Supporting Information

Supporting Information for

High-Performance H₂S Gas Sensor Based on MXene/MoS₂ Heterostructure Fabricated by Langmuir-Blodgett and Chemical Vapor Deposition

Jae Hyuk Shin, Su Hun Jo, Hyejin Rhyu, Chanwon Park, Myung Hyun Kang*, Wooseok Song, Sun Sook Lee, Jongsun Lim, and Sung Myung*

- a. Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu Daejeon 34114, Republic of Korea
- b. Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu Daejeon 34114, Republic of Korea
- c. Department of Advanced Material Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea

Figure S1. Sheets resistance of (a) LB-MXene film and (b) MXene/MoS₂ on SiO₂/Si.

Figure S2. XRD patterns of LB-MXene.

Figure S3. STEM image of MXene/MoS₂

Figure S4. Raman spectra of 8 random sites on MXene/MoS₂.

Figure S5. Gas sensing performances of pristine MoS₂ for various gas (Acetone, H2_s, H₂, NO₂).

Figure S6. Gas sensing performances of MXene/MoS₂ for various gas(H₂, NO₂, EtOH, NO, NH₃, Acetone).

Figure S7. Reproducibility of MXene/MoS₂ gas sensor.

Figure S8. Calculation of limit of detection (LOD) based on H₂S gas response at different concentrations for MXene/MoS₂. Here, LOD for the gas performance was calculated using the following formula: $\text{LOD}(\text{ppb}) = 3.3 \frac{\text{RMS}}{\text{Slope}}$.