Electronic Supporting Information:

Dynamic Bandgap Modulation in CsPbBr₃ Perovskite

Nanocrystals through Reversible Ammonia Intercalation

Karayadi H. Fausia,^{a,b} Bijoy Nharangatt,^c Kavundath Muhsina,^a John P. Rappai,^{a,d} Raghu

Chatanathodi,^c Deepthi Jose,^{e,*} Kulangara Sandeep^{a,*}

^a Government Victoria College, Research Center under University of Calicut, Palakkad 678001,

India.

^b Department of Chemistry, MES Keveeyam College Valanchery, Kerala, 676552 India.

^c Department of Physics, National Institute of Technology, Calicut, Kerala, 673601 India.

^d Government Arts and Science College, Ollur, Kerala, India.

^e Department of Chemistry, Providence Women's College, Calicut, 673009 India

*E-mail: <u>deepthijose@providencecollegecalicut.ac.in</u> (D.J.); <u>sandeepk@gvc.ac.in</u> (K.S.)

	Table of Contents	Page No.
1	Materials and methods	S 3
2	Emission quantum yield measurements	S 3
3	Estimation of grain size of CsPbBr ₃ from XRD	S4
4	Calculation of the vapor pressure of ammonia solution	S4
5	Ammonia treatment: Reversibility of the substrates	S 5
6 Characterization of CsPbBr ₃ before and after ammonia treatment		S5
7 Octahedral tilting in ammonia treated samples		S7
8 PDOS plot		S7

1. Materials and methods

Chemicals: Cesium carbonate (Cs_2CO_3 , 99.99%), lead bromide (PbBr₂), oleylamine (90%), and octadecene (98%) are purchased from Sigma-Aldrich. Oleic acid (98%) is obtained from Alfa-Aesar. Chloroform (Spectroscopic grade), acetone and 30% of ammonia solution are purchased from Merck chemicals. All chemicals and solvents are used without additional purification.

Instrumental methods: The electronic absorption spectra is recorded using a Shimadzu double beam spectrophotometer (Model UV-3600, UV-Vis-NIR), which is connected two sources (hydrogen – deuterium discharge tube and tungsten lamp) with three detectors (PMT, In GaAs, and PbS). Photoluminscence spectrum is recorded using JobinYvon SPEX- Fluorolog 3 from Horiba, where a 450 W Xenon arc lamp is used as the source for exciting samples. Also, in both the emission and excitation chambers, double monochromators are used. Side-on R928P photomultiplier tube (180-850 nm) is used to detect the emission spectrum. X-ray diffraction (XRD) analysis is carried out using a PANalytical X'Pert Pro diffractometer it has has a Ni-filtered Cu-K α line with a wavelength of 0.1540598 nm (2 θ adjustable from 10° to 50° in 0.02° increments). For TEM, the sample is drop-casted onto a carbon-coated Cu grid and the solvent is allowed to evaporate. Specimens are imaged on an FEI TECNAI 30 G²HRTEM instrument. Software namely Gatan digital micrograph is used to obtain the d-spacing value in Z- direction.

2. Emission quantum yield measurements

Photoluminscence quantum yield of the CsPbBr₃ perovskite nanocrystals are measured by following a relative method, in which fluorescein dye dissolved in 0.1 M NaOH (Φ_{ST} : 0.9) is used as standard. The equation S1 is used for the estimation of photoluminscence quantum yield.

$$\Phi_{\rm x} = \Phi_{\rm ST} \left(f_{\rm x} / f_{\rm ST} \right) \left(a_{\rm ST} / a_{\rm X} \right) \left(n_{\rm x}^{2} / n_{\rm ST}^{2} \right)$$
(S1)

 $f_x = Emission$ area of the sample

 f_{ST} = Emission area of the standard reference

 n_x = Refractive index of the solvent of the perovskite sample n_{ST} = Refractive index of the solvent of the reference standard a_{ST} = Absorbance of the reference standard at the excitation wavelength a_X = Absorbance of the sample at excitation wavelength Φ_{ST} = Quantum yield of the standard.

3. Estimation of grain size of CsPbBr₃ from XRD

As per Debye-Scherrer equation, we have calculated the grain size of CsPbBr₃ perovskite nanocrystals.

$$L = \frac{0.9 \lambda}{\beta \cos \theta}$$
(S2)

where L is the grain size of crystals, β denotes full width at half maximum (FWHM) in radians of the diffraction peaks, θ is the Bragg's diffraction angle and λ is the wavelength for the K α component of the employed copper radiation (wavelength: 0.1540598 nm).

d-spacing calculation was done based on Bragg's equation.

$$n \lambda = 2d \sin \theta \tag{S3}$$

n can be 0,1,2,-----, θ is the Bragg's diffraction angle , λ is the wavelength for the K α component of the employed copper radiation (wavelength: 0.1540598 nm) and d is the interplanar distance. Calculation of vaour pressure of ammonia solution

4. Calculation of the vapor pressure of ammonia solution

According to Raoult's law equation, we have calculated 30% of vapor pressure of ammonia solution (commercially).

$$Pa = P^{o}a Xa$$
 (S4)

Where P°a at 30° C for pure ammonia is 1166 kPa.

5. Ammonia treatment: Reversibility of the substrates

Fig. S1: Paper substrate viewed under visible and UV (356 nm) light under each cycle.

6. Characterization of CsPbBr₃ before and after ammonia treatment

Fig. S2: XRD patterns of CsPbBr₃ perovskite nanocrystals before (A) and after (B) gaseous ammonia exposure.

Fig. S3: TEM images of CsPbBr₃ perovskite nanocrystals before (A) and after (B) gaseous ammonia exposure.

Fig. S4: TGA analysis of CsPbBr₃ perovskite nanocrystals before (black trace) and after (red trace) gaseous ammonia exposure.

7. Octahedral tilting in ammonia treated samples

Fig. S5: Variations in Pb-Br Bond length of CsPbBr₃ after NH₃ intercalation.

8. PDOS Plot

Fig. S6: The PDOS plot for the s orbital Pb atoms of before and after the intercalation of NH₃.