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Materials and Methods  

Mechanical properties calculations  

Ab initio calculation method within the density functional theory (DFT) is a very 

powerful method for mechanical properties calculations. In this section, we followed the 

method of Hongzhi Yao et al. work
1
 to calculate the mechanical properties. A scheme has 

been applied to calculate the elastic constants of the high entropy solid solutions. Starting 

with the simple Hook’s famous law
2,3

 that relates the stress components σi with the strain 

components εj by the relation:  

    ∑   

 

   

        

 

Cij is the elastic constants. From knowing the elastic constants, we calculate the other 

mechanical properties: compliance tensor Sij, Young’s modulus (E), Bulk modulus (K), 

Shear modulus (G), and Poisson’s ratio (η). Here, the Voigt – Reuss –Hill (VRH)
4,5

 

approximation has been used to derive the above mechanical parameters. According to 

this approximation, the upper and lower bounds for the structural parameters, such as 

bulk and shear modulus are respectively given by: 

    
              

 
  

               

 
      

                                                        

    
 

                              
      

                         

    
                          

  
 

              

 
      

                                            

    
  

                                            
      

 

So, the average values of the mechanical parameters are given by: 
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The machinability index (µM) can be expressed as follows 
6
: 

 

   
 

   
       

The formula of Tian et al. 
7
 was used to calculate the macro Vicker’s hardness 

parameter HV:   
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Another formula
7
 can be used to estimate Vicker’s hardness: 
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Debye temperature and thermal conductivity calculations 

 

Debye temperature (ΘD) and the average sound velocity (vm) can be calculated as 

follows 
8–11
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Here, ρ is the theoretical density of the solid solution model, h, kB, and NA are Planck’s 

constant, Boltzmann constant, and Avogadro’s number, respectively. M is the molecular 

weight and n is the number of atoms in the supercell. vs and vl are the transverse (shear) 

and longitudinal sound velocities respectively. The compressional (longitudinal) waves 

and shear waves are estimated by using the values of bulk modulus (K) and shear 

modulus (G) according to Voigt-Reuss-Hill approach based on the following formulas 
12

:   

   √
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Clarke’s formula for the minimum thermal conductivity (κmin) is given as follows
13,14

: 
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Cahill’s formula for the minimum thermal conductivity is given by
15,16
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Slack’s formula
17,18

 for thermal conductivity (κ) or for lattice thermal conductivity (κL) 

(in case of the electronic part of thermal conductivity (κe) is negligible) is given by: 
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Where V is the volume of the supercell, A is constant that can be approximated to be 

3.1e-6
18

 when κ in W.m
-1

.K
-1

. γα is the acoustic Grüneisen parameter, Ω is the volume per 

atom, and T is the temperature in Kelvin unit.  

The acoustic Grüneisen constant (γα) was calculated by using the following formula 
19

: 
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Julian 
17,20,21

 derived the following formula for the constant A in the Slack’s formula( 

formula (S29)) for κ: 

 

  
            

  
     
  

 
     
   

       

The mixed model 
22

 can give an empirical formula for lattice thermal conductivity(κL) 

as follows: 
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   An empirical formula was used for calculating an estimation of melting 

temperature(Tmelt) of the six RHEAs solid solutions with a standard error about ±300 K 

by using the elastic constants
23–25

: 

      [     (
     

   
)   ]             

Thermal expansion coefficient (α) can be roughly estimated from the following formula 

using the value of shear modulus 
26

: 
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Supplementary Text 

From our calculations for BO and BL data, we succinctly describe the following 

observations: 

1.  r– r  ond lengths (  s) are distri uted  etween ( .     .  ) with   ( .  –0.15) for 

all models. 

 

2. Cr–Ta bonds have BLs between(2.5–3.7Å) with BO(0.05–0.25) in the models from 

m1to m4, while they have shorter BLs between (2.5–3.2Å) with less BO(0.05–0.2) in m5 

and m6. 

 

3. Cr–W bonds have BLs between(2.4–3.7Å) with BO(0.05–0.26) in the models from 

m1to m4, while they have shorter BLs between (2.5–3.3Å) with less BO(0.05–0.23) in 

m5 and m6. 

 

4. Cr–Nb BLs are distributed between ( .     .  ) with   ( .  – .  ) for m  and m  

models.  n m  and m ,  r–     s are distri uted  etween ( .     .  ) with   ( .  –

0.17), whereas they have shorter BLs between (2.5–3.2Å) with less BO(0.01–0.15) in 

m6. 

 

5. Cr–Mo BLs are distributed between ( . – .  ) with   ( .  – .  ) for m  and m  

models.  n m  and m ,  r– o   s are distri uted  etween ( .     .  ) with   ( .  –

0.3), whereas they have shorter BLs between (2.5–3.2Å) with less BO(0.04–0.22) in m6. 

 

6. Cr–Hf bonds have BLs between(2.5–3.8Å) with   ( .  – . ) in m , and the  ha e 

similar   s with less   ( .  – .  ) in m  and m .  n m ,  r–Hf   s are distri uted 

 etween ( .     .  ) with   ( .  – .  ) whereas the  ha e shorter   s  etween ( .    

3.3Å) with less BO(0.02–0.14) in m5.  

 

7.  r– r  onds ha e   s  etween( . – .  ) with   ( .  – . ) in models from m  to 

m , and the  ha e   s ( . – .  ) with less   ( .  – .  ) in m .  n m ,  r– r   s are 

distri uted  etween ( .     .  ) with   ( .  –0.24) whereas they have shorter BLs 

between ( .     .  ) with less   ( .  –0.2) in m6.  

 

8. Hf–    s are distri uted  etween ( .     .  ) with   ( .  – .  ) for the models 

from m  to m , while the  ha e shorter   s( .     .  ) with the same    in m . 

 

9. Hf–Ta BLs are distributed between (2.7–3.7Å) with   ( .  – .  ) for the models 

from m  to m , while the  ha e shorter   s( .     .  ) with the same    in m . 
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10.  o–    s are distri uted  etween ( . – .  ) with   ( .  – .  ) for the models 

from m  to m , while the  ha e shorter   s( .     .  ) with less BO(0.04–0.22) in m6. 

 

11.  o– a   s are distri uted  etween ( . – .  ) with   ( .  – .  ) for the models 

from m  to m , while the  ha e shorter   s( .     .  ) with less   ( .  –0.21) in m6. 

 

12. Mo–Mo bonds have BLs between(2.5–3.5Å) with BO(0.05–0.25) in the models from 

m  to m .  n m ,  o– o   s are distri uted  etween ( .     .  ) with   ( .  – .  ) 

whereas the  ha e shorter   s  etween ( .     .  ) with less   ( .  –0.22) in m6. 

 

13. Mo–Hf BLs are distributed between (2.6–3.6Å) with BO(0.03–0.17) for the models 

from m  to m , while the  ha e shorter   s( .     .  ) with   ( .  –0.17)  in m5. 

 

14.   –Hf  onds ha e   s  etween( . – .  ) with   ( .  – .  ) in the models from 

m  to m .  n m ,   –Hf   s are distri uted  etween ( .     .  ) with   ( .  –0.  ) 

whereas the  ha e shorter   s  etween ( .     .  ) with less   ( .  –0.11) in m5. 

 

15. Nb–Mo bonds have BLs between(2.5–3.6Å) with BO(0.02–0.21) in models from m1 

to m3, and they have BLs (2.6–3.5Å) with less BO(0.02–0.17) in m4. In m5, Nb–Mo BLs 

are distri uted  etween ( .     .  ) with   ( .  – .  ) whereas the  ha e shorter   s 

 etween ( .     .  ) with less   ( .  –0.16) in m6.  

 

16. Nb–W BLs are distributed between (2.6–3.6Å) with BO(0.03–0.19) for the models 

from m1 to m5, while they have shorter   s( .     .  ) with   ( .  –0.16)  in m6. 

 

17.   – a  onds ha e   s  etween( . – .  ) with   ( .  – .  ) in models from m  

to m .  he  ha e   s ( . – .  ) with less   ( .  – .  ) in m  and m , whereas the  

ha e shorter   s  etween ( .     .  ) with less BO(0.02–0.16) in m6. 

 

18.   –     s are distri uted  etween ( . – .  ) with   ( .  – .  ) for the models 

from m  to m , while the  ha e shorter   s( .     .  ) with   ( .  –0.11) in m6. 

 

19. Ta–Ta bonds have BLs between(2.7–3.7Å) with BO(0.05–0.25) in models from m  

to m .  he  ha e   s ( . – .  ) with   ( .  – .  ) in m , whereas the  ha e shorter 

  s  etween ( .     .  ) with less   ( .  –0.21) in m6. 

 

20. Ta–W bonds have BLs between(2.6–3.6Å) with BO(0.05–0.27) in models from m1 to 

m4. They have BLs ( . – .  ) with   ( .  – .  ) in m , whereas the  ha e shorter 

  s  etween ( .     .  ) with less   ( .  –0.22) in m6. 
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21.  i– r   s are distri uted  etween ( . – .  ) with   ( .  – .  ) for the models 

from m  to m , while the  ha e shorter   s( .     .  ) with the same values of BO in 

m5. 

 

22.  i–   onds ha e   s  etween( . – .  ) with   ( .  – .  ) in models m , m , 

and m .  he  ha e   s ( . – .  ) with   ( .  – .  ) in m  and m , whereas the  

ha e shorter   s  etween ( .     .  ) with less   ( .  –0.2) in m6. 

 

23.  i–V  onds ha e   s  etween( . – .  ) with   ( .  – .  ) in models from m  to 

m , and the  ha e   s ( . – .  ) with less   ( .  – .  ) in m .  n m ,  i–V   s are 

distri uted  etween ( .     .  ) with   ( .  –0.2) whereas they have shorter BLs 

between ( .     .  ) with less   ( .  –0.17) in m6.  

 

24.  i– i  onds ha e   s  etween( . – .  ) with   ( .  – .  ) in models m  and m , 

and the  ha e   s ( . – .  ) with less   ( .  – . ) in m .  n m ,  i– i   s are 

distri uted  etween ( .     .  ) with   ( . – .  ).  n m ,  i– i   s are distri uted 

 etween ( .     .  ) with   ( .  – .  ) whereas the  ha e shorter   s  etween ( .    

3.3Å) with less BO(0.05–0.15) in m6.  

 

25. Ti–Ta bonds have BLs between(2.6–4.0Å) with BO(0.01–0.23) in models from m1 to 

m3, and the  ha e   s ( . – .  ) with   ( .  – .  ) in m .  n m ,  i– a   s are 

distri uted  etween ( .     .  ) with   ( .  – . ) whereas the  ha e shorter   s 

 etween ( .     .  ) with less   ( .  –0.18) in m6.  

 

26. Ti–Nb bonds have BLs between(2.5–3.7Å) with   ( .  – .  ) in models m  and 

m , and the  ha e   s ( . – .  ) with less   ( .  – .  ) in m  and m .  n m ,  i–   

  s are distri uted  etween ( .     .  ) with   ( .  – .  ), whereas the  ha e shorter 

  s  etween ( .     .  ) with less   ( .  –0.13) in m6.  

 

27.  i– o   s are distri uted  etween ( . – .  ) with   ( .  – .  ) for the models 

from m  to m , while the  ha e shorter   s( .     .  ) with   ( .  –0.21) in m6. 

 

28. Ti–Hf BLs are distributed between (2.6–3.8Å) with BO(0.02–0.15) for m1and m2 

models, while the  ha e   s( .     .  ) with   ( .  –0.18) in m4. 

 

29.  i– r  onds ha e   s  etween( . – .  ) with   ( .  – .  ) in models m , m , 

m , and m .  he  ha e   s ( . – .  ) with   ( .  – .  ) in m , whereas the  ha e 

shorter   s  etween ( .     .3Å) with less BO(0.05–0.18) in m6. 
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30. V– r  onds ha e   s  etween( . – .  ) with   ( .  – .  ) in models from m to 

m .  he  ha e shorter   s ( . – .  ) with   ( .  – .  ) in m , and the  ha e   s 

 etween ( .     .  ) with   ( .  –0.15) in m5. 

 

31. V–W bonds ha e   s  etween( . – .  ) with   ( .  – .  ) in models from m to 

m .  he  ha e   s ( . – .  ) with   ( .  – .  ) in m , whereas and the  ha e 

shorter   s  etween ( .     .  ) with less   ( .  –0.21) in m6. 

 

32. V–V BLs are distributed between (2.4–3.7 ) with   ( .  – .  ) for models from 

m to m , while the  ha e shorter   s( .     .  ) with less   ( .  –0.2) in m6. 

 

33. V–Ta bonds have BLs between(2.5–3.8Å) with BO(0.04–0.24) in models m1, m3, 

and m4, and they have BLs (2.5–3.7Å) with higher BO(0.04–0.  ) in m .  n m , V– a 

  s are distri uted  etween ( .     .  ) with   ( .  – .  ), whereas the  ha e shorter 

  s  etween ( .     .  ) with less   ( .  –0.2) in m6.  

 

34. V–Nb bonds have BLs between(2.5–3.7Å) with BO(0.03–0.2) in models m1, m3, and 

m4, and the  ha e   s ( . – .  ) with   ( .  – .  ) in m .  n m , V–     s are 

distri uted  etween ( .     .  ) with   ( .  – .  ), whereas the  ha e shorter   s 

 etween ( .     .  ) with less   ( .  –0.15) in m6.  

 

35. V–Mo bonds have BLs between(2.5–3.6Å) with   ( .  – .  ) in models from m  

to m , and the  ha e   s ( . – .  ) with less   ( .  – .  ) in m .  n m , V– o   s 

are distri uted  etween ( .     .  ) with   ( .  – .  ), whereas the  ha e shorter   s 

 etween ( .     .  ) with less   ( .  –0.22) in m6.  

 

36. V–Hf   s are distri uted  etween ( . – .  ) with   ( .  – .  ) for models from 

m to m , while the  ha e shorter   s( .     .  ) with less   ( .  –0.14) in m5. 

 

37. V–Cr bonds have BLs between(2.3–3.7Å) with BO(0.02–0.25) in m1, and they have 

BLs (2.3–3.  ) with higher   ( .  – .  ) in m .  n m , the  ha e   s( .     .  ) with 

  ( .  – .  ).   n m  and m , V– r   s are distri uted  etween ( .     .  ) with 

  ( .  – .  ), whereas the  ha e shorter   s  etween ( .     .  ) with less   ( .  –

0.21) in m6.  

 

38. W–W bonds have BLs between(2.6–3.5Å) with BO(0.05–0.3) in models m1 and m2, 

and they have BLs (2.6–3.5Å) with less BO(0.05–0.26) in m3 and m4. In m5, W–W BLs 

are distributed between (2.6–3.3Å) with BO(0.03–0.25), whereas they have shorter BLs 

between ( .     .  ) with less   ( .  –0.22) in m6.  
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39.  r–Hf  onds ha e   s  etween( . – .  ) with   ( . – .  ) in m , and the  ha e 

  s ( . – .  ) with higher   ( . – .  ) in m .  n m  and m ,  r–Hf   s are 

distri uted  etween ( .     .  ) with   ( . –0.1), whereas the  ha e shorter   s 

 etween ( .     .  ) with less   ( .  –0.09) in m5.  

 

40. Zr–Zr bonds have BLs between(2.8–4.0Å) with BO(0.0–0.11) in models m1 and m2, 

and they have BLs (2.8–3.5Å) with BO(0.03–0.11) in m3. In m4, Zr–Zr BLs are 

distributed between ( . – .  ) with   ( . – . ), whereas the  ha e shorter   s 

 etween ( .     .  ) with less   ( .  –0.04) in m5.  

 

41. Zr–W bonds have BLs between(2.7–3.5Å) with BO(0.02–0.15) in m1, and they have 

BLs (2.7–3.6Å) with BO(0.03–0.17) in m2 and m3. In m4, Zr–W   s are distri uted 

 etween ( . – .  ) with   ( .  – .  ), whereas the  ha e shorter   s  etween ( .    

3.3Å) with BO(0.02–0.16) in m5.  

 

42. Zr–Ta BLs are distributed between (2.7–3.7Å) with BO(0.03–0.17) for models from 

m1to m4, while they have shorter   s( .     .  ) with less   ( .  –0.14) in m5. 

 

43.  r–    onds ha e   s  etween( . – .  ) with   ( .  – .  ) in models from m  

to m .  n m ,  r–     s are distri uted  etween ( . – .  ) with   ( .  – .  ), 

whereas the  ha e shorter   s  etween ( .     .  ) with BO(0.02–0.11) in m5.  

 

44.  r– o   s are distri uted  etween ( . – .  ) with   ( .  – .  ) in m , m , and 

m , while the  ha e shorter   s( .     .  ) with less   ( .  –0.15) in m3 and m5. 
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Figure S1. Calculated total density of states (TDOS) and partial density of states (PDOS) of 

the six RHEAs models at the range from –6 eV to 10 eV.  
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Figure S2. Calculated partial density of states (PDOS) of each element in the six RHEAs 

models at the range from –6 eV to 10 eV.  
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Figure S3. Distribution of  partial charge (PC) in the six RHEAs models.  
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Figure S4. Distribution of effective charge (Q
*
) in the six RHEAs models.  
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 Figure S5. Bond order (BO) versus bond length (BL) distribution in 

the six RHEAs models.  
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Figure S6. Bond order (BO) versus bond length (BL) distribution in the six RHEAs models.  
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Figure S7. Distribution of the partial bond order density (PBOD) in the six RHEAs models as is 

displayed in bar charts.  
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Figure S8. Lattice distortion (LD) in the six RHEAs models. FWHM of the Gaussian curve fitted 

to the histogram distribution of the bimodal peaks. The two peaks denote the NN and SNN. 
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Figure S9. a. Lattice distortion (LD) versus Pugh’s ratio and b. Lattice distortion (LD) 

versus Poisson’s ratio of six BCC RHEAs. The dashed line denotes linear fit. 

 

Figure S10. a. Lattice distortion (LD) versus bulk modulus and b. Lattice distortion (LD) 

versus shear modulus of six BCC RHEAs. The dashed line denote linear fit. 
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Figure S11. a. Lattice distortion (LD) versus Young’s modulus and b. Lattice distortion (LD) 

versus Vicker’s hardness (HV) of six BCC RHEAs. The dashed line denote linear fit. 

 

Figure S12. a. Lattice distortion (LD) versus elastic constant (C11) and b. Lattice distortion (LD) 

versus elastic constant (C44) of six BCC RHEAs. The dashed line denote linear fit. 
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Figure S13. a. lattice thermal conductivity (κL) versus Debye temperature (ΘD), and b. Lattice 

distortion (LD) versus Gruneisen parameter of 6 BCC RHEAs. The dashed line denote linear fit. 

 

Figure S14. a. Lattice distortion (LD) versus Debye temperature (ΘD), and b. lattice distortion 

(LD)versus transverse velocity (vs) of 6 BCC RHEAs. The dashed line denotes linear fit. 

 



70 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S15. a. Lattice distortion (LD) versus lattice thermal conductivity (κL), and b. Gruneisen 

parameter versus lattice thermal conductivity (κL) of 6 BCC RHEAs. The dashed line denote 

linear fit. 

 

Figure S16. a. Young’s modulus (E) and Bulk modulus (K) versus the 

valence electron concentration (VEC) of 6 BCC RHEAs. 
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Figure S17. The valence electron concentration (VEC) versus the 

melting point (Tm ) for the 6 BCC RHEAs. The dashed line denote 

linear fit. 
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Supplementary Tables 

  

Table S1. The atomic fraction (  ) of Ti,V, Cr, Zr, Nb, Mo, Hf, Ta, and W elements in the 
six RHEAs models. 

Model Atomic fraction 

Ti V Cr Zr Nb Mo Hf Ta W 

m1 0.11111 0.11111 0.11111 0.11111 0.11111 0.11111 0.11111 0.11111 0.11111 

m2 0.11111 0.11111 0.11111 0.11111 0.11111 0.11111 0.11111 0.11111 0.11111 

m3 0.11111 0.11111 0.135 0.088 0.11111 0.135 0.088 0.111 0.111 

m4 0.1604 0.064 0.115 0.115 0.097 0.115 0.102 0.116 0.116 

m5 0.1111 0.1111 0.167 0.056 0.11111 0.167 0.056 0.111 0.111 

m6 0.11111 0.11111 0.223 0.0 0.11111 0.223 0.0 0.111 0.111 

 

 

Table S2. Crystal structure(HCP stands for hexagonal close packed), atomic 
radius

75
, elemental valence electron concentration (VEC)

76,77
, elemental Pauling 

electronegativity(χPauling)
76,77

, elemental Allen electronegativity(χAllen)
76

, and 
elemental melting point (Tm)

77
 of Ti,V, Cr, Zr, Nb, Mo, Hf, Ta, and W elements.  

Element Elemental 

structure 

Elemental 

radius(nm) 

Elemental 

VEC 

Elemental 

χPauling 

Elemental 

χAllen 

Elemental 

Tm (K) 

Ti HCP or BCC 0.1462 4 1.54 1.38 1941 

V BCC 0.1316 5 1.63 1.53 2183 

Cr BCC 0.1249 6 1.66 1.65 2180 

Zr HCP or BCC 0.1603 4 1.33 1.32 2125 

Nb BCC 0.1429 5 1.6 1.41 2750 

Mo BCC 0.1363 6 2.16 1.47 2896 

Hf HCP 0.1578 4 1.3 1.16 2506 

Ta BCC 0.1430 5 1.5 1.34 3290 

W BCC 0.1367 6 2.36 1.47 3695 

 

 

Table S3. The parameter Ω, Gi  s free energ  (∆Gmix), combination 
parameter (Ʌ), Pauling electronegativity (ΔχPauling), and Allen 
electronegativity(ΔχAllen) of various TiVCrZrNbMoHfTaW system.  
Model  Ω ∆Gmix (kJ/mol.) 

at 300 K 

Ʌ (J.K
–1

 mol.
–1

) ∆χPauling ∆χAllen % 

m1 9.9851 – 10.27013 0.3131 0.3368 9.2908 

m2 9.9851 – 10.27013 0.3131 0.3368 9.2908 

m3 9.4638 – 10.52081 0.3655 0.3349 9.2505 

m4 9.4442 – 10.42422 0.3227 0.3416 9.0476 

m5 9.0787 – 10.52893 0.3303 0.3283 9.1897 

m6 8.7423 – 9.513834 0.3098 0.3053 9.1287 
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Python code 

This python was used to generate random solid solutions: 

 https://github.com/Asif-Iqbal-Bhatti/High-Entropy-Alloys. 

…………………………………………………………………………. 

#!/usr/bin/env python3 

############################################################################ 

# USAGE  :: python3 sys.argv[0] bcc/fcc c/d 

############################################################################ 

import numpy as np 

import sys, random 

from numpy import linalg as LA 

#------------------------------INPUT PARAMETRS------------------------------------# 

lattice_parameter = 3.405  

supercellx = 8 

supercelly = 8 

supercellz = 8 

#----------------------------------------------------------------------------------# 

def HEAs_supercell(): 

 cartesian_units=[] 

 count=0 

 lattice_vector = np.array([[1,0,0], 

          [0,1,0],   

                                                                         

[0,0,1]])*lattice_parameter 

 

 lattice_bcc = np.array([[0,0,0], 

           

 [0.5,0.5,0.5]])*lattice_parameter 

 

 lattice_fcc = np.array([[0,0,0], 

          [0.0,0.5,0.5], 

            

 [0.5,0.0,0.5],                                                                                                                                                                                                                           

                                                                                                                                                                                    

[0.5,0.5,0.0]])*lattice_parameter 

 fcc = lattice_fcc; 

 if (sys.argv[1]=='fcc'): b = lattice_parameter*np.sqrt(2)/2.0; print("Burgers vector::", b) 

 bcc = lattice_bcc 

 if (sys.argv[1]=='bcc'): b = lattice_parameter*np.sqrt(3)/2.0; print("Burgers vector::", b) 

 

 for i in range(supercellx):         

  

  for j in range(supercelly): 

   for k in range(supercellz): 

    atom_position = np.array([i,j,k]) 
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    cartesian_basis = np.inner(lattice_vector.T, atom_position) 

    if (sys.argv[1] == 'bcc'): 

     for atom in lattice_bcc: 

      cartesian_units.append(cartesian_basis + atom) 

      count+=1 

    elif (sys.argv[1] == 'fcc'):   

     for atom in lattice_fcc: 

      cartesian_units.append(cartesian_basis + atom) 

      count+=1    

 with open("POSCAR","w") as POSCAR: 

  POSCAR.write(f'#{sys.argv[1]}\n') 

  POSCAR.write('{:6.6f}\n'.format(1.0)) 

  POSCAR.write("{:12.9f} {:12.9f}  

{:12.9f}\n".format(lattice_vector[0][0]*supercellx,lattice_vector[0][1]*supercellx,lattice_vector[0][2]*supercellx )) 

  POSCAR.write("{:12.9f} {:12.9f} 

{:12.9f}\n".format(lattice_vector[1][0]*supercelly,lattice_vector[1][1]*supercelly,lattice_vector[1][2]*supercelly )) 

  POSCAR.write("{:12.9f} {:12.9f} 

{:12.9f}\n".format(lattice_vector[2][0]*supercellz,lattice_vector[2][1]*supercellz,lattice_vector[2][2]*supercellz )) 

  print("{:12.9f} {:12.9f} 

{:12.9f}".format(lattice_vector[0][0]*supercellx,lattice_vector[0][1]*supercellx,lattice_vector[0][2]*supercellx )) 

  print("{:12.9f} {:12.9f} 

{:12.9f}".format(lattice_vector[1][0]*supercelly,lattice_vector[1][1]*supercelly,lattice_vector[1][2]*supercelly )) 

  print("{:12.9f} {:12.9f} 

{:12.9f}".format(lattice_vector[2][0]*supercellz,lattice_vector[2][1]*supercellz,lattice_vector[2][2]*supercellz )) 

  POSCAR.write('Ta\n') 

  POSCAR.write(f'{count}\n') 

 #------------------------- In Cartesian UNITS -------------------------# 

  if sys.argv[2] in ["c", "C"]: 

   POSCAR.write("Cartesian\n") 

   for cartesian_unit in cartesian_units: 

   #print("{:12.9f} {:12.9f} {:12.9f}".format(cartesian_units[i][0], cartesian_units[i][1], 

cartesian_units[i][2])) 

    POSCAR.write( 

     "{:12.9f} {:12.9f} {:12.9f}\n".format( 

      cartesian_unit[0], cartesian_unit[1], cartesian_unit[2] 

     ) 

    ) 

 #------------------------- In fractional/Direct UNITS -------------------------#   

  u = np.cross(lattice_vector[1]*supercelly, lattice_vector[2]*supercellz) 

  v = np.cross(lattice_vector[0]*supercellx, lattice_vector[2]*supercellz) 

  w = np.cross(lattice_vector[0]*supercellx, lattice_vector[1]*supercelly) 

  V = np.array([ lattice_vector[0]*supercelly,lattice_vector[1]*supercelly,lattice_vector[2]*supercellz ] ) 

  print ("Volume of the cell::", LA.det(V) ) 

  Vx = np.inner(lattice_vector[0]*supercellx,u) 

  Vy = np.inner(lattice_vector[1]*supercelly,v) 

  Vz = np.inner(lattice_vector[2]*supercellz,w) 

  if sys.argv[2] in ["d", "D"]: 

   POSCAR.write("Direct\n") 

   for cartesian_unit_ in cartesian_units: 

    POSCAR.write( 

     "{:12.9f} {:12.9f} {:12.9f}\n".format( 

      np.dot(cartesian_unit_, u) / Vx, 

      np.dot(cartesian_unit_, v) / Vy, 

      np.dot(cartesian_unit_, w) / Vz, 

     ) 
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    ) 

 

 #------------------------- Randomly distribute atoms for HEA -------------------------#   

 with open("newPOSCAR","w") as fdata: 

  for _ in range(int(1e3)): 

   randomArrx = random.sample(range(count), count) 

  if (count%4 == 0):   

   fdata.write(f'#{sys.argv[1]}\n') 

   fdata.write('{:6.6f}\n'.format(1.0)) 

   fdata.write("{:12.9f} {:12.9f} 

{:12.9f}\n".format(lattice_vector[0][0]*supercellx,lattice_vector[0][1]*supercellx,lattice_vector[0][2]*supercellx )) 

   fdata.write("{:12.9f} {:12.9f} 

{:12.9f}\n".format(lattice_vector[1][0]*supercelly,lattice_vector[1][1]*supercelly,lattice_vector[1][2]*supercelly )) 

   fdata.write("{:12.9f} {:12.9f} 

{:12.9f}\n".format(lattice_vector[2][0]*supercellz,lattice_vector[2][1]*supercellz,lattice_vector[2][2]*supercellz )) 

   fdata.write('V Nb Ta Ti \n') 

   fdata.write('{0} {0} {0} {0} \n'.format((int(count/4))) ) 

 

   #------------------------- In Cartesian UNITS -------------------------# 

   if sys.argv[2] in ["c", "C"]: 

    fdata.write("Cartesian\n") 

    print( 

     f'# of atoms per element -> {count / 5}. File generated in Cartesian 

coordinates' 

    ) 

    for i in range(len(cartesian_units) ): 

     #print("{:12.9f} {:12.9f} 

{:12.9f}".format(cartesian_units[randomArrx[i]][0],cartesian_units[randomArry[i]][1],cartesian_units[randomArrz[i]][2] ) ) 

     fdata.write("{:12.9f} {:12.9f} 

{:12.9f}\n".format(cartesian_units[randomArrx[i]][0],cartesian_units[randomArrx[i]][1],cartesian_units[randomArrx[i]][2] ) ) 

   #------------------------- In fractional/reduced UNITS ----------------#  

   if sys.argv[2] in ["d", "D"]: 

    fdata.write("Direct\n") 

    print( 

     f'# of atoms per element -> {count / 5}. File generated in Direct coordinates' 

    ) 

    for i in range(len(cartesian_units) ): 

     fdata.write("{:12.9f} {:12.9f} 

{:12.9f}\n".format(np.dot(cartesian_units[randomArrx[i]],u)/Vx,            np.dot(cartesian_units[randomArrx[i]],v)/Vy, 

np.dot(cartesian_units[randomArrx[i]],w)/Vz ) )      

  else:  

   print( 

    f'{count / 5} is not an integer number for equal composition -> HEAs not generated' 

   )   

 def help(): 

 print('A simple script to generate FCC or BCC supercell for HEAs.') 

 print('To execute just run python3 sys.argv[0] <bcc/fcc> <c/d>.') 

 print('THIS script is valid for equimolar composition !!!')  

 print('HEAs consists of five or more elements. The elements has already been typed into the') 

 print('script just change according to your need also lattice vectors should be') 

 print('equal and atomic composition should corresponds to integer multiple of atoms.') 
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if __name__ == '__main__': 

 if len(sys.argv) < 3 or len(sys.argv) > 3: 

  help() 

 else: 

  HEAs_supercell() 
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