.7 (s, 1F). HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₁H₁₆FNO, 198.1294; found, 198.1292.

syn: TLC (petroleum ether/ethyl acetate = 5/1, v/v): $R_f = 0.25$. ¹H NMR (400 MHz, CDCl₃) δ 6.92-6.85 (m, 2H), 6.60-6.57 (m, 2H), 4.11-4.00 (m, 1H), 3.71-3.65 (m, 1H), 3.31 (b, 2H), 1.72-1.61 (m, 2H), 1.23-1.12 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 155.80 (d, J = 235.1 Hz), 143.7 (d, J = 2.0 Hz), 115.6 (d, J = 22.2 Hz), 114.8 (d, J = 7.3 Hz), 65.0, 47.1, 45.0, 23.8, 20.9; ¹⁹F NMR (377 MHz, CDCl₃) δ -127.4 (s,

1F).HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₁H₁₆FNO, 198.1294; found, 198.1292.

4-((4-chlorophenyl)amino)pentan-2-ol (5ea):

35.1 mg, 33% total yield, mixture of the *anti* and *syn* isomers in the ratio of 80:20. Yellow oil.

anti: TLC (petroleum ether/ethyl acetate = 5/1, v/v): $R_f = 0.25$. ¹H NMR (400 MHz, CDCl₃) δ 7.15-7.10 (m, 2H), 6.64-6.61 (m, 2H), 4.10 -3.99 (m, 1H), 3.68-3.60 (m, 1H), 3.26 (b, 2H), 1.63-1.59 (m, 2H), 1.21 (dd, J = 1.6, 0.7 Hz, 3H), 1.17 (dd, J = 1.6, 0.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 145.5, 129.2, 123.3, 116.0, 67.9, 49.8, 45.6, 24.1, 21.3. HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₁H₁₆ClNO, 214.0999; found, 214.1010.

syn: TLC (petroleum ether/ethyl acetate = 5/1, v/v): $R_f = 0.27$. ¹H NMR (400 MHz, CDCl₃) δ 7.15-7.10 (m, 2H), 6.58-6.55 (m, 2H), 4.10-3.99 (m, 1H), 3.75-3.69 (m, 1H), 3.26 (b, 2H), 1.63-1.59 (m, 2H), 1.21 (dd, J = 1.6, 0.7 Hz, 3H), 1.17 (dd, J = 1.6, 0.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 145.5, 129.2, 123.3, 114.7, 65.2, 49.8, 45.6, 24.1, 20.9. HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₁H₁₆ClNO, 214.0999; found, 214.1010.

4-((4-(tert-butyl)phenyl)amino)pentan-2-ol (5fa):

37.6 mg, 32% total yield, mixture of the *anti* and *syn* isomers in the ratio of 66:34. Yellow oil.

anti: TLC (petroleum ether/ethyl acetate = 5/1, v/v): $R_f = 0.25$. ¹H NMR (400 MHz, CDCl₃) δ 7.25-7.19 (m, 2H), 6.70-6.60 (m, 2H), 4.12- 4.02 (m, 1H), 3.71-3.62 (m, 1H), 3.33 (s, 1H), 1.74-1.52 (m, 2H), 1.28 (s, 9H), 1.23- 1.14 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 144.3, 142.0, 126.0, 115.3, 68.3, 50.7, 45.6, 33.9, 31.5, 23.8, 21.6. HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₅H₂₅NO, 236.2014; found, 236.2015. *syn*: TLC (petroleum ether/ethyl acetate = 5/1, v/v): $R_f = 0.27$. ¹H NMR (400 MHz, CDCl₃) δ 7.26-7.18 (m, 2H), 6.71-6.65 (m, 2H), 4.12-4.02 (m, 1H), 3.78-3.72 (m, 1H), 3.33 (s, 1H), 1.74-1.52 (m, 2H), 1.28 (s, 9H), 1.23-1.14 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 144.9, 140.6, 126.0, 113.6, 65.2, 46.6, 45.1, 33.9, 31.5, 23.8, 21.2.

HRMS (ESI, m/z):
$$[M+H]^+$$
 Calcd. for C₁₅H₂₅NO, 236.2014; found, 236.2015.

4-((3-benzylphenyl)amino)pentan-2-ol (5ma):

26.9 mg, 20% total yield, mixture of the *anti* and *syn* isomers in the ratio of 60:40. Yellow oil.

anti: TLC (petroleum ether/ethyl acetate = 5/1, v/v): $R_f = 0.21$. ¹H NMR (400 MHz, CDCl₃) δ 7.29-7.24 (m, 2H), 7.19-7.17 (m, 3H), 7.02-6.99 (m, 2H), 6.65 (dd, J = 8.6, 2.2 Hz, 2H), 4.10-4.00 (m, 1H), 3.88 (s, 2H), 3.68-3.60 (m, 1H), 3.07 (b, 2H), 1.72-1.49 (m, 2H), 1.23-1.13 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 145.0, 141.9, 141.7, 131.7, 129.7, 128.3, 128.3, 125.8, 115.6, 114.0, 68.2, 50.5, 45.5, 41.0, 23.8, 21.5. HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₈H₂₃NO, 270.1858; found, 270.1873.

syn: TLC (petroleum ether/ethyl acetate = 5/1, v/v): $R_f = 0.23$. ¹H NMR (400 MHz, CDCl₃) δ 7.29-7.24 (m, 2H), 7.19-7.17 (m, 3H), 7.02-6.99 (m, 2H), 6.59 (dd, J = 8.6, 2.2 Hz, 2H), 4.10-4.00 (m, 1H), 3.87 (s, 2H), 3.77-3.70 (m, 1H), 3.07 (b, 2H), 1.72-1.49 (m, 2H), 1.23-1.13 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 145.6, 141.9, 141.7, 130.4, 129.7, 128.7, 128.3, 125.7, 115.6, 114.0, 65.2, 46.5, 45.1, 40/9, 23.8, 21.1. HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₈H₂₃NO, 270.1858; found, 270.1873.

4-((2,3-dihydro-1H-inden-5-yl)amino)pentan-2-ol (5na):

68.0 mg, 62% total yield, mixture of the *anti* and *syn* isomers in the ratio of 64:36. Yellow oil.

anti: TLC (petroleum ether/ethyl acetate = 5/1, v/v): $R_f = 0.34$. ¹H NMR (400 MHz, CDCl₃) δ 7.03 (t, J = 8.0 Hz, 1H), 6.64 (s, 1H), 6.53 (d, J = 10.4 Hz, 1H), 4.12-4.03 (m, 1H), 3.69-3.60 (m, 1H), 3.33 (s, 2H), 2.85-2.78 (m, 4H), 2.08-1.99 (m, 2H), 1.73-1.48 (m, 2H), 1.23-1.13 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 145.4, 145.4, 135.1, 124.7 (d, J = 1.7 Hz), 114.1, 112.0, 68.3, 51.3, 45.5, 33.0, 31.9, 25.6, 23.7, 21.5. HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₄H₂₁NO, 220.1701; found, 220.1711.

syn: TLC (petroleum ether/ethyl acetate = 5/1, v/v): $R_f = 0.36$. ¹H NMR (400 MHz, CDCl₃) δ 7.03 (t, J = 8.0 Hz, 1H), 6.58 (s, 1H), 6.47 (d, J = 10.5 Hz, 1H), 4.12-4.03 (m, 1H), 3.77-3.71 (m, 1H), 3.33 (s, 2H), 2.85-2.78 (m, 4H), 2.08-1.99 (m, 2H), 1.73-1.48 (m, 2H), 1.23-1.13 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 146.0, 145.4, 133.7, 124.7 (d, J = 1.7 Hz), 112.5, 110.3, 65.2, 46.9, 45.0, 33.0, 31.8, 25.6, 23.7, 21.1. HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₄H₂₁NO, 220.1701; found, 220.1711.

1-phenyl-3-(phenylamino)butan-1-ol (5ab)^[2]:

78.5 mg, 65% total yield, mixture of the *anti* and *syn* isomers in the ratio of 50:50. Yellow oil.

anti: TLC (petroleum ether/ethyl acetate = 10/1, v/v): $R_f = 0.28$. ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.31 (m, 4H), 7.29 -7.25 (m, 1H), 7.23-7.14 (m, 2H), 6.80-6.69 (m, 2H), 6.61 (d, J = 7.9 Hz, 1H), 4.97-4.91 (m, 1H), 3.77-3.64 (m, 1H), 3.32 (b, 2H), 2.02-1.79 (m, 2H), 1.17 (dd, J = 6.3, 2.4 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 146.8, 144.5, 129.3, 128.4, 127.4, 125.7, 118.7, 115.1, 74.1, 49.5, 46.1, 21.3.

syn: TLC (petroleum ether/ethyl acetate = 10/1, v/v): $R_f = 0.30$. ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.31 (m, 4H), 7.29 -7.25 (m, 1H), 7.23-7.14 (m, 2H), 6.80-6.69 (m, 2H), 6.61 (d, J = 7.9 Hz, 1H), 4.97-4.91 (m, 1H), 3.77-3.64 (m, 1H), 3.32 (b, 2H), 2.02-1.79 (m, 2H), 1.17 (dd, J = 6.3, 2.4 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 147.2, 144.7, 129.2, 128.4, 127.3, 125.6, 118.0, 114.2, 71.8, 46.5, 45.4, 21.1.

5-(phenylamino)heptan-3-ol (5ac):

56.9 mg, 55% yield, mixture of the *anti* and *syn* isomers in the ratio of > 99:1. Colorless oil. TLC (petroleum ether/ethyl acetate = 10/1, v/v): $R_f = 0.35$. *anti*: ¹H NMR (400 MHz, CDCl₃) δ 7.19 (t, J = 7.0 Hz, 2H), 6.78 (t, J = 7.3 Hz, 1H), 6.72 (d, J = 7.6 Hz, 1H), 3.81-3.76 (m, 1H), 3.56 - 3.49 (m, 1H), 1.75 - 1.70 (m, 1H), 1.63 - 1.46 (m, 5H), 0.95 (t, J = 7.4 Hz, 3H), 0.89 (t, J = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 147.0, 129.3, 118.9, 115.3, 73.5, 55.8, 40.1, 30.7, 27.8, 9.7 (d, J = 1.6 Hz). HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₃H₂₁NO, 208.1701; found, 208.1689.

F. References

[1] a) Kenzo Arai; Simone Lucarini; Matthew M. Salter; Kentaro Ohta; Yasuhiro Yamashita; Shuj Kobayashi. *J. Am. Chem. Soc,* 2007, 129, 8103; b) Kureshy, R. I.; Prathap, K. J.; Roy, T.; Maity, N. C.; Khan, N.-u. H.; Abdi, S. H. R.; Bajaj, H. C. *Adv. Synth. Catal.*, 2010, *352*, 3053; c) Kokubo, M.; Naito, T.; Kobayashi, S. *Tetrahedron*, 2010, *66*, 1111; d) Pan, S.; Jiang, M.; Hu, J.; Xu, R.; Zeng, X.; Zhong, G. *Green Chem.* 2020, *22*, 336.

[2] Bartoli, G.; Cimarelli, C.; Palmieri, G. J. Chem. Soc., 1994, 5, 537.

G. Enantioselectivities as Determined by Chiral HPLC

Scheme S1 Asymmetric reduction amination of **3aa**.

HPLC traces of *racemic*-3ca.

HPLC traces of *chiral*-3ca (Chiral-C6, 39%ee).

H. NMR Spectra

¹³C NMR (101 MHz, CDCl₃) spectrum of **3aa**

¹³C NMR (101 MHz, CDCl₃) spectrum of **3ba**

¹³C NMR (101 MHz, CDCl₃) spectrum of **3ca** (syn)

$\begin{array}{c} 7.7\\ 6.6.9\\ 6.6.9\\ 6.6.9\\ 6.6.8\\ 6.8.7\\ 6.8.8\\ 6.8.$

¹³C NMR (101 MHz, CDCl₃) spectrum of **3da**

— -127.4

 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H

 ^{19}F NMR (377 MHz, CDCl₃) spectrum of **3ia**

 $\begin{array}{c} 7.68\\ 7.75\\ 7.56\\ 7.75\\$

¹³C NMR (101 MHz, CDCl₃) spectrum of **3ja**

¹³C NMR (101 MHz, CDCl₃) spectrum of **3ka**

¹³C NMR (101 MHz, CDCl₃) spectrum of **3la**

¹³C NMR (101 MHz, CDCl₃) spectrum of **3ab** (anti)

¹³C NMR (101 MHz, CDCl₃) spectrum of **3ab** (*syn*)

$\begin{array}{c} 7.38\\ 7.37\\ 7.37\\ 7.38\\ 7.38\\ 7.28\\$

¹³C NMR (101 MHz, CDCl₃) spectrum of **3ac**

¹³C NMR (101 MHz, CDCl₃) spectrum of 5aa

¹³C NMR (101 MHz, CDCl₃) spectrum of **5ba**

¹³C NMR (101 MHz, CDCl₃) spectrum of **5ca**

¹³C NMR (101 MHz, CDCl₃) spectrum of **5da**

-125.7
-127.4

¹⁹F NMR (377 MHz, CDCl₃) spectrum of 5da

¹H NMR (400 MHz, CDCl₃) spectrum of **5na**

¹³C NMR (101 MHz, CDCl₃) spectrum of **5ac** (anti)