Supplementary Information (SI) for RSC Advances. This journal is © The Royal Society of Chemistry 2025

Supplementary data

Discovery of new benzothiazole-1,2,3-triazole hybrids-based hydrazone/thiosemicarbazone derivatives as potent EGFR inhibitors with cytotoxicity against breast cancer

Ateyatallah Aljuhani¹, Mohamed S. Nafie^{2,3*}, Nader R. Albujuq⁴, Mosa Alsehli¹, Sanaa K. Bardaweel⁵, Khaled M. Darwish^{6,7}, Shaya Y. Alraqa¹, Mohamed Reda Aouad^{1,*}, Nadjet Rezki¹

¹Chemistry Department, College of Sciences, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia;

ateyatallah@hotmail.com (A.A.), mosa_alsehli@hotmail.com (M.A.), Sqahtani@taibahu.edu.sa (S.Y.A.), aouadmohamedreda@yahoo.fr (M.R.A.), nadjetrezki@yahoo.fr (N.R.)

²Department of Chemistry, College of Sciences, University of Sharjah, Sharjah (P.O. 27272), United Arab Emirates (UAE); mohamed.elsayed@sharjah.ac.ae (M.S.N)

³Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, (P.O. 41522), Egypt; mohamed_nafie@science.suez.edu.eg (M.S.N)

⁴Department of Chemistry, School of Science, The University of Jordan, Amman 11942, Jordan; n.albujuq@ju.edu.jo (N.R.A.)

⁵ Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman 11942, Jordan; s.bardaweel@ju.edu.jo (S.B.)

Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt. E-mail: <u>khaled darwish@pharm.suez.edu.eg</u>

Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University, New Galala 43713, Egypt.

*Correspondence: Mohamed S. Nafie, mohamed_nafie@science.suez.edu.eg, ORCID: https://orcid.org/0000-0003-4454-6390

I. General methods:

The solvents and reagents used in this study were of the highest quality of analytical reagent grade and were used without undergoing any purification. The fine chemicals and solvents were acquired from BDH Chemicals Ltd. and Sigma-Aldrich. The melting temperatures were uncorrected and were determined with a Stuart Scientific SMP1. UV fluorescent Silica gel Merck 60 F254 plates were employed for thin layer chromatography (TLC) to monitor the reactions. A UV lamp (254 nm) was used to visualize the resulting spots. Fourier transform infrared spectroscopy (FT-IR) was conducted on FT-IR spectrometer type Perkin-Elmer 1430 series. The ¹H and ¹³C nuclear magnetic resonance spectroscopy were gathered on a Bruker spectrometer (400 MHz) using the TMS as an internal reference. A GmbH-Vario EL III Elemental Analyzer was employed to conduct elemental analyses.

II. Characterization of the newly designed compounds:

II.1. Characterization of 1,2,3-triazoles 5a-c:

Characterization of N-(benzo[d]thiazol-2-yl)-2-(4-((4-formylphenoxy)methyl)-1H-1,2,3-triazol-1-yl)acetamide (5a)

IR (v, cm⁻¹): 3240 (N-H), 3090 (C-H ar), 1720 (C=O), 1640 (C=N), 1560 (C=C). ¹H NMR (400 MHz, DMSO- d_6): $\delta_{\rm H}$ = 12.81 (1H, s, NH), 9.86 (1H, s, CHO), 8.36 (1H, s, 1,2,3-triazole H-5), 7.99 (2H, d, J = 8 Hz, Ar-H), 7.90 (2H, d, J = 8 Hz, Ar-H), 7.78 (1H, d, J = 4 Hz, Ar-H), 7.46 (1H, d, J = 4 Hz, Ar-H), 7.33-7.28 (2H, m, Ar-H), 5.58 (2H, s, NCH₂CO), 5.33 (2H, s, OCH₂). ¹³C NMR (100 MHz, DMSO- d_6): $\delta_{\rm C}$ = 192.5 (HC=O); 162.9, 161.5, 152.6, 142.4, 139.5, 136.7, 132.4, 132.2, 131.7, 130.8, 125.9, 122.5, 121.9, 115.8 (Ar-C, 1,2,3-triazole C-5, C=N); 62.3 (OCH₂); 52.8 (NCH₂) ppm.

Characterization of 2-(4-((4-formylphenoxy)methyl)-1H-1,2,3-triazol-1-yl)-N-(6-(methylsulfonyl)benzo[d]thiazol-2-yl)acetamide (5b)

IR (v, cm⁻¹): 3290 (N-H), 3060 (C-H ar), 1715 (C=O), 1630 (C=N), 1550 (C=C). ¹H NMR (400 MHz, DMSO- d_6): $\delta_{\rm H}$ = 12.86 (1H, s, NH), 9.88 (s, 1H, CHO), 8.36 (s, 1H, 1,2,3-triazole H-5), 7.90 (d, 2H, J = 8 Hz, Ar-H), 7.77 (s, 1H, Ar-H), 7.65 (d, 1H, Ar-H), 7.27 (d, 3H, J = 4 Hz, Ar-H), 5.56 (s, 2H, NCH₂CO), 5.32 (s, 2H, OCH₂), 2.40 (s, 3H, CH₃). ¹³C NMR (100 MHz, DMSO- d_6): $\delta_{\rm C}$ = 191.9 (HC=O); 163.4, 142.5, 133.8, 132.2, 130.3, 128.1, 127.2, 121.8, 120.8, 115.6 (Ar-C, 1,2,3-triazole C-5, C=N); 61.7 (OCH₂); 52.1 (NCH₂); 21.4 (CH₃) ppm.

Characterization of 2-(4-((4-formylphenoxy)methyl)-1H-1,2,3-triazol-1-yl)-N-(6-(methylsulfonyl)benzo[d]thiazol-2-yl)acetamide (5c)

IR (v, cm⁻¹): 3220 (N-H), 3050 (C-H ar), 1725 (C=O), 1630 (C=N), 1570 (C=C). ¹H NMR (400 MHz, DMSO- d_6): $\delta_{\rm H}$ = 12.80 (1H, br, NH), 9.88 (s, 1H, CHO), 8.66 (s, 1H, Ar-H), 8.37 (s, 1H, 1,2,3-triazole H-5), 7.97 (s, 2H, Ar-H), 7.90 (d, 2H, J = 8 Hz, Ar-H), 7.28 (d, 2H, J = 8 Hz, Ar-H), 5.62 (s, 2H, NCH₂CO), 5.33 (s, 2H, OCH₂), 3.25 (s, 3H, CH₃). ¹³C NMR (100

MHz, DMSO-*d*₆): δ_C = 191.9 (H**C**=O); 166.9, 163.4, 162.1, 152.3, 142.5, 136.0, 132.4, 132.3, 132.2, 130.3, 125.5, 122.8, 121.4, 115.6 (Ar-**C**, 1,2,3-triazole **C-5**, **C**=N); 61.7 (OCH₂); 52.2 (NCH₂); 44.3 (CH₃) ppm.

II.2. Characterization of Schiff bases 7a-d:

Characterization of (Z)-N'-(4-(prop-2-yn-1-yloxy)benzylidene)benzohydrazide (7a) IR (v, cm⁻¹): 3200-3310 (N-H, ≡CH), 3035 (C-H ar), 2150 (C≡C), 1700 (C=O), 1610 (C=N), 1540 (C=C). ¹H NMR (400 MHz, DMSO- d_6): δ_H = 11.75 (0.90H, s, NH), 11.75 (0.90H, s, NH), 8.41 (0.90H, s, HC=N), 8.06 (0.10H, bs, HC=N), 7.92 (1.80H, d, J = 8 Hz, Ar-H), 7.81 (0.20H, d, J = 8 Hz, Ar-H), 7.70 (1.80H, d, J = 8 Hz, Ar-H), 7.58-7.50 (3.20H, m, Ar-H), 7.08 (2H, d, J = 8 Hz, Ar-H), 4.86 (2H, s, OCH₂), 3.61 (1H, s, ≡CH). ¹³C NMR (100 MHz, DMSO- d_6): δ_C = 163.4, 159.2, 148.0, 134.0, 132.1, 129.0, 128.9, 128.0, 115.6 (Ar-C, C=N, C=O); 79.4, 78.9 (C≡CH); 56.0 (OCH₂) ppm. Calculated for C₁₇H₁₄N₂O₂: C, 73.37; H, 5.07; N, 10.07. Found: C, 73.56; H, 5.13; N, 10.21.

$Characterization \ of \ (Z)-N'-(4-(prop-2-yn-1-yloxy)benzylidene) is onicotino-hydrazide \ (7b)$

IR (v, cm⁻¹): 3230-3340 (N-H, =CH), 3055 (C-H ar), 2160 (C=C), 1690 (C=O), 1620 (C=N), 1560 (C=C). ¹H NMR (400 MHz, DMSO- d_6): δ_{H} = 11.95 (0.87H, s, NH), 11.91 (0.13H, s, NH), 8.78 (1.74H, d, J = 4 Hz, Ar-H), 8.73 (0.26H, s, Ar-H), 8.41 (0.87H, s, HC=N), 8.04 (0.13H, s, HC=N), 7.81 (1.74H, d, J = 4 Hz, Ar-H), 7.72 (1.74H, d, J = 8 Hz, Ar-H), 7.66 (0.26H, d, J = 4 Hz, Ar-H), 7.48 (0.25H, d, J = 8 Hz, Ar-H), 7.09 (1.76H, d, J = 8 Hz, Ar-H), 7.01 (0.25H, d, J = 8 Hz, Ar-H), 4.87 (1.75H, s, OCH₂), 4.82 (0.25H, s, OCH₂), 3.61 and 3.58 (1H, 2s, =CH). ¹³C NMR (100 MHz, DMSO- d_6): δ_C = 161.9, 159.4, 150.7, 149.2, 141.0, 129.3, 127.7, 121.9, 115.7 (Ar-C, C=N, C=O); 79.4, 79.0 (C=CH); 56.0 (OCH₂) ppm. Calculated for C₁₆H₁₃N₃O₂: C, 68.81; H, 4.69; N, 15.05. Found: C, 68.65; H, 4.61; N, 15.17

Characterization of (Z)-1-(2,4-dinitrophenyl)-2-(4-(prop-2-yn-1yloxy)benzylidene)hydrazine (7c)

IR (v, cm⁻¹): 3240-3320 (N-H, =CH), 3075 (C-H ar), 2140 (C=C), 1625 (C=N), 1550 (C=C). ¹H NMR (400 MHz, DMSO- d_6): δ_H = 11.59 (1H, s, NH), 8.85 (1H, d, J = 4 Hz, Ar-H), 8.63 (1H, s, HC=N), 8.33 (1H, d, J = 8 Hz, Ar-H), 8.06 (1H, d, J = 8 Hz, Ar-H), 7.76 (2H, d, J = 8 Hz, Ar-H), 7.10 (2H, d, J = 8 Hz, Ar-H), 4.87 (2H, s, OCH₂), 3.61 (1H, s, =CH). ¹³C NMR (100 MHz, DMSO- d_6): δ_C = 159.6, 149.7, 144.9, 137.2, 129.6, 127.5, 123.5, 117.1, 115.8 (Ar-C, C=N); 79.3, 79.0 (C=CH); 56.0 (OCH₂) ppm. Calculated for C₁₆H₁₂N₄O₅: C, 56.47; H, 3.55; N, 16.46. Found: C, 56.59; H, 3.59; N, 16.53.

Characterization of (Z)-2-(4-(prop-2-yn-1-yloxy)benzylidene)hydrazine-1carbothioamide (7d)

IR (v, cm⁻¹): 3260-3350 (N-H, =CH), 3065 (C-H ar), 2150 (C=C), 1620 (C=N), 1570 (C=C). ¹H NMR (400 MHz, DMSO- d_6): δ_H = 11.33 (1H, s, NH), 8.11 (1H, s, HC=N), 7.99 (1H, s, NH), 7.92 (1H, s, NH), 7.75 (2H, d, J = 8 Hz, Ar-H), 7.01 (2H, d, J = 8 Hz, Ar-H), 4.83 (2H, s,

OCH₂), 3.56 (1H, s, =CH). ¹³C NMR (100 MHz, DMSO- d_6): δ_C = 178.1 (C=S); 159.0, 142.5, 129.2, 127.9, 115.4 (Ar-C, C=N); 79.4, 78.9 (C=CH); 56.0 (OCH₂) ppm. Calculated for C₁₁H₁₁N₃OS: C, 56.63; H, 4.75; N, 18.01. Found: C, 56.45; H, 4.83; N, 18.14.

II.3 Characterization of 1,2,3-triazole-benzothiazole molecular conjugates 8a-l: Characterization of (E)-N-(benzo[d]thiazol-2-yl)-2-(4-((4-((2-benzoylhydrazono)methyl)phenoxy)methyl)-1H-1,2,3-triazol-1-yl)acetamide (8a)

IR (v, cm⁻¹): 3290 (N-H), 3050 (C-H ar), 1700 (C=O), 1615 (C=N), 1565 (C=C). ¹H NMR (400 MHz, DMSO- d_6): δ_H = 11.76 (0.80H, s, NH), 9.88 (0.20H, s, NH), 8.42 (1H, s, HC=N), 8.35 (1H, s, 1,2,3-triazole H-5), 7.91-7.69 (4H, m, Ar-H), 7.57-7.52 (4H, m, Ar-H), 7.28-7.16 (6H, m, Ar-H), 5.58 (2H, s, NCH₂CO), 5.26 (2H, s, OCH₂). ¹³C NMR (100 MHz, DMSO- d_6): δ_C = 168.1, 166.3, 163.4, 160.0 (2 x C=O); 148.7, 148.3, 143.0, 129.1, 128.1, 126.7, 123.3, 121.2, 115.6 (Ar-C, 1,2,3-triazole C-5, C=N); 61.6 (OCH₂); 53.0, 52.2 (NCH₂) ppm. Calculated forC₂₆H₂₁N₇O₃S: C, 61.05; H, 4.14; N, 19.17. Found: C, 61.26; H, 4.19; N, 19.05.

Characterization of (E)-2-(4-((4-((2-benzoylhydrazono)methyl)phenoxy)methyl)-1H-1,2,3-triazol-1-yl)-N-(6-methylbenzo[d]thiazol-2-yl)acetamide (8b)

IR (v, cm⁻¹): 3310 (N-H), 3075 (C-H ar), 1710 (C=O), 1620 (C=N), 1570 (C=C). ¹H NMR (400 MHz, DMSO- d_6): $\delta_{\rm H}$ = 11.75 (0.80H, s, NH), 11.61 (0.20H, s, NH), 8.43 (1H, s, HC=N), 8.33 (1H, s, 1,2,3-triazole H-5), 7.91 (2H, d, J = 4 Hz, Ar-H), 7.78-7.52 (7H, m, Ar-H), 7.26-7.15 (3H, m, Ar-H), 5.55 (2H, s, NCH₂CO), 5.32 (0.20H, s, OCH₂), 5.25 (1.80H, s, OCH₂), 2.40 (3H, s, CH₃). ¹³C NMR (100 MHz, DMSO- d_6): $\delta_{\rm C}$ = 166.4, 159.8 (2 x C=O); 147.8, 145.0, 142.4, 133.6, 131.9, 129.1, 128.9, 115.7 (Ar-C, 1,2,3-triazole C-5, C=N); 61.4 (OCH₂); 53.3, 52.3 (NCH₂); 29.3 (CH₃) ppm. Calculated for C₂₇H₂₃N₇O₃S: C, 61.70; H, 4.41; N, 18.66. Found: C, 61.86; H, 4.47; N, 18.78.

Characterization of (E)-2-(4-((4-((2-benzoylhydrazono)methyl)phenoxy)methyl)-1H-1,2,3-triazol-1-yl)-N-(6-(methylsulfonyl)benzo[d]thiazol-2-yl)acetamide (8c)

IR (v, cm⁻¹): 3330 (N-H), 3040 (C-H ar), 1695 (C=O), 1625 (C=N), 1555 (C=C). ¹H NMR (400 MHz, DMSO- d_6): $\delta_{\rm H}$ = 11.75 (0.80H, s, NH), 9.88 (0.20H, s, NH), 8.66 (1H, s, Ar-H), 8.42 (1H, bs, HC=N), 8.35 (1H, bs, 1,2,3-triazole H-5), 7.95-7.89 (3H, m, Ar-H), 7.69 (2H, bs, Ar-H), 7.58-7.52 (3H, m, Ar-H), 7.27-7.16 (3H, m, Ar-H), 5.60 (2H, s, NCH₂CO), 5.33 (0.40H, s, OCH₂), 5.26 (1.60H, s, OCH₂), 3.23 (3H, s, CH₃). ¹³C NMR (100 MHz, DMSO- d_6): $\delta_{\rm C}$ = 160.8, 160.3 (2 x C=O); 152.2, 149.2, 142.7, 136.2, 132.2, 129.3, 127.1, 122.8, 121.8, 115.6 (Ar-C, 1,2,3-triazole C-5, C=N); 61.6 (OCH₂); 53.2 (NCH₂); 44.8 (CH₃) ppm. Calculated for C₂₇H₂₃N₇O₅S₂: C, 55.00; H, 3.93; N, 16.63. Found: C, 55.26; H, 3.86; N, 16.53.

Characterizationof(E)-N-(benzo[d]thiazol-2-yl)-2-(4-((4-((2-isonicotinoylhydrazono)methyl)phenoxy)methyl)-1H-1,2,3-triazol-1-yl)acetamideIR (v, cm⁻¹): 3300 (N-H), 3035 (C-H ar), 1695 (C=O), 1610 (C=N), 1585 (C=C). ¹H NMR (400 MHz, DMSO- d_6): $\delta_{\rm H}$ = 12.91 (1H, s, CH₂CONH), 11.97 (0.90H, s, NH), 11.93 (0.10H, s, NH), 9.88 (0.10H, s, NH), 8.43 (1H, s, HC=N), 8.35 (1H, m, 1,2,3-triazole H-5), 7.99-7.88 (3H, m, Ar-H), 7.79-7.72 (4H, m, Ar-H), 7.48-7.33 (2H, m, Ar-H), 7.19-7.10 (3H, m, Ar-H), 5.62 (2H, m)

s, NCH₂CO), 5.34 (0.25H, s, OCH₂), 5.27 (1.75H, s, OCH₂), 3.24 (3H, s, CH₃). ¹³C NMR (100 MHz, DMSO- d_6): δ_C = 162.0, 160.3 (2 x C=O); 150.5, 149.3, 142.8, 129.4, 128.9, 127.3, 127.0, 126.7, 124.2, 122.3, 121.0, 115.6 (Ar-C, 1,2,3-triazole C-5, C=N); 61.6 (OCH₂); 52.3 (NCH₂) ppm. Calculated for C₂₅H₂₀N₈O₃S: C, 58.58; H, 3.93; N, 21.86. Found: C, 58.75; H, 3.99; N, 21.96

Characterization of (E)-2-(4-((4-((2-isonicotinoylhydrazono)methyl)phenoxy)methyl)-1H-1,2,3-triazol-1-yl)-N-(6-methylbenzo[d]thiazol-2-yl)acetamide (8e)

IR (v, cm⁻¹): 3325 (N-H), 3020 (C-H ar), 1700 (C=O), 1610 (C=N), 1555 (C=C). ¹H NMR (400 MHz, DMSO- d_6): $\delta_{\rm H}$ = 12.86 (1H, s, CH₂CONH), 12.03 (0.80H, s, NH), 11.95 (0.10H, s, NH), 9.90 (0.10H, s, NH), 8.48 (1H, bs, HC=N), 8.35 (1H, m, 1,2,3-triazole H-5), 7.89-7.66 (5H, m, Ar-H), 7.49-7.10 (6H, m, Ar-H), 5.57 (2H, s, NCH₂CO), 5.33 (0.25H, s, OCH₂), 5.27 (1.75H, s, OCH₂), 2.41 (3H, s, CH₃). ¹³C NMR (100 MHz, DMSO- d_6): $\delta_{\rm C}$ = 166.7, 163.0, 159.9 (2 x C=O); 147.6, 145.6, 142.6, 133.9, 131.8, 128.6, 125.6, 121.1, 115.7 (Ar-C, 1,2,3-triazole C-5, C=N); 61.4 (OCH₂); 53.2, 52.7 (NCH₂); 29.5 (CH₃) ppm. Calculated for C₂₆H₂₂N₈O₃S: C, 59.31; H, 4.21; N, 21.28. Found: C, 59.55; H, 4.29; N, 21.17.

Characterization of (E)-2-(4-((4-((2-isonicotinoylhydrazono)methyl)phenoxy)methyl)-1H-1,2,3-triazol-1-yl)-N-(6-(methylsulfonyl)benzo[d]thiazol-2-yl)acetamide (8f)

IR (v, cm⁻¹): 3350 (N-H), 3055 (C-H ar), 1690 (C=O), 1620 (C=N), 1570 (C=C). ¹H NMR (400 MHz, DMSO- d_6): δ_{H} = 13.22 (1H, s, CH₂CONH), 11.98 (0.80H, s, NH), 11.91 (0.10H, s, NH), 9.88 (0.10H, s, NH), 8.67 (1H, s, Ar-H), 8.44 (0.70H, bs, HC=N), 8.32-8.36 (1.30H, m, HC=N and 1,2,3-triazole H-5), 7.99-7.88 (5H, m, Ar-H), 7.72 (2H, d, J = 4 Hz, Ar-H), 7.49 (0.30H, d, J = 8 Hz, Ar-H), 7.28-7.16 (2.70H, m, Ar-H), 5.62 (2H, s, NCH₂CO), 5.34 (0.25H, s, OCH₂), 5.27 (1.75H, s, OCH₂), 3.24 (3H, s, CH₃). ¹³C NMR (100 MHz, DMSO- d_6): δ_C = 166.9, 162.0, 160.3 (2 x C=O); 152.3, 149.3, 142.9, 136.2, 132.2, 127.3, 125.4, 121.5, 115.6 (Ar-C, 1,2,3-triazole C-5, C=N); 61.6 (OCH₂); 52.2 (NCH₂); 44.8 (CH₃) ppm. Calculated for C₂₆H₂₂N₈O₅S₂: C, 52.87; H, 3.75; N, 18.97. Found: C, 52.71; H, 3.80; N, 18.86

Characterization of (Z)-N-(benzo[d]thiazol-2-yl)-2-(4-((4-((2-(2,4dinitrophenyl)hydrazono)methyl)phenoxy)methyl)-1H-1,2,3-triazol-1-yl)acetamide (8g) IR (v, cm⁻¹): 3320 (N-H), 3055 (C-H ar), 1690 (C=O), 1620 (C=N), 1580 (C=C). ¹H NMR (400 MHz, DMSO- d_6): $\delta_H = 12.69$ (1H, bs, CH₂CONH), 11.62 (1H, s, NH), 8.83 (1H, s, Ar-H), 8.63 (1H, s, HC=N), 8.31 (2H, s, 1,2,3-triazole H-5 and Ar-H), 8.05 (2H, d, J = 4 Hz, Ar-H), 7.84-7.75 (3H, m, Ar-H), 7.79-7.72 (4H, m, Ar-H), 7.40 (1H, s, Ar-H), 7.19-7.15 (3H, m, Ar-H), 5.51 (2H, bs, NCH₂CO), 5.27 (2H, s, OCH₂). ¹³C NMR (100 MHz, DMSO- d_6): δ_C = 165.4 (C=O); 149.8, 146.1, 145.2, 142.6, 136.9, 135.0, 130.0, 129.5, 127.1, 126.0, 123.5, 117.1, 115.7 (Ar-C, 1,2,3-triazole C-5, C=N); 61.7 (OCH₂); 52.9 (NCH₂) ppm. Calculated for C₂₅H₁₉N₉O₆S: C, 52.35; H, 3.34; N, 21.98. Found: C, 52.52; H, 3.39; N, 21.89

Characterization of (Z)-2-(4-((4-((2-(2,4-dinitrophenyl)hydrazono)methyl)phenoxy)methyl)-1H-1,2,3-triazol-1-yl)-N-(6-methylbenzo[d]thiazol-2-yl) acetamide (8h) IP ($u = cm^{-1}$): 2240 (NLH) 2055 (C H ar) 1700 (C-O) 1615 (C-N) 1565 (C-C) 1H NMP (400)

IR (v, cm⁻¹): 3340 (N-H), 3055 (C-H ar), 1700 (C=O), 1615 (C=N), 1565 (C=C). ¹H NMR (400 MHz, DMSO- d_6): $\delta_{\rm H}$ = 12.82 (1H, s, CH₂CONH), 11.60 (1H, s, NH), 8.85 (1H, s, Ar-H), 8.64

(1H, s, HC=N), 8.34 (2H, s, 1,2,3-triazole H-5 and Ar-H), 8.08 (1H, bd, J = 4 Hz, Ar-H), 7.76-7.66 (3H, m, Ar-H), 7.26-7.10 (4H, m, Ar-H), 5.56 (2H, s, NCH₂CO), 5.28 (2H, s, OCH₂), 2.40 (3H, s, CH₃). ¹³C NMR (100 MHz, DMSO- d_6): $\delta_C = 160.5$ (C=O); 149.8, 144.9, 137.2, 133.8, 130.1, 129.5, 128.0, 126.9, 123.5, 121.8, 117.1, 115.7 (Ar-C, 1,2,3-triazole C-5, C=N); 61.6 (OCH₂); 52.1 (NCH₂); 21.4 (CH₃) ppm. Calculated for C26H21N9O6S: C, 53.15; H, 3.60; N, 21.45. Found: C, 53.39; H, 3.52; N, 21.57.

Characterization of (Z)-2-(4-((4-((2-(2,4-

dinitrophenyl)hydrazono)methyl)phenoxy)methyl)-1H-1,2,3-triazol-1-yl)-N-(6-(methylsulfonyl)benzo[d]thiazol-2-yl)acetamide (8i)

IR (v, cm⁻¹): 3315 (N-H), 3080 (C-H ar), 1705 (C=O), 1610 (C=N), 1560 (C=C). ¹H NMR (400 MHz, DMSO- d_6): δ_H = 12.76 (1H, bs, CH₂CONH), 11.55 (1H, s, NH), 8.85 (1H, s, Ar-H), 8.64 (2H, s, HC=N and Ar-H), 8.35 (2H, s, 1,2,3-triazole H-5 and Ar-H), 8.08-8.76 (4H, m, Ar-H), 7.19-7.10 (3H, m, Ar-H), 5.61 (2H, s, NCH₂CO), 5.29 (2H, s, OCH₂), 3.62 (3H, s, CH₃). ¹³C NMR (100 MHz, DMSO- d_6): δ_C = 162.7 (C=O); 159.6, 149.7, 144.9, 142.8, 137.2, 136.0, 130.2, 129.6, 129.5, 127.5, 123.5, 117.2, 115.8 (Ar-C, 1,2,3-triazole C-5, C=N); 61.6 (OCH₂); 52.1 (NCH₂); 21.4 (CH₃) ppm. Calculated for C₂₆H₂₁N₉O₈S₂: C, 47.92; H, 3.25; N, 19.35. Found: C, 47.74; H, 3.17; N, 19.49.

Characterization of (Z)-N-(benzo[d]thiazol-2-yl)-2-(4-((4-((2carbamothioylhydrazono)methyl)phenoxy)methyl)-1H-1,2,3-triazol-1-yl)acetamide (8j) IR (v, cm⁻¹): 3280 (N-H), 3050 (C-H ar), 1700 (C=O), 1625 (C=N), 1575 (C=C). ¹H NMR (400 MHz, DMSO- d_6): δ_H = 13.00 (1H, bs, CH₂CONH), 11.48 (1H, s, NH), 8.34 (1H, s, 1,2,3triazole H-5), 8.25 (1H, s, HC=N), 8.04 (1H, s, NH), 7.98 (1H, d, J = 8 Hz, NH), 7.76 (3H, t, J = 4 Hz, Ar-H), 7.32-7.25 (3H, m, Ar-H), 7.10 (2H, d, J = 8 Hz, Ar-H), 5.61 (2H, s, NCH₂CO), 5.32 (0.20H, s, OCH₂), 5.23 (1.80H, s, OCH₂). ¹³C NMR (100 MHz, DMSO- d_6): δ_C = 166.2 (C=S); 160.0 (C=O); 143.4, 142.8, 131.8, 129.5, 127.3, 126.9, 126.7, 124.3, 122.3, 121.1, 115.3 (Ar-C, 1,2,3-triazole C-5, C=N); 61.5 (OCH₂); 52.2 (NCH₂) ppm. Calculated for C₂₀H₁₈N₈O₂S₂: C, 51.49; H, 3.89; N, 24.02. Found: C, 51.70; H, 3.94; N, 24.17.

Characterization of (Z)-2-(4-((4-((2-carbamothioylhydrazono)methyl)phenoxy)methyl)-1H-1,2,3-triazol-1-yl)-N-(6-methylbenzo[d]thiazol-2-yl)acetamide (8k)

IR (v, cm⁻¹): 3260 (N-H), 3040 (C-H ar), 1700 (C=O), 1605 (C=N), 1555 (C=C). ¹H NMR (400 MHz, DMSO- d_6): δ_{H} = 12.78 (1H, bs, CH₂CONH), 11.73 (0.70H, s, NH), 9.87 (0.30H, s, NH), 8.42-8.28 (3H, m, 1,2,3-triazole H-5, HC=N and Ar-H), 7.89 (1H, bd, J = 8 Hz, Ar-H), 7.80-7.65 (4H, m, NH and Ar-H), 7.26 (1H, bd, J = 4 Hz, Ar-H), 7.11-7.08 (2H, m, J = 4 Hz, Ar-H), 5.55 (2H, s, NCH₂CO), 5.32 (0.60H, s, OCH₂), 5.25 (1.40H, s, OCH₂), 3.38 (3H, s, CH₃). ¹³C NMR (100 MHz, DMSO- d_6): δ_C = 166.1 (C=S); 163.4, 160.3 (C=O); 146.7, 133.8, 132.3, 130.3, 129.8, 128.1, 126.9, 121.8, 120.8, 115.6, 115.4 (Ar-C, 1,2,3-triazole C-5, C=N); 61.8, 61.6 (OCH₂); 52.1 (NCH₂), 21.4 (CH₃) ppm. Calculated for C₂₁H₂₀N₈O₂S₂: C, 52.49; H, 4.20; N, 23.32. Found: C, 52.76; H, 4.27; N, 23.20.

Characterization of (Z)-2-(4-((4-((2-carbamothioylhydrazono)methyl)phenoxy)methyl)-1H-1,2,3-triazol-1-yl)-N-(6-(methylsulfonyl)benzo[d]thiazol-2-yl)acetamide (8l)

IR (v, cm⁻¹): 3290 (N-H), 3075 (C-H ar), 1710 (C=O), 1615 (C=N), 1570 (C=C). ¹H NMR (400 MHz, DMSO- d_6): $\delta_{\rm H}$ = 13.31 (1H, bs, CH₂CONH), 11.51 (1H, s, NH), 9.89 (1H, s, NH), 8.62 (1H, s, Ar-H), 8.35-8.25 (2H, m, 1,2,3-triazole H-5 and HC=N), 8.25 (1H, s, HC=N), 8.03 (1H, s, NH), 7.93-7.88 (3H, m, Ar-H), 7.77 (2H, bd, J = 4 Hz, Ar-H), 7.27 (1H, bd, J = 4 Hz, Ar-H), 7.11 (1H, bd, J = 4 Hz, Ar-H), 5.59 (2H, s, NCH₂CO), 5.33 (0.60H, s, OCH₂), 5.24 (1.40H, s, OCH₂), 3.38 (3H, s, CH₃). ¹³C NMR (100 MHz, DMSO- d_6): $\delta_{\rm C}$ = 167.5 (C=S); 163.4, 160.0 (C=O); 152.6, 143.4, 142.8, 135.7, 132.2, 130.3, 129.5, 127.3, 127.1, 126.9, 125.2, 122.5, 121.2, 115.6, 115.3 (Ar-C, 1,2,3-triazole C-5, C=N); 61.8, 61.6 (OCH₂); 52.6 (NCH₂), 44.5 (CH₃) ppm. Calculated for C₂₁H₂₀N₈O₄S₃: C, 46.31; H, 3.70; N, 20.57. Found: C, 46.50; H, 3.65; N, 20.68.

Figure S1: ¹H NMR spectrum of compound 5b.

Figure S2: ¹³C NMR spectrum of compound 5b.

Figure S3: ¹H NMR spectrum of compound 5c.

Figure S4: ¹³C NMR spectrum of compound 5c.

Figure S6: ¹³C NMR spectrum of compound 7a.

Figure S7: ¹H NMR spectrum of compound 7b.

Figure S8: ¹³C NMR spectrum of compound 7b.

Figure S9: ¹H NMR spectrum of compound 7c.

Figure S10: ¹³C NMR spectrum of compound **7c**.

Figure S12: ¹³C NMR spectrum of compound 7d.

Figure S13: ¹³C NMR spectrum of compound **8c**.

Figure S14: ¹³C NMR spectrum of compound **8c**.

Figure S15: ¹³C NMR spectrum of compound 8d.

Figure S16: ¹³C NMR spectrum of compound 8d.

Figure S18: ¹³C NMR spectrum of compound 8f.

Figure S19: ¹³C NMR spectrum of compound 8h.

Figure S20: ¹³C NMR spectrum of compound 8h.

Figure S21: ¹³C NMR spectrum of compound 8k.

Figure S22: ¹³C NMR spectrum of compound 8k.

Figure S23: ¹³C NMR spectrum of compound 81.

Figure S24: ¹³C NMR spectrum of compound 8l.

Fig. S25: Effect of **8a** and **8b** treatment on A549 cell migration. A549 cells were seeded in inserts and incubated for 24 hrs. Afterward, inserts were removed, and cells were treated with mitomycin C for 1 hour to stop cell proliferation. Then, A549 cells were treated with either **8a** or **8b** at IC_{50} and sub- IC_{50} concentrations for 24 hr. Images of the wound at 0 and 24 h at 10x magnification using EVOS XL Core imaging system.