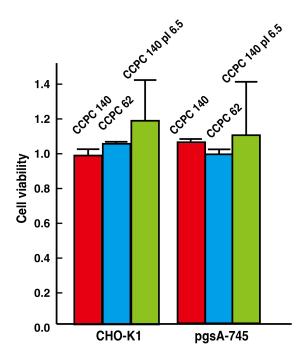

Supplementary information

The Coiled-Coil Protein Carrier Structure Affects Their Activation of Certain Endocytosis Pathways


Ken-Ichi Sano 1,2,*, and Yuta Nomata 2

¹Department of Applied Chemistry, Faculty of Fundamental Engineering, Nippon Institute of Technology, Miyashiro, Saitama 345-8501, Japan; kisano@nit.ac.jp
²Graduate School of Environmental Symbiotic System Major, Nippon Institute of Technology, Miyashiro, Saitama 345-8501, Japan.

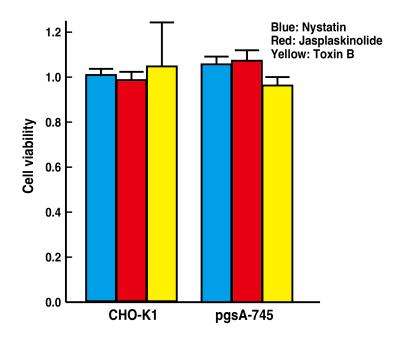

*Correspondence: kisano@nit.ac.jp; Tel.: +81-480-33-7725

Figure S1. Microscopic observations of the cell-penetrating activity of Alexa Fluor 532-labeled CCPCs against CHO-K1 and pgsA-745. Panels A-O and P-R show the results for CCPC 140, CCPC 62 and CCPC 140 pI 6.5-administered cells, respectively. A, D, G, J, M, P, S, V, and Y show phase-contrast images; B, E, H, K, N, Q, T, W, and Z show fluorescent images; C, F, I, L, O, R, U, X, and α show the merged images. All fluorescence images were given pseudo-color, and the levels were tuned by imaging software for visualization.

Figure S2. Cytotoxicity of CCPCs using in this study. Cells were incubated with 1 μ M of CCPC 140 (red), CCPC 62 (blue) and CCPC 140 pI6.5 (green), respectively. Data from four independent measurements were averaged.

Figure S3. Cytotoxicity of endocytic inhibitors using in this study. Cells were treated with nystatin (blue), jasplaskinolide (red) and toxin B (yellow). Data from three or four independent measurements were averaged.