Supporting Information

Unlocking New Possibility of Fe₃O₄@C@Ag Nanostructures as an Advanced SERS Substrate for Ultrasensitive Detection of Low-Cross-Section Urea Biomolecules

Quan-Doan Mai^{a,*,1}, Dang Thi Hanh Trang^{a,1}, Dong Thi Linh^a, Nguyen Trung Thanh^b,

Bui Hanh Nhung^{a,b}, Ong Van Hoang^{c,a}, Ta Ngoc Bach^d, Nguyen Quang Hoa^e,

Anh-Tuan Pham^{a,f}, Anh-Tuan Le^{a,b,**}

^aPhenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi 12116, Vietnam

^bFaculty of Materials Science and Engineering, Phenikaa University, Hanoi 12116, Vietnam

^cUniversity of Transport Technology, Trieu Khuc, Thanh Xuan District, Hanoi, Viet Nam

^dInstitute of Materials Science (IMS), Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi 10000, Vietnam

^eFaculty of Physics, VNU University of Science, Vietnam National University, Hanoi, Thanh Xuan, Hanoi, Vietnam

^fFaculty of Biotechnology, Chemistry and Environmental Engineering, Hanoi 12116, Vietnam

Corresponding authors:

*<u>doan.maiquan@phenikaa-uni.edu.vn</u> (Q.D. Mai)

**<u>tuan.leanh@phenikaa-uni.edu.vn</u> (A.T. Le)

¹ Q.D. Mai and D.T.H. Trang contributed equally to this work

Calculation of limit of detection (LOD)

The standard curve of linear detecting range was given as:

$$Y = A + B \times Log(X) \tag{1}$$

where A and B are intercept and slope of regression equation obtained through the plot of the logarithmic SERS intensity (Y) – logarithmic concentration (X).

The LOD is calculated using the following equation(1):

$$LOD = 10^{[(Y_{blank} + 3SD)/Y_{blank} - A]/B}$$
(2)

where Y_{blank} and SD are the SERS signal and the standard deviation of blank sample, respectively.

SD is calculated via the well-known formula:

$$SD = \sqrt{\frac{1}{n-1} \times \sum_{i}^{n} (x_i - x_{average})^2}$$
(3)

where x_i if the "i" sample of the series of measurements, $x_{average}$ is the average value of SERS signal obtained from the blank sample repeated n times.

Calculation of enhancement factor (EF)

The EF value is calculated according to the well-established equation, which was employed in several published studies(2, 3):

$$EF = \frac{I_{SERS}}{I_{Raman}} \times \frac{N_{bulk}}{N_{surface}}$$
(4)

where I_{Raman} is the Raman signal intensity of the 1020 cm⁻¹ peak of the urea collected directly from the powder sample (the result is presented in Figure S5); I_{SERS} is the SERS intensity of the 1010 cm⁻¹ peak of urea on the SERS substrate based on Ag NPs and Fe₃O₄@C@Ag; and N_{bulk} is the number of analyte molecules that are probed on the Raman spectrum of urea powder, while N_{surface} is the number of analyte molecules probed using SERS.

N_{bulk} can be calculated following:

$$N_{bulk} = \frac{A_{laser} \times h \times \rho}{M} \times N_A$$
(5)

where A_{laser} , h, ρ and m are the laser spot area, the focal length, the density of the solid analyte and its molecular weight, respectively; and N_A is the Avogadro number.

N_{surface} can be expressed as:

$$N_{surface} = \frac{C \times V}{A_{substrate}} \times N_A \times A_{laser}$$
(6)

where C, V, $A_{substrate}$ are the concentration, the volume drop-casted of the analyte, and the area of the substrate, respectively; N_A is the Avogadro number; and A_{laser} is the laser spot area.

Thus EF can be calculated as:

$$EF = \frac{I_{SERS}}{I_{Raman}} \times \frac{N_{bulk}}{N_{surface}} = \frac{I_{SERS}}{I_{Raman}} \times \frac{h \times \rho \times A_{substrate}}{M \times C \times V}$$
(7)

In our case, I_{Raman} value is determined by the intensity of the peak at 1020 cm⁻¹ in the Raman spectrum of urea in its powdered form, I_{SERS} value is obtained from the intensity of the peak at

1010 cm⁻¹ in the SERS spectrum of urea at a concentration of 10⁻⁸ M for Fe₃O₄@C@Ag substrate and 10⁻⁴ M for Ag NP substrate, $h = 2 \mu m$, $\rho_{urea} = 1.32 \text{ g/cm}^3$; $M_{urea} = 60 \text{ g/mol}$; $A_{substrate} = 4 \text{ mm}^2$, $V = 5 \mu L$.

Calculation of relative standard deviation (RSD)

The RSD value of repeatability and reproducibility is calculated via the well-known formula:

$$RSD = \frac{SD \times 100}{x_{average}}$$
(8)

where SD is the standard deviation that calculates using equation 3 and $x_{average}$ is the average value of SERS signal obtained from each measurement.

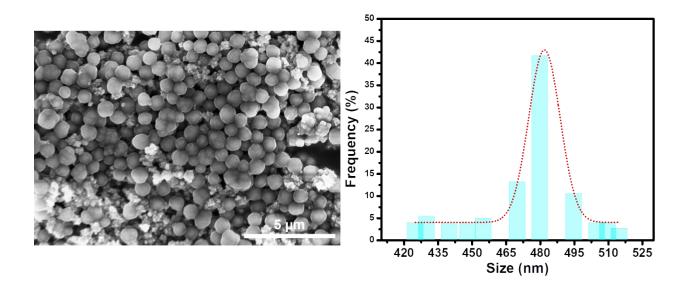


Figure S1. FE-SEM images and the size distribution of Fe₃O₄@C materials.

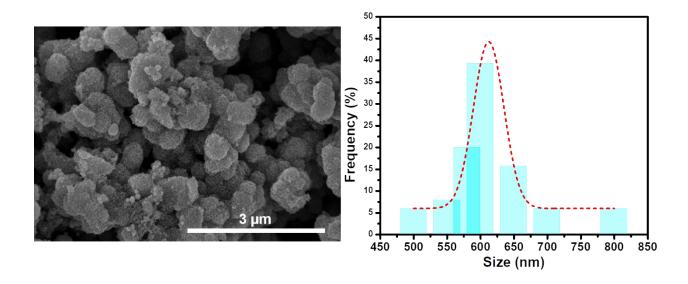


Figure S2. FE-SEM images and the size distribution of Fe₃O₄@C@Ag materials.

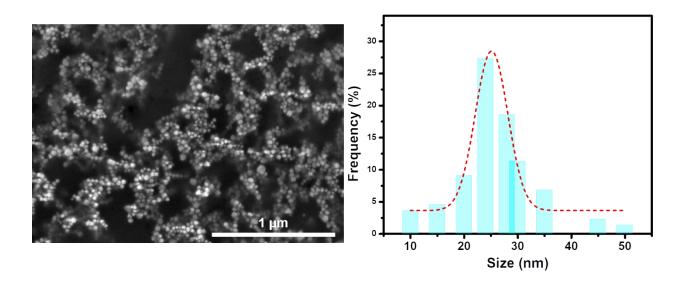


Figure S3. FE-SEM images and the size distribution of Ag nanoparticles.

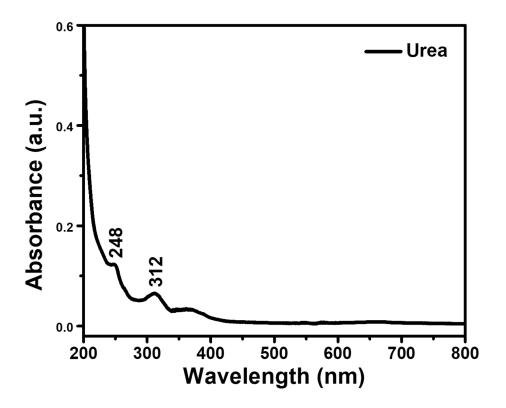


Figure S4. UV-Vis spectrum of urea at a concentration of 10⁻⁴ M.

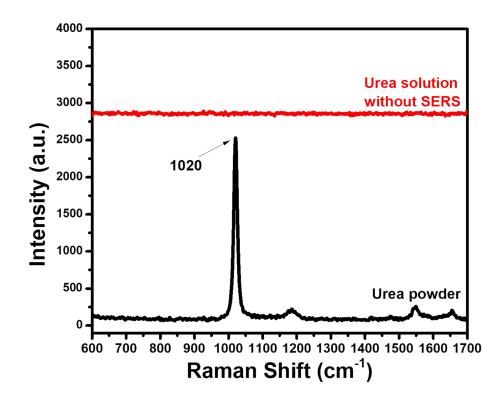


Figure S5. Raman spectra of urea powder and urea solution at a concentration of 10⁻³ M on the aluminum substrate in the absence of SERS material.

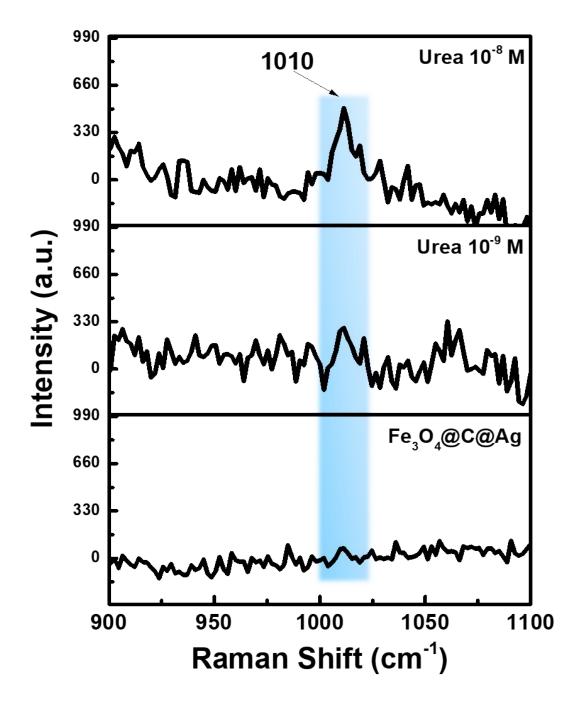


Figure S6. The Raman spectrum of the bare $Fe_3O_4@C@Ag$ substrate and the SERS spectra of urea at concentrations of 10⁻⁸ M and 10⁻⁹ M.

References

1. Chen R, Shi H, Meng X, Su Y, Wang H, He Y. Dual-amplification strategy-based SERS chip for sensitive and reproducible detection of DNA methyltransferase activity in human serum. Analytical chemistry. 2019;91(5):3597-3603.

2. Le Ru EC, Blackie E, Meyer M, Etchegoin PG. Surface enhanced Raman scattering enhancement factors: a comprehensive study. The Journal of Physical Chemistry C. 2007;111(37):13794-13803.

3. Fu WL, Zhen SJ, Huang CZ. One-pot green synthesis of graphene oxide/gold nanocomposites as SERS substrates for malachite green detection. Analyst. 2013;138(10):3075-3081.