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Abstract: Non-destructive color sensors are widely applied for rapid analysis of various 
biological and healthcare point-of-care applications. However, existing RGB-based color 
sensor systems, relying on the conversion to human-perceptible color spaces like HSL or HSV, 
exhibit limitations compared to spectroscopic methods. The integration of machine learning 
(ML) techniques presents an opportunity to enhance data analysis and interpretation, enabling 
insights discovery, prediction, process automation, and decision-making. In this study, we 
utilized four different regression models integrated with an RGB sensor for colorimetric 
analysis. Colorimetric protein concentration assays, such as BCA and Bradford analysis, were 
chosen as model studies to evaluate the performance of the ML-based color sensor. Leveraging 
regression models, the sensor effectively interprets and processes color data, facilitating 
precision color detection and analysis. Furthermore, the incorporation of diverse color spaces 
enhances the sensor's adaptability to various color perception models, promising precise 
measurement, and analysis capabilities for a range of applications. 
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Figure S1. Color sensor for the determination of protein concentration: Photo of 
the fabricated prototype (a), circuit diagram of the LCD display (b-i), RGB sensor 
(b-ii), LCD circuit module (b-iii), Raspberry Pi minicomputer (b-iv), and 96-well 
plate BCA Assay used in the commercial plate reader (c). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

S-2 

a b 



Supporting Information 

 
 
 
 

 
 
 
Figure S2. Mechanism of BCA assay for protein quantification. 
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Figure S3. Mechanism of Bradford assay for protein quantification. 
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Figure S4. Image of manufactured prototype of the color sensor with labels 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

S-5 



Supporting Information 

 
 
 
 

 

Figure S5. Protein quantitation curve of absorbance at 560 nm vs protein 
concentration (0-200 g/mL) in H2O of BCA assay (a), Bradford assay (b). 
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Figure S6. RGB color component values vs. frequency of color sensor output 
values (a), ratio of individual colors (R, G, B) to the sum of RGB with increasing 
protein concentration (b), and ratio of individual C, M, Y, K colors to the sum of 
CMYK (c) with increasing protein concentration for the BCA assay test. 
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Figure S7. Calibration curves for CIELAB, HSL and HSV values: a* value 
(green) and b* value (blue) over lightness in CELAB (a) hue and saturation over 
lightness vs. increasing protein concentration (b), and corresponding hue and 
saturation over value in HSV (c), for 0-200 g/mL of BSA protein samples in the 
Bradford assay 
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Figure S8. Sum of RGB color component values vs. frequency of color sensor 
outputs (a), ratio of individual R, G, B colors to the sum of RGB (b), and ratio of 
individual C, M, Y, K colors to the sum of CMYK (c) with increasing protein 
concentration for the Bradford assay test 
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Figure S9. Calibration curves for HSL values: hue and saturation over lightness 
vs. increase in protein concentration (a), corresponding hue and saturation over 
value in HSV (b), and the a* value (green) and b* value (blue) over lightness in 
CIELAB (c) for 0-200 g/mL BSA protein samples for the Bradford assay. 
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Table S1.  Summary of Regression model error matrices of various color models 
 
HSL 
Regression model MAE MSE RMSE R2 

Random forest  7.252699 93.10432 9.649048 0.959404 
Gradient boosting  7.619387 96.647119 9.830927 0.957859 
SVM  8.611231 111.836115 10.575260 0.951237 
MLP 29.482344 1260.028438 35.496879 0.450596 

 
RGB 
Regression model MAE MSE RMSE R2 

Random forest  8.100157 106.597984 10.324630 0.953521 
Gradient boosting  8.945299 128.054205 11.316104 0.944165 
SVM  7.309625 80.945129 8.996951 0.964706 
MLP 11.024903 180.368798 13.430145 0.921355 

 
CIELAB 
Regression model MAE MSE RMSE R2 

Random forest  7.608305 94.469397 9.719537 0.958809 
Gradient boosting  7.603124 92.615470 9.623693 0.959617 
SVM  8.690862 147.183263 12.131911 0.935824 
MLP 7.366562 87.956671 9.378522 0.961649 

 
HSV 
Regression model MAE MSE RMSE R2 

Random forest  7.257158 85.341868 9.238066 0.962789 
Gradient boosting  7.977991 102.496236 10.124042 0.955309 
SVM  8.200111 106.195190 10.305105 0.953696 
MLP 25.362530 980.959484 31.320273 0.572277 

 
CMYK 
Regression model MAE MSE RMSE R2 

Random forest  8.192314 115.362849 10.740710 0.949699 
Gradient boosting  7.449949 91.161053 9.547830 0.960251 
SVM  7.756273 90.476935 9.511936 0.960550 
MLP 29.315475 1223.267778 34.975245 0.466624 
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Table S2.  Summary of previous color sensor and regression model work reported 
 

Detector 
Device 

Target Object Colorimetry 
Model 

ML Model Performance Reference  

Smartphone 
Camera 

pH values from 
pH strips 

Mean RGB LS-SVM Accuracy = 
100% 

1 

CMOS 
camera  

Concentration of 
a laser dye 

HSV and 
RGB 

Polynomial 
regression 

Accuracy = 
95.5% 

2 

TCS34725 
on RPi4 

Concentrations 
of food dyes 

RGB Ratios Linear 
Regression 

R-square = 
99.3% 

3 

TCS3200 on 
Arduino  

Concentration of 
cyanide 

RGB  Linear 
Regression 

R-square = 
98.0% 

4 
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Table S3.  Summary of advantages and drawbacks of regression models used in this 
study 
 

Regression models Advantages Drawbacks 

Random Forest 
Regressor (RFR) 

An ensemble method used for 
predicting continuous outcomes by 
combining the outputs of multiple 
decision tree regressor, enhancing 
accuracy and robustness through max 
voting.5 This method reduces variance 
and overfitting, providing stable 
predictions, particularly advantageous 
in color sensor data susceptible to 
environmental noise.6 

It can be computationally 
intensive and may not 
perform well with high-
dimensional data.9 
 

Gradient Boosting 
Regressor (GBR) 

Combines multiple weak learners 
(decision trees) into a strong model, 
improving accuracy. Each tree leans 
from the errors of the previous one, 
optimizing predictions iteratively.9 
Additionally, RFR and GBR facilitate 
easy recalibration and adaptation to 
different devices and conditions.7 

Computationally 
intensive due to the large 
number of estimators. 
Prone to overfitting if 
hyperparameters (like 
learning rate and number 
of estimators) are not 
well-tuned.8 

Support Vector 
Regressor (SVR) 

Works well for both linear and non-
linear relationships due to kernel 
functions and is highly effective for 
high-dimensional data.8 

It is less effective in low-
feature classes. SVR 
struggles in datasets with 
a small number of 
features, as its 
performance relies on 
having sufficient 
dimensionality to 
distinguish patterns.8 

Multi-Layer 
Perceptron (MLP) 

Excels at identifying complex patterns 
and non-linear relationships in the data.8 

Prone to overfitting if not 
properly regularized and 
if the data is too simple. 
Computationally 
expensive for large 
datasets due to the 
complexity of neural 
network architecture.8  
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Lysozyme is a widely distributed low-molecular-weight protein with 
antimicrobial activity. It is commonly found in various species, including viruses, 
bacteria, fungi, and mammals, and is particularly abundant in bodily fluids such 
as tears, saliva, milk, and mucus.10 To further validate the color sensor and ML 
algorithm, we performed additional protein concentration analysis using 
colorimetric assays to detect lysozyme and further validate the test.  
 
 

 
 
 
Figure S10. RGB color component values vs. frequency of color sensor output 
values (a), Hue colors (H) with increasing protein concentration (b), Saturation 
colors (S) with increasing protein concentration (c), Lightness (L) with increasing 
protein concentration (d) and a scatterplot illustrating prediction vs measured 
protein concentration of the lysozyme. 
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