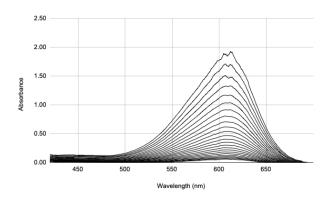
Use of real-time *in situ* monitoring as a tool for comparison of electrochemical advanced oxidation processes for the decolourisation of azo and indigoid dyes

Chelsea M. Schroeder, Taylor M. Koehler, and Nicholas E. Leadbeater*

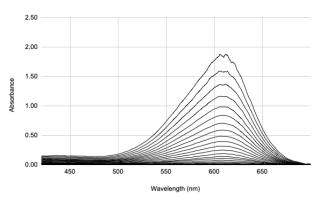
Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269-3060, USA.

*E-mail: nicholas.leadbeater@uconn.edu

SUPPORTING INFORMATION


TABLE OF CONTENTS

STL Files for 3D Printed Apparatus	2
Indigo Carmine (IC)	3
Potassium Indigotrisulfonate (KIT)	4
Food Yellow 6 (FY6)	5
Methyl Orange (MO)	6
Ethyl Orange (EO)	7
Acid Yellow 36 (AY36)	8
Acid Red 29 (AR29)	9
Acid Red 176 (AR176)	10
Sulfanilic Acid Azochromotrop (SPADNS)	11
First order rate constants	12


STL Files for 3D Printed Apparatus

.stl Files for the 3D-Printed Continuous Monitoring System can be accessed at: https://drive.google.com/drive/folders/1mJG3-UcBzAMPNOvbM13GWpU37FFQ-Xp4?usp=sharing

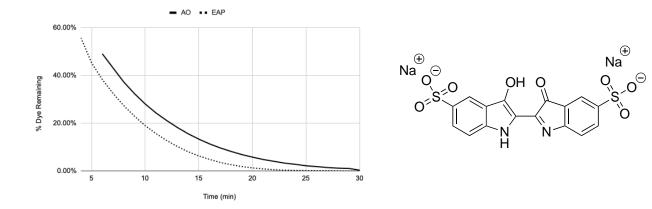

Indigo Carmine (IC)

Figure 1: AO absorbance spectrum of IC. Conditions: graphite anode, graphite cathode, $[IC] = 100 \ \mu M$, $[Na_2S_2O_8] = 14 \ mM$, stirring = 1000 rpm, $I = 5 \ mA$, overlay spectrum recorded every minute from 6 - 30 min. Trial 1 of 3.

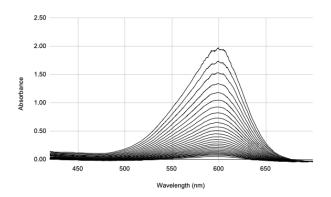


Figure 2: EAP absorbance spectrum of IC. Conditions: BDD anode, graphite cathode, $[IC] = 100 \ \mu$ M, $[Na_2S_2O_8] = 14 \ m$ M, stirring = 1000 rpm, I = 5 mA, overlay spectrum recorded every minute from 5 – 30 min. Trial 1 of 3.

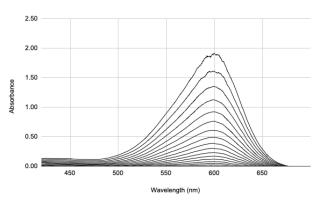


Figure 3: AO- and EAP-mediated decolourisation of IC as a function of time at a λ_{max} = 606.31 nm.

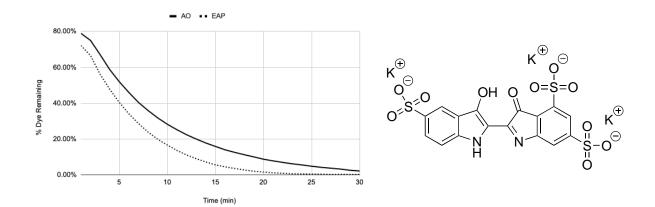

Potassium Indigotrisulfonate (KIT)

Figure 4: AO absorbance spectrum of KIT. Conditions: graphite anode, graphite cathode, [KIT] = 100μ M, [Na₂S₂O₈] = 14 mM, stirring = 1000 rpm, I = 5 mA, overlay spectrum recorded every minute from 3 - 30 min. Trial 1 of 3.

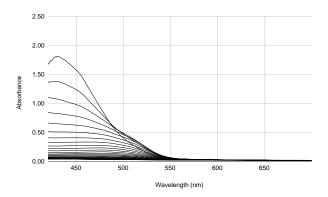
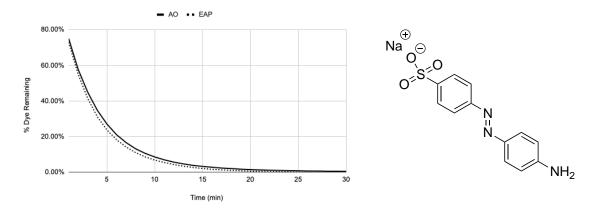


Figure 5: EAP absorbance spectrum of KIT. Conditions: BDD anode, graphite cathode, [KIT] = $100 \mu M$, [Na₂S₂O₈] = 14 mM, stirring = 1000 rpm, I = 5 mA, overlay spectrum recorded every minute from 2 - 30 min. Trial 1 of 3.

Figure 6: AO- and EAP-mediated decolourisation of KIT as a function of time at a λ_{max} = 599.44 nm.


Food Yellow 6 (FY6)

2.50 2.00 1.00 0.00 450 550 600 650 Wavelength (nm)

Figure 7: AO absorbance spectrum of FY6. Conditions: graphite anode, graphite cathode, [FY6] = 100 μM, [Na₂S₂O₈] = 14 mM, stirring = 1000 rpm, I = 5 mA, overlay spectrum recorded every minute from 1 - 30 min. Trial 1 of 3.

Figure 8: EAP absorbance spectrum of FY6. Conditions: BDD anode, graphite cathode, [FY6] = 100μ M, [Na₂S₂O₈] = 14 mM, stirring = 1000 rpm, I = 5 mA, overlay spectrum recorded every minute from 1 - 30 min. Trial 1 of 3.

Figure 9: AO- and EAP-mediated decolourisation of FY6 as a function of time at a λ_{max} = 425.15 nm.

Methyl Orange (MO)

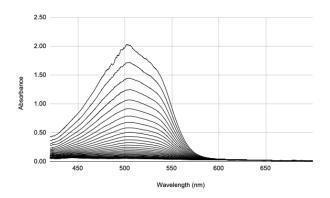
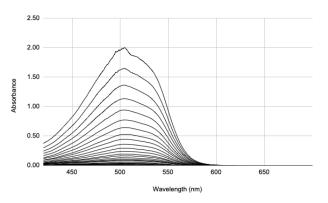
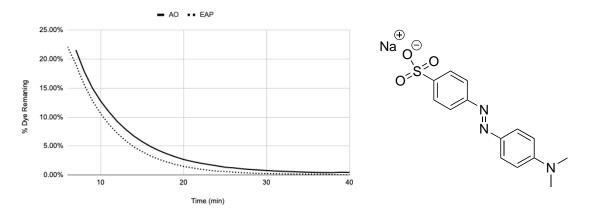




Figure 10: AO absorbance spectrum of MO. Conditions: graphite anode, graphite cathode, [MO] = 100 μM, [Na₂S₂O₈]
= 14 mM, stirring = 1000 rpm, I = 5 mA, overlay spectrum recorded every minute from 7 - 40 min. Trial 1 of 3.

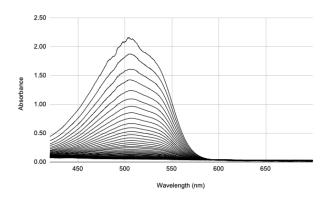


Figure 11: EAP absorbance spectrum of MO. Conditions: BDD anode, graphite cathode, $[MO] = 100 \ \mu\text{M}$, $[Na_2S_2O_8] = 14 \ m\text{M}$, stirring = 1000 rpm, I = 5 mA, overlay spectrum recorded every minute from 6 - 40 min. Trial 1 of 3.

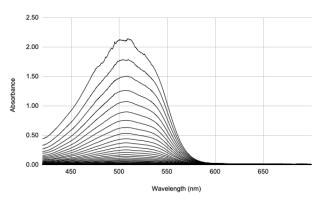


Figure 12: AO- and EAP-mediated decolourisation of MO as a function of time at a λ_{max} pH 0.62 = 436.82 nm, λ_{max} pH 7 = 507.66 nm.

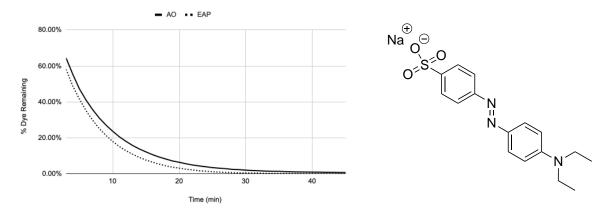

Ethyl Orange (EO)

Figure 13: AO absorbance spectrum of EO. Conditions: graphite anode, graphite cathode, $[EO] = 100 \ \mu M$, $[Na_2S_2O_8] = 14 \ mM$, stirring = 1000 rpm, I = 5 mA, overlay spectrum recorded every minute from 4 - 45 min. Trial 1 of 3.

Figure 14: EAP absorbance spectrum of EO. Conditions: BDD anode, graphite cathode, $[EO] = 100 \ \mu M$, $[Na_2S_2O_8] = 14 \ mM$, stirring = 1000 rpm, I = 5 mA, overlay spectrum recorded every minute from 3 - 45 min. Trial 1 of 3.

Figure 15: AO- and EAP-mediated decolourisation of EO as a function of time at a λ_{max} = 508.09 nm.

Acid Yellow 36 (AY36)

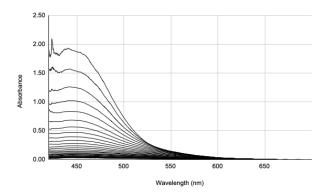


Figure 16: AO absorbance spectrum of AY36. Conditions: graphite anode, graphite cathode, [AY36] = 100 μM, [Na₂S₂O₈] = 14 mM, stirring = 1000 rpm, l = 5 mA, overlay spectrum recorded every minute from 2 - 35 min. Trial 1 of 3.

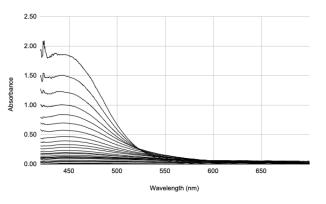
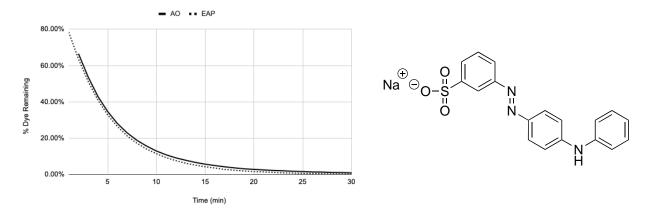



Figure 17: EAP absorbance spectrum of AY36. Conditions: BDD anode, graphite cathode, [AY36] = 100 μM, [Na₂S₂O₈] = 14 mM, stirring = 1000 rpm, I = 5 mA, overlay spectrum recorded every minute from 2 - 30 min. Trial 1 of 3.

Figure 18: AO- and EAP-mediated decolourisation of AY36 as a function of time at a λ_{max} = 443.00 nm.

Acid Red 29 (AR29)

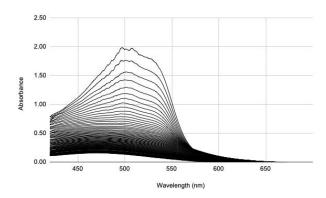
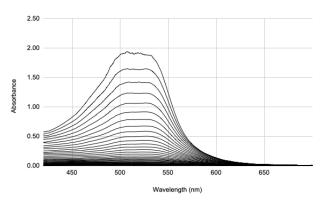
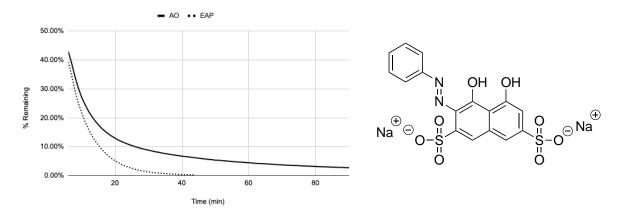




Figure 19: AO absorbance spectrum of AR29. Conditions: graphite anode, graphite cathode, [AR29] = 100 μM, [Na₂S₂O₈] = 14 mM, stirring = 1000 rpm, I = 5 mA, overlay spectrum recorded every minute from 8 - 90 min. Trial 1 of 3.

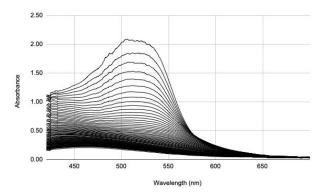


Figure 20: EAP absorbance spectrum of AR29. Conditions: BDD anode, graphite cathode, [AR29] = $100 \mu M$, [Na₂S₂O₈] = 14 mM, stirring = 1000 rpm, I = 5 mA, overlay spectrum recorded every minute from 7 - 45 min. Trial 1 of 3.

Figure 21: AO- and EAP-mediated decolourisation of AR29 as a function of time at a λ_{max} = 507.73 nm.

Acid Red 176 (AR176)

Figure 22: AO absorbance spectrum of AR176. Conditions: graphite anode, graphite cathode, [AR176] = 100 μ M, [Na₂S₂O₈] = 14 mM, stirring = 1000 rpm, I = 5 mA, overlay spectrum recorded every minute from 9 - 90 min. Trial 1 of 3.

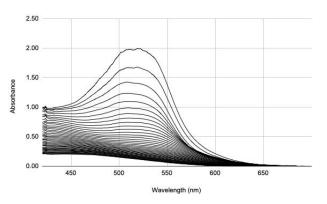
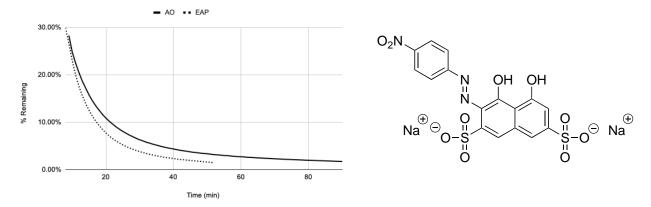
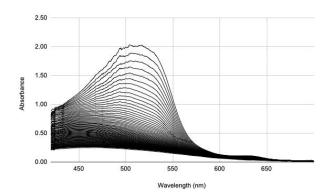




Figure 23: EAP absorbance spectrum of AR176. Conditions: BDD anode, graphite cathode, [AR176] = 100 μM, [Na₂S₂O₈] = 14 mM, stirring = 1000 rpm, I = 5 mA, overlay spectrum recorded every minute from 9 - 50 min. Trial 1 of 3.

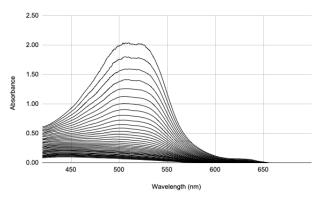
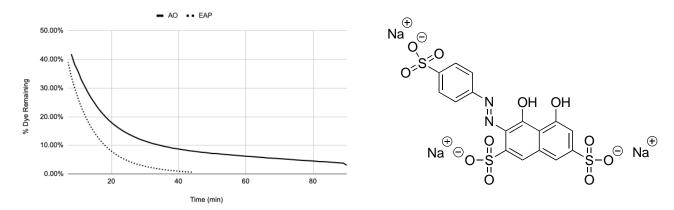


Figure 24: AO- and EAP-mediated decolourisation of AR176 as a function of time at a λ_{max} = 516.26 nm.



Sulfanilic Acid Azochromotrop (SPADNS)

Figure 25: AO absorbance spectrum of SAPDNS. Conditions: graphite anode, graphite cathode, [SAPDNS] = 100μM, [Na₂S₂O₈] = 14 mM, stirring = 1000 rpm, I = 5 mA, overlay spectrum recorded every minute from 9 - 90 min. Trial 1 of 3.

Figure 26: EAP absorbance spectrum of SAPDNS. Conditions: BDD anode, graphite cathode, [SAPDNS] = 100μM, [Na₂S₂O₈] = 14 mM, stirring = 1000 rpm, I = 5 mA, overlay spectrum recorded every minute from 7 – 45 min. Trial 1 of 3.

Figure 27: AO- and EAP-mediated decolourisation of SAPDNS as a function of time at a λ_{max} = 508.09 nm.

First order rate constants

Table 1: First order rate constants at 20 min for nine dyes under two decolourisation protocols. AO conditions: Graphite anode and cathode, $[Dye] = 100 \ \mu\text{M}$, $[Na_2S_2O_8] = 14 \ \text{mM}$, stirring = 1000 rpm, $I = 5 \ \text{mA}$. EAP conditions: BDD anode, graphite cathode, $[Dye] = 100 \ \mu\text{M}$, $[Na_2S_2O_8] = 14 \ \text{mM}$, stirring = 1000 rpm, $I = 5 \ \text{mA}$.

	Indigo Carmine	Potassium indigotrisulfonate	Food Yellow 6	Methyl Orange	Ethyl Orange	Acid Yellow 36	Acid Red 29	Acid Red 176	SPADNS
AO (k s ⁻¹)	2.38 x10 ⁻³	2.04 x10 ⁻³	3.58 x10 ⁻³	3.02 x10 ⁻³	2.30 x10 ⁻³	3.00 x10 ⁻³	1.71 x10 ⁻³	1.85 x10 ⁻³	1.43 x10 ⁻³
EAP (k s ⁻¹)	3.65 x10 ⁻³	3.48 x10 ⁻³	4.44 x10 ⁻³	3.52 x10 ⁻³	2.89 x10 ⁻³	3.48 x10 ⁻³	2.48 x10 ⁻³	2.13 x10 ⁻³	2.12 x10 ⁻³