Supporting Information

Efficient Photoreduction of CO₂ to CO by Co-ZIL-L Derived NiCo-OH with Ultrathin Nanosheet Assembled 2D Leaf Superstructure

Yang Zhang,^a Wenfeng Zhong,^a Linhai Duan,^b Jiaping Zhu^a and Hua Tan^{*, a}

a College of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525000, China

b College of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China

Corresponding Authors: Hua Tan: huatan@gdupt.edu.cn

KEYWORDS: Metal-organic framework; photocatalysis; CO₂ reduction; nanosheet; superstructure

Photocatalytic experiments.

The apparent quantum yield (AQY) was measured by the PCX50C Discover multichannel parallel photocatalytic reaction system (Perfect Light Co., Ltd.) with a 10 W monochromatic LED light as the light source. The number of incident photons was measured by using a radiant power energy meter (PL-MW2000 Photoradiometer, Perfect Light Co., Ltd.). The AQY was calculated according to the following equation:

 $AQY(CO)\% = \frac{\text{number of reacted eletrons}}{\text{number of incident eletrons}} \times 100\%$ $= \frac{\text{number of evolved CO molecules} \times 2}{\text{number of incident eletrons}} \times 100\%$

Fig. S1. XRD pattern of Co-ZIF-L.

Fig. S2. The SAED pattern of NiCo-OH UNLS.

Fig. S3. XRD pattern of Co-OH UNLS.

Fig. S4. (A and B) SEM images, (C) TEM image and (D) HAADF and EDX elemental mapping images of Co-OH UNLS.

Fig. S5. XPS spectrum of NiCo-OH UNLS.

Fig. S6. High-resolution XPS spectrum of N 1s of NiCo-OH UNLS.

Fig. S7. TGA curves of NiCo-OH UNLS under Ar atmosphere.

Fig. S8. (A) The FID spectrum and (B) the TCD spectrum of the gas products after reaction.

Fig. S9. (A) XRD pattern of NiCo-OH UNDH; (B) High-resolution XPS spectrum of (B) Ni 2p, (C) Co 2p, (D) O 1s and (E) O 1s of NiCo-OH UNDH; (F) XPS spectrum of NiCo-OH UNDH.

Fig. S10. (A and B) SEM, (C and D) TEM, (E) HRTEM, (F) HAADF and EDX elemental mapping images of NiCo-OH UNDH.

Fig. S11. Photocatalytic performance of the replenishment of photosensitizer.

Fig. S12. (A) Multicycle photoreduction process over NiCo-OH UNLS; (B) XRD patterns of NiCo-OH UNLS before and after photocatalytic reaction; (C and D) SEM images of NiCo-OH UNLS after photocatalytic reaction.

Fig. S13. Tauc plots of NiCo-OH UNLS.

Fig. S14. Steady-state PL spectra of various catalysts.

Fig. S15. FT-IR spectra of NiCo-OH UNLS before and after photocatalytic reaction.

Fig. S16. The top view of optimized surface structures of (A) Co-OH UNLS and (B) Ni Co-OH UNLS models; The side view of optimized surface structures of (C) Co-OH UNLS and (D) Ni Co-OH UNLS models. Blue, gray, pink, and red balls represent Co, Ni, H and O atoms, respectively.

Fig. S17. The top view of optimized structures with COOH adsorbed over (A) Co-OH UNLS and (B) Ni Co-OH UNLS; The side view of optimized structures with COOH adsorbed over (C) Co-OH UNLS and (D) Ni Co-OH UNLS.

Sample	Mass of	Metered volume (mL)	Concentration of Ni (mg L ⁻¹)	Concentration	Molar ratio of
	catalyst (mg)			of Co (mg L ⁻¹)	Ni : Co
NiCo-OH	• •		6.010.6	6 0 0 0 0	
UNLS	5.0	200.0	6.8196	6.3898	1.07 : 1

Table S1. Raw data of inductive coupled plasma emission mass spectrometry test.

Entry	Catalyst	Gas products	$s (mmol \cdot g^{-1} \cdot h^{-1})$	CO as last initial $(0/)$ [a]	
	Catalyst	СО	H_2	CO selectivity (%) ^[4]	
1	NiCo-OH UNLS	309.5	30.6	91.0	
2	Co-OH UNDH	192.1	153.1	55.7	
3	NiCo-OH UNDH	170.8	20.4	89.3	
4[b]	-	12.0	2.4	83.0	
5 ^[c]	NiCo-OH UNLS	0	0	-	
6 ^[d]	NiCo-OH UNLS	0	0	-	
7 ^[e]	NiCo-OH UNLS	0	0	-	
8 ^[f]	NiCo-OH UNLS	0	21.3	0	

Table S2. Visible-light-driven CO₂ reduction under various conditions.

[a] The selectivity of CO was calculated by the equation of $n(CO)/[n(CO)+n(H_2)]*100\%$.

[b] Unit: μ mol·h⁻¹.

[c] Without TEOA.

[d] Without light.

[e] Without **Ru**.

[f] 1.0 atm Ar instead of 1.0 atm pure CO₂.

Catalyst	Light source	Electron donor Photosensitizer	CO evolution (mmol·g ⁻¹ ·h ⁻¹)	CO selectivity (%)	Ref.
NiCo OH UNI S	36 W 450 nm LED	TEOA	300.5	91.0	This
NICO-OII OIVES	lamp	[Ru(bpy) ₃]Cl ₂	507.5		work
	36 W 450 nm LED	TEOA	102 1	55.7	This
CO-OII UNDII	lamp	[Ru(bpy) ₃]Cl ₂	192.1		work
NiCo-OH	36 W 450 nm LED	TEOA	170.9	89.3	This
UNDH	lamp	[Ru(bpy) ₃]Cl ₂	170.8		work
Cu ₂ S@R _{OH} -	200 W Ya lamp	TEOA	7 1	72.0	1
NiCo ₂ O ₃ DSNBs	300 w Xe lamp	[Ru(bpy) ₃]Cl ₂	/.1		
NC@NiCa O	300 W Xe lamp	TEOA	26.2	88.6	2
NC@NIC0204		[Ru(bpy) ₃]Cl ₂			
Ni-Co ₃ O ₄	200 W V - 1	Ru(bpy) ₃ Cl ₂ ·6H ₂ O	ד דדר	92.0	3
NSDHN	500 W Ac lamp	TEOA	211.1		
Ni(OH) ₂ -	200 W Ya lamp	$Ru(bpy)_3Cl_2 \cdot 6H_2O$	10.7	96	4
10%GR	500 w Xe lamp	TEOA	10.7		
ZnCo-OH	200 W Ya lamp	$Ru(bpy)_3Cl_2 \cdot 6H_2O$	671.2	76.9	5
QUNH	500 W Ac lamp	TEOA	071.5		
LiO Co N	300 W Xa lamp	$Ru(bpy)_3Cl_2 \cdot 6H_2O$	0.170	00 3	6
010-00-N ₃	500 W Xe lamp	BIH	0.179	<i>))</i> .5	
NiCoOP-	200 W Valama	Ru(bpy) ₃ Cl ₂ ·6H ₂ O	166	65.9	7
NPs@MHCFs		TEOA	100		
Ni(OH). NC 2	100 W 420 nm	Ru(bpy) ₃ Cl ₂ ·6H ₂ O	144	96.1	8
11(011 <i>)</i> 2-110-2	LED lamp	TEOA	144		

Table S3. Summary of photocatalytic CO₂ reduction activities of various photocatalytic systems.

Reference

- L. Li, X. Dai, D. Chen, Y. Zeng, Y. Hu and X. W. D. Lou, *Angew. Chem. Int. Ed.*, 2022, 61, e202205839.
- 2. S. Wang, B. Guan and X. Lou, *Energy Environ. Sci.*, 2018, 11, 306-310.
- G. Qian, W. Lyu, X. Zhao, J. Zhou, R. Fang, F. Wang and Y. Li, *Angew. Chem. Int.* Ed., 2022, 61, e202210576.
- K. Lu, Y. Li, F. Zhang, M. Qi, X. Chen, Z. Tang, Y. M. A. Yamada, M. Anpo, M. Conte and Y. Xu, *Nat. Commun.*, 2020, 11, 5181.
- F. Wang, R. Fang, X. Zhao, X. Kong, T. Hou, K. Shen and Y. Li, ACS Nano, 2022, 16, 4517-4527.
- J. Wang, K. Sun, D. Wang, X. Niu, Z. Lin, S. Wang, W. Yang, J. Huang and H. Jiang, ACS Catal., 2023, 13, 8760-8769.
- 7. Y. Wang, S. Wang and X. Lou, Angew. Chem. Int. Ed., 2019, 58, 17236-17240.
- Y. Su, Z. Song, W. Zhu, Q. Mu, X. Yuan, Y. Lian, H. Cheng, Z. Deng, M. Chen, W. Yin and Y. Peng, ACS Catal., 2020, 11, 345-354.