SUPPORTING INFORMATION

FeCl₃/SiO₂ catalyzed bis-indolylation of acetal and ketal: A highly atom economic approach to selective deprotection of protected carbohydrate

Barnali Das,^a Kamal Das,^a Utpal Ch. De^a and Swapan Majumdar^{*a}

Content	Pages
Experimental: General	S2
Preparation of silica supported Ferric Chloride	S2
General experimental procedure for the synthesis of 4 and 5	S2
Spectral data of 4a-r, 4u-x and 5a-h	S3-S12
¹ H and ¹³ C NMR Spectra of 4a-r , 4u-x and 5a-h	S13-S41
HRMS of 4i	S42
HRMS of 4n	S42
HRMS of 40	S43
HRMS of 4u	S43
HRMS of 4v	S44
HRMS of 4 x	S44
References	S45

Experimental section

All reagents were purchased either from Sigma Aldrich chemical Co., USA, Acros chemical company or SRL India and were used as received unless otherwise specified. Commercially supplied petroleum ether (60-80 °C) and ethyl acetate was distilled before use. Indole and triethyl orthoformate were purchased from SRL, India; N-Methyl Indole, 2-Methyl Indole, 2-Phenyl Indole, 5-Bromo Indole, 5-Methoxy Indole, 5-Nitro Indole, Benzaldehyde dimethyl acetal and 4-Anisaldehyde dimethyl acetal were purchased from Spectrocem Pvt. Ltd. India; 2,2- Dimethoxypropane, carbohydrate derivatives 2a-b and 2g were purchased from Acros Organics and used as received. Diethyl acetals (1c and 1d),¹ dimethyl acetal and other protected compounds (1f, 1h, 1i)² and protected carbohydrates (2c-f and 2h)^{2, 3} were prepared according to the literature report. Column chromatography was performed on silica gel (60-120 mesh, 0.12-0.25 mm) and silica gel 230-400 nesh was used for the preparation of supported reagent. Analytical thin-layer chromatography (TLC) was performed on 0.25 mm extra-hard silica gel plates with a UV₂₅₄ fluorescent indicator. The identity of known synthesized products was confirmed by comparison with their melting points and spectral data with those reported earlier. ¹H NMR and ¹³C NMR spectra were recorded at ambient temperature using 400 MHz spectrometers (400 MHz for ¹H and 100 MHz for ¹³C). FTIR spectra were recorded on Bruker Alpha II FTIR spectrometer on Neat or KBr pellets. Mass spectra (HRMS) were obtained from XEVO G2-XS QTOF (Waters) using 70 ev in positive ion mode. Field-emission scanning electron microscope (FESEM) (model: Sigma 300, Carl ZEISS Pvt., Ltd.) with 5 kV acceleration voltage was used to explore the surface morphology and elemental analysis of silica supported ferric chloride.

Preparation of silica supported Ferric Chloride

Typically, to the slurry of silica gel (240-300 mesh, 40g) in acetone (80 mL), anhydrous ferric chloride (5.0 g, 30.83 mmol) was added with vigorous stirring for 1hr. The excess acetone was removed under reduced pressure and then the mixture was dried under vacuum for 24 hrs to obtain a free flowing solid. The catalyst was stored in a brown colour bottle at 4°C for longer shelf life.

General procedure for the synthesis of BIMs/deprotection of protected carbohydrates.

In a glass vial, catalyst (FeCl₃/SiO₂) (20 mg, 2 mol% of FeCl₃), acetal (1.0 mmol) and indole (2.0 mmol) were added successively (for carbohydrate substrate, 0.2 to 0.3 mL alcohol was needed). The reaction mixture was stirred for stipulated time mentioned in the Table 2 and 3. After completion of reaction, the reaction mixture was diluted with EtOAc (5 mL) and

filtered. The filtrate was evaporated under vacuum. The desired product was isolated either by crystallization or by column chromatography using ethyl acetate-hexane (1:3 to 3:1).

Physical and Spectral data of Bis-indole products 4a-r and 4u-x:

3,3'-(phenyl methylene)bis(1H-indole) (**4a**):⁴ Yield: 90%, light yellow solid, m. p. 150-152°C, lit. m. p. 152 °C; IR (KBr) v_{max} 3394, 1596, 1452, 1417, 1355 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.90 (s, 2H), 7.42 (d, *J* = 8.0 Hz, 2H), 7.37 (d, *J* = 8.0 Hz, 4H), 7.33-7.18 (m, 5H), 7.06-7.02 (m, 2H), 6.66 (d, *J* = 1.6 Hz, 2H), 5.92 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 144.0, 136.7, 128.7, 128.2, 127.1, 126.2, 123.6, 121.9, 120.0, 119.7, 119.2, 111.1, 40.2.

3,3'-(phenyl methylene)bis(1-methyl-1H-indole) (**4b**):⁴ Yield: 92%, light pink solid, m. p. 200-202 °C, lit. m. p. 200-201 °C; IR (KBr) v_{max} 1470, 1422, 1324, 1228, 1198, 1151, 1053 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.44-7.23 (m, 11H), 7.04 (t, *J* = 7.6 Hz, 2H), 6.58 (s, 2H), 5.93 (s,1H), 3.72 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 144.5, 137.4, 128.7, 128.3, 128.2, 127.5, 126.1, 121.4, 120.1, 118.7, 118.3, 109.1, 40.1, 32.7.

3,3'-(phenyl methylene)bis(2-methyl-1H-indole) (**4c**):⁴ Yield: 91%, light pink solid, m. p. 252-254 °C, lit. m. p. 257-258 °C; IR (KBr) v_{max} 3390, 1454, 1421, 1337, 1292, 1129, 1072 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 10.76 (s, 2H), 7.27-7.20 (m, 7H), 6.89 (t, *J* = 8.0 Hz, 2H), 6.80 (d, *J* = 8.0 Hz, 2H), 6.67 (t, *J* = 7.2 Hz, 2H), 5.93 (s, 1H), 2.07 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 144.7, 135.5, 132.5, 129.2, 128.7, 128.4, 126.2, 120.0, 118.9, 118.4, 112.6, 110.8, 39.0, 12.4.

3,3'-(phenyl methylene)bis(2-phenyl-1H-indole) (**4d**):⁵ Yield: 70%, white solid, m. p. 252-254 °C, lit. m. p. 260 °C; IR (KBr) v_{max} 3416, 1445, 1309, 1236, 1020, 740 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆) δ 11.37 (s, 2H), 7.39-7.15 (m, 17H), 7.02 (t, *J* = 7.6 Hz, 2H), 6.91 (d, *J* = 8.0 Hz, 2H), 6.68 (t, *J* = 7.2 Hz, 2H), 5.99(s, 1H); ¹³C NMR (100MHz, DMSO-d₆) δ 145.0, 136.8, 135.8, 133.2, 129.2, 128.8, 128.7, 128.5, 127.7, 126.5, 121.4, 121.3, 119.00, 114.7, 111.8, 55.4, 40. 3.

3,3'-(phenyl methylene)bis(5-bromo-1H-indole) (**4e**):⁴ Yield: 85 %, light pink solid, m. p. 250-252 °C, lit. m. p. 253-255 °C; IR (KBr) v_{max} 3410, 1593, 1554, 1445, 1325, 1213, 1173, 1029 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆) δ 11.10 (s, 2H), 7.44 (s, 2H), 7.36-7.28 (m, 6H), 7.21 (d, *J* = 7.2 Hz, 1H), 7.18-7.15 (m, 2H), 6.90 (d, *J* = 2.0 Hz, 2H), 5.87 (s, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ 144.8, 135.7, 128.8, 128.7, 126.5, 125.7, 123.9, 121.7, 118.1, 114.1, 111.4, 39.3.

3,3'-(phenyl methylene)bis(5-methoxy-1H-indole) (**4f**):⁶ Yield: 90%, light pink solid, m. p. 214-216 °C, lit. m. p. 215-216 °C; IR (KBr) v_{max} 3389, 1483, 1445, 1206, 1169, 1029, 719 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆) δ 10.67 (s, 2H), 7.37 (d, *J* = 7.6 Hz, 2H), 7.29 (d, *J* = 7.6 Hz, 2H), -7.25 (d, *J* = 8.8 Hz, 2H), 7.18 (t, *J* = 7.2 Hz, 1H), 6.83 (d, *J* = 2.0 Hz, 2H), 6.74-6.69 (m, 4H), 5.76 (s, 1H), 3.56 (s, 6H); ¹³C NMR (100 MHz, DMSO-d₆) δ 153.1, 145.5,132.2, 128.8, 128.4, 127.5, 126.2, 124.7, 118.1, 112.5, 111.0, 101.9, 55.7, 40.2.

3,3'-((4-methoxy phenyl) methylene)bis(1H-indole) (**4g**):⁴ Yield: 85%, white solid, m. p. 192-194 °C, lit. m. p. 190-192 °C; IR (KBr) v_{max} 3391, 1506, 1451, 1246, 1016, 741 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆) δ 10.80 (s, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.27(d, *J* = 4.8Hz, 2H), 7.25 (d, *J* = 5.6 Hz, 2H), 7.03 (t, *J* = 7.6 Hz, 2H), 6.87-6.79 (m, 6H), 5.77 (s, 1H), 3.70 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ 157.8, 137.4, 137.0, 129.6, 127.1, 123.9, 121.3, 119.6, 118.9, 118.6, 113.8, 111.9, 55.4, 39.3.

3,3[']-((2-nitrophenyl)methylene)bis(1H-indole) (**4h**):⁷ Yield: 93%, light yellow solid, m. p. 138-140 °C, lit. m. p.; IR (KBr) v_{max} 3391, 1757, 1512, 1343, 1218, 1088, 740 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.98 (s, 1H), 7.87 (d, *J* = 7.6 Hz, 1H), 7.44-7.37 (m, 4H), 7.20 (t, *J* = 8.0 Hz, 1H), 7.04 (t, *J* = 7.6 Hz, 1H), 6.70 (d, *J* = 6.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 149.8, 138.0, 136.7, 132.3, 131.1, 127.2, 126.8, 124.4, 123.8, 122.2, 119.8, 119.6, 117.7, 111.1, 76.7, 34.8.

3,3'-((2-nitrophenyl)methylene)bis(1-methyl-1H-indole) (**4i**): Yield: 91%, light yellow solid, m. p. 160-162 °C; IR (KBr) v_{max} 3052, 1514, 1467, 1339, 1120, 781 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆) δ 7.90 (d, *J* = 8.0 Hz, 1H), 7.58 (t, *J* = 8.8 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 1H), 7.41 (t, *J* = 8 Hz, 3H), 7.23 (d, *J* = 7.6 Hz, 2H), 7.13 (t, *J* = 7.2 Hz, 2H), 6.94 (t, *J* = 7.6 Hz, 2H), 6.80 (s, 2H), 6.40 (s, 1H), 3.71 (s, 6H); ¹³C NMR (100 MHz, DMSO-d₆) δ 149.8, 138.1, 137.4, 133.1, 131.0, 128.9, 128.1, 127.0, 124.5, 121.8, 119.2, 119.1, 115.7, 110.3, 34.2, 32.8; HRMS calcd for (C₂₅H₂₁N₃O₂ + H⁺) 396.1712, found : 396.1692 (M + H⁺).

3,3'-((4-nitrophenyl)methylene)bis(1H-indole) (**4j**):⁴ Yield: 87%, light yellow solid, m. p. 220-222 °C, lit. m. p. 219-220 °C; IR (KBr) v_{max} 3453, 1504, 1453, 1337, 1097, 741 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆) δ 10.94 (s, 2H), 8.16 (d, *J* = 8.8 Hz, 2H), 7.61 (d, *J* = 8.8 Hz, 2H), 7.36 (d, *J* = 8.4 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 7.05 (t, *J* = 7.6 Hz, 2H), 6.88 (d, *J* = 7.6 Hz, 4H), 6.03 (s, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ 153.6, 146.2, 137.1, 129.9, 126.8, 124.3, 123.9, 121.6, 119.4, 118.9, 117.1, 112.1, 39.4.

3,3'-((4-nitrophenyl)methylene)bis(1-methyl-1H-indole) (**4k**):^{8a,b} Yield: 82%, light yellow solid, m. p.236-238 °C, lit. m. p. 240-242 °C; IR (KBr) v_{max} 3733, 1506, 1469, 1331, 1007, 732 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆) δ 8.16 (d, J = 8.8 Hz, 2H), 7.61 (d, J = 8.4 Hz, 2H), 7.40 (d, J = 8.0 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 7.13 (t, J = 7.6 Hz, 2H), 6.95-6.90 (m, 4H), 6.05 (s, 1H), 3.71 (s, 6H); ¹³C NMR (100 MHz, DMSO-d₆) δ 153.4, 146.3, 137.4, 129.9, 128.6, 127.1, 124.0, 121.7, 119.5, 119.1, 116.4, 110.2, 39.4, 32.8.

3,3'-(phenyl methylene)bis(5-nitro-1H-indole) (**4l**):⁴ Yield: 82 %, light yellow solid, m. p. 250-252 °C, lit. m. p. 253-255 °C; IR (KBr) v_{max} 3288, 1508, 1464, 1378, 1313, 1087 cm⁻¹; ¹H NMR (400 MHz, DMDO-d₆) δ 11.98 (s, 2H), 8.32 (s, 2H), 7.99-7.96 (dd, J = 9.2, 2.0 Hz, 2H), 7.55 (d, J = 9.2 Hz, 2H), 7.40 (d, J = 7.6Hz, 2H), 7.33 (t, J = 7.6 Hz, 2H), 7.23 (d, J = 7.2 Hz, 1H), 7.14 (bs, 2H), 6.21 (s, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ 144.2, 140.7, 140.2, 128.9, 128.7, 128.1, 126.9, 126.9, 126.5, 126.2, 121.0, 117.1, 112.6, 38.9.

3,3'-(propane-2,2-diyl)bis(1H-indole) (**4m**):¹ Yield: 95%, white solid, m. p.156-158 °C, lit. m. p. 160 °C; IR (KBr) v_{max} 3394, 2309, 1453, 1333, 1094, 1008, 738 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.89 (s, 2H), 7.47 (d, *J* = 8.0 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.15-7.11 (m, 2H), 7.07 (d, *J* = 2.4 Hz, 2H), 6.96-6.92 (m, 2H), 1.97 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 137.1, 126.3, 125.5, 121.4, 121.3, 120.5, 118.7, 111.1, 34.9, 30.0.

3,3'-(propane-2,2-diyl)bis(1-methyl-1H-indole) (**4n**): Yield: 86%, white solid, m. p. 130 °C; IR (KBr) v_{max} 3744, 1463, 1322, 1225, 1049, 734 cm-1; ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 8.4 Hz, 1H), 7.30 (d, *J* = 8.0 Hz, 2H), 7.17 (t, *J* = 8.4 Hz, 1H), 6.96 - 6.93 (m, 2H), 3.78 (s, 3H), 1.96 (s, 3H);¹³C NMR (100 MHz, CDCl₃) δ 137.8, 126.7, 125.5, 124.1, 121.5, 120.9, 118.1,109.1, 35.0, 32.7, 31.0, 30.3 HRMS calcd for (C₂₁H₂₂N₂ + H⁺) 303.1861, found : 303.1849(M + H⁺).

3,3'-(propane-2,2-diyl)bis(2-methyl-1H-indole) (**40**): Yield: 83%, white solid, m. p. 130 °C; IR (KBr) v_{max} 3378, 2310, 1546, 1453, 1340, 1014, 740 cm⁻¹; ¹H NMR (400 MHz, DMSOd₆) δ 10.53 (s, 2H), 7.22 (d, *J* = 8.0 Hz, 2H), 7.16 (d, *J* = 8.0 Hz, 2H), 6.84 (t, *J* = 7.6 Hz, 2H), 6.67 (t, *J* = 8.0 Hz, 2H), 2.28 (s, 6H), 1.92 (s, 6H); ¹³C NMR (100 MHz, DMSO-d₆) δ 135.4, 130.1, 128.2, 120.2, 119.6, 119.4, 118.0, 110.6, 37.7, 32.2, 14.5; HRMS calcd for C₂₁H₂₂N₂ 302.1783, found : 302.1747 (M⁺).

3-(1-(1H-indol-3-yl)cyclohexyl)-1H-indole (**4p**): ^{4,9} Yield: 85 %; white solid, m. p. 117-119 °C; lit. 118-120 °C; FT-IR (KBr) vmax 3166, 2977, 2309, 1699, 1533, 1411, 1057, 738 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.92 (s, 2H), 7.59 (d, *J* = 8.0 Hz, 2H), 7.32 (d, *J* = 8 Hz, 2H),

7.09 (t, *J* = 8.8 Hz, 4H), 6.92 (t, *J* = 7.6 Hz, 2H), 2.57 (d, *J* = 6 Hz, 4H), 1.69-1.62 (m, 6H); ¹³C NMR (100 MHz, CDCl3) δ 137.0, 126.3, 123.7, 122.0, 121.5, 121.2, 118.5, 111.1, 39.5, 36.8, 26.8, 23.0.

Tri(1H-indol-3-yl)methane (**4q**):⁴ Yield: 91%, off-white solid, m.p. 248-250 °C, lit. m. p. 244-245 °C; IR (KBr) ν_{max} 3386, 1454, 1336, 1216, 1086, 743 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆) δ 10.71 (s, 3H), 7.39 (d, *J* = 7.6 Hz, 3H), 7.33 (d, *J* = 8.0 Hz, 3H), 7.01 (t, *J* = 7.6 Hz, 3H), 6.93 (s, 3H), 6.85 (t, *J* = 7.2 Hz, 3H), 6.04 (s, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ 137.0, 127.2, 123.6, 121.1, 119.7, 118.7, 118.4, 111.8, 31.4

3,3'-((4-chlorophenyl)methylene)bis(1H-indole) (**4r**):⁴ Yield: 86%, light orange solid, m. p. 74-76 °C, lit. m. p. 75-76 °C ; IR (KBr) v_{max} 3733, 2309, 1693, 1516, 1219, 1089, 772 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.98 (s, 2H), 7.39 (d, J = 8.8 Hz, 4H), 7.31-7.25 (m, 5H), 7.22 (t, J = 8.0 Hz, 2H), 7.04 (t, J = 7.6 Hz, 2H), 6.67 (d, J = 1.6 Hz, 2H), 5.89 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 142.5, 136.7, 131.8, 130.1, 128.4, 126.9, 123.6, 122.1, 119.8, 119.4, 119.2, 111.1, 39.6

3-((1H-indol-3-yl)(phenyl)methyl)-5-methoxy-1H-indole (**4u**): Yield: 61%, off-white solid, m. p. 156-158 °C; IR (KBr) ν_{max} 3404, 1484, 1206, 1018 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.93 (s, 1H), 7.83 (s, 1H), 7.42-7.20 (m, 10H), 7.03 (s, 1H), 6.86 (d, *J* = 8.0 Hz, 2H), 6.67 (d, *J* = 12.0 Hz, 2H), 5.86 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 153.7, 144.0, 136.8, 131.8, 128.7, 128.2, 127.5, 127.1, 126.2, 124.4, 123.7, 121.9, 120.0, 119.6, 119.4, 119.2, 112.0, 111.7, 111.1, 101.9, 55.9, 40.3; HRMS calcd for $(C_{24}H_{20}N_2O-H^+)$ 351.1497, found: 351.1516 $(M - H^+)$.

3-((1H-indol-3-yl)(4-nitrophenyl)methyl)-5-methoxy-1H-indole (**4v**): Yield: 70%, light yellow solid, m. p. 180-182 °C; IR (KBr) v_{max} 3448, 1501, 1341, 1201, 1062, 920, cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, *J* = 8.8 Hz, 2H), 8.06 (s, 1H), 7.95 (s, 1H), 7.52 (d, *J* = 8.8 Hz, 2H), 7.41 (d, *J* = 8.0 Hz, 1H), 7.42- 7.28 (m, 3H), 7.22 (t, *J* = 8.0 Hz, 1H), 7.06 (d, *J* = 8.0 Hz, 1H), 6.89 (dd, *J* = 6.4, 2.4 Hz, 1H), 6.79 (d, *J* = 2.4 Hz, 1H), 6.71 (s, 1H), 6.67 (s, 1H), 5.96 (s, 1H), 3.73 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 154.0, 151.8, 146.6, 136.8, 131.8, 129.5, 127.1, 126.7, 124.4, 123.7, 123.6, 122.3, 119.6, 118.0, 117.8, 112.3, 112.0, 111.3, 101.6, 76.7, 55.9, 40.2; HRMS calcd for (C₂₄H₁₉N₃O₃+H⁺) 398.1505, found: 398.1513 (M + H⁺)

3-(2-(1H-indol-3-yl)propan-2-yl)-1-methyl-1H-indole (**4x**): Yield: 51%, off-white solid, m. p. 102-104 °C; IR (KBr) v_{max} 3420, 1482, 1326, 1215, 1012 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.90 (s, 1H), 7.47 (q, J = 8.0 Hz, 1H), 7.34 (d, J = 8.0 Hz, 1H), 7.29 (d, J = 8.4 Hz, 1H), 7.18-7.11 (m, 2H), 7.06 (d, J = 2.4 Hz, 1H), 6.96-6.90 (m, 3H), 3.78 (s, 3H), 1.95 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 137.8, 137.1, 128.8, 126.7, 126.4, 125.6, 125.4, 124.0, 121.4, 121.3, 120.9, 120.6, 118.7, 118.1, 111.0, 109.2, 109.1, 100.9, 76.7, 34.9, 32.7, 30.2, 30.0; HRMS calcd for (C₂₀H₂₀N₂ + H⁺) 289.1705, found: 289.1718 (M + H⁺)

Physical and Spectral data of deprotected carbohydrate products 5a-h:

HO HO'' O HO O

1-((3aR,6S,6aR)-6-hydroxy-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-5-yl)ethane-1,2diol (**5a**):¹⁰ Yield: 87%, white solid, m. p. 159-160 °C; IR (KBr) v_{max} 3427, 3306, 2985, 2933, 1385, 1224, 1076, 1003, 857cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆) δ 5.79 (s, 1H), 5.13 (s, 1H), 4.64 (d, *J* = 5.2 Hz, 1H), 4.45 (s, 1H), 4.37 (s, 1H), 4.03 (s, 1H), 3.83 (d, *J* = 8.0 Hz, 1H), 3.69 (s, 1H), 3.54 (s, 1H), 3.34 (s, 3H), 1.37 (s, 3H), 1.23 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ 110.8, 104.9, 85.2, 80.5, 73.7, 68.9, 64.1, 27.1, 26.6.

1-((3a'R,6'S,6a'R)-6'-hydroxytetrahydrospiro[cyclohexane-1,2'-furo[2,3-d][1,3]dioxol]-5'yl)ethane-1,2-diol (**5b**):¹¹ Yield: 80%, white solid, m. p. 165 °C: IR (KBr) v_{max} 3389, 3292, 2931, 1428, 1232, 1037, 957 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆) δ 5.79 (d, *J* = 3.6 Hz, 1H), 5.12 (d, *J* = 4.4 Hz, 1H), 4.64 (d, *J* = 6.0 Hz, 1H), 4.45 (t, *J* = 5.6 Hz, 1H), 4.36 (d, *J* = 3.6 Hz, 1H), 4.04 (s, 1H), 3.83 (dd, *J* = 6.4, 2.4 Hz, 1H), 3.68 (s, 1H), 3.54 (d, *J* = 11.2 Hz, 1H), 3.36 (d, *J* = 5.6 Hz, 1H), 1.56-1.33 (m, 10H); ¹³C NMR (100 MHz, DMSO-d6) δ 111.3, 104.5, 84.7, 80.5, 73.8, 68.9, 64.1, 36.5, 35.7, 24.9, 24.1, 23.7.

1-((3aR,6S,6aR)-6-(allyloxy)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-5-yl)ethane-1,2diol (**5c**):² Yield: 85%, light yellow liquid; IR (KBr) v_{max} 2984, 2933, 1378, 1215, 1072, 1010, 855 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 5.94-5.84 (m, 2H), 5.30 (d, *J* = 17.2 Hz, 1H), 5.20 (d, *J* = 10.4 Hz, 1H), 4.55 (d *J* = 3.6 Hz, 1H), 4.15 (dd, *J* = 7.6, 5.2 Hz, 1H), 4.10-4.04 (m, 2H), 4.01 (d, *J* = 3.2 Hz, 1H), 3.97 (d, *J* = 2.8 Hz, 1H), 3.79 (dd, *J* = 8.8, 2.8 Hz, 1H), 3.68 (dd, *J* = 6.0, 5.6 Hz, 1H), 1.47 (s, 3H), 1.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 133.9, 117.9, 111.7, 105.0, 82.1, 81.7, 79.8, 71.2, 69.0, 64.3, 26.6, 26.1.

1-((3aR,6S,6aR)-6-(benzyloxy)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-5-yl)ethane-1,2-diol (**5d**):² Yield: 85%, light yellow liquid; IR (KBr) v_{max} 2984, 2936, 1455, 1377, 1214, 1072, 1012, 857, 739 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.28 (m, 5H), 5.95 (d, *J* = 4.0 Hz, 1H), 4.74 (d, *J* = 12.0 Hz, 1H), 4.64 (d, *J* = 4.0 Hz, 1H), 4.58 (d, *J* = 12.0 Hz, 1H), 4.15-4.11 (m, 1H), 4.05-4.01 (s, 1H), 3.81 (dd, *J* = 8.0 Hz, 3.6 Hz, 1H), 3.71 (dd, *J* = 6.0, 6.5 Hz, 1H), 1.50 (s, 3H), 1.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.2, 128.7, 128.3, 127.9, 111.8, 105.1, 82.1, 82.0, 79.9, 72.2, 69.2, 64.3, 26.7, 26.2

(3a'R,6'S,6a'R)-5'-(1,2-dihydroxyethyl)tetrahydrospiro [cyclohexane-1,2'-furo[2,3-d][1,3] dioxol]-6'-yl acetate (**5e**):² Yield: 80%, light yellow liquid; IR (KBr) v_{max} 2936, 2860, 1736, 1371, 1232, 1016, 928 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 5.93 (d, *J* = 3.6 Hz, 1H), 5.30 (d, *J* = 2.4 Hz, 1H), 4.58 (d, *J* = 3.6 Hz, 1H), 4.19 (dd, *J* = 6.8, 2.4 Hz, 1H), 3.86 (dd, *J* = 8.0, 3.6 Hz, 1H), 3.75 (dd, *J* = 6.0, 5.6 Hz, 1H), 3.69-3.64 (m 1H), 2.17 (d, *J* = 5.2 Hz, 4H), 1.74 (d, *J* = 6.0 Hz, 2H) 1.69-1.64 (m, 2H), 1.56 (d, *J* = 4.4 Hz, 5H), 1.54 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 113.2, 104.4, 82.6, 79.4, 76.9, 68.1, 64.1, 36.2, 35.7, 24.8, 23.8, 23.5, 20.8

(3aR,6S,6aR)-5-(1,2-dihydroxyethyl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-yl benzoate (**5f**):¹² Yield: 87%, colourless liquid; IR (KBr) v_{max} 2988, 2937, 1718, 1452, 1265, 1067, 1015, 709 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.05 (t, *J* = 7.2 Hz, 2H), 7.64 (t, *J* = 7.6 Hz, 1H), 7.49 (t, *J* = 8.0 Hz, 2H), 6.03 (d, *J* = 3.6 Hz, 1H), 5.54 (d, *J* = 2.4 Hz, 1H), 4.74 (d, *J* = 4.0 Hz, 1H), 4.34-4.31(m, 1H), 3.91-3.87 (m, 1H), 3.80-3.75 (m, 2H), 1.58 (s, 3H), 1.36 (s, 3H); ¹³C NMR (100 MHz,CDCl₃) δ 166.6, 134.0, 130.0, 128.7, 128.6, 112.5, 105.0, 83.1, 79.7, 76.7, 68.3, 64.2, 26.7, 26.2

Spectral data of D-mannitol (5g)

HO HO H 5g

D-Mannitol (**5g**):Yield: 92%, dirty white solid, m. p. 164-165 °C; IR v_{max} 3398, 2950, 1080, 1020 cm⁻¹; ¹H NMR (400 MHz, D₂O) δ 3.85 (m, 2H), 3.79-3.74 (m, 4H), 3.67 (m, 2H); ¹³C NMR (100 MHz, D₂O) δ 70.7, 69.1, 63.2. (Spectra was matched with the commercially available compound)

Spectral data of 5h

(3a'R, 5'R, 6'S, 6a'R)-5'-(hydroxymethyl)tetrahydrospiro[cyclohexane-1,2'-furo[2,3-d][1,3]dioxol]-6'ol (**5h**): ² Yield: white solid, m. p. 180-182 °C, IR(neat)) v_{max} 3240, 2932, 1441, 1110, 1065, 1018, 940 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 5.99 (d, J = 3.6 Hz, 1H), 4.51 (d, J = 3.6 Hz, 1H), 4.33 (bs, 1H), 4.18-4.01 (m, 3H), 3.19 (bs, 1H), 2.18 (bs, 1H), 1.72-1.54 (m, 8H), 1.40 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 112.5,104.5, 85.2, 78.8, 76.9, 61.1, 36.4, 35.7, 24.9, 23.9, 23.6.

¹H and ¹³C NMR spectra of bisindoles (4a-r and 4u-x)

¹H NMR (400 MHz, CDCl₃) of 4a

 1 H NMR (400 MHz, CDCl₃) of **4b**

S14

80 70 60 50 40 30 20 10

0

ppm

210 200 190 180 170 160 150 140 130 120 110 100 90

¹H NMR (400 MHz, DMSO-d₆) of 4c

¹H NMR (400 MHz, DMSO-d₆) of **4d**

¹H NMR (400 MHz, DMSO-d₆) of **4e**

1 H NMR (400 MHz, DMSO-d₆) of **4f**

^1H NMR (400 MHz, CDCl₃) of 4h

¹H NMR (400 MHz, DMSO-d₆) of **4i**

 ^1H NMR (400 MHz, DMSO-d₆) of 4j

¹H NMR (400 MHz, DMSO-d₆) of **4k**

¹H NMR (400 MHz, DMSO-d₆) of **4**l

¹H NMR (400 MHz, CDCl₃) of **4n**

¹H NMR (400 MHz, DMSO-d₆) of **40**

^1H NMR (400 MHz, DMSO-d_6) of 4q

¹H NMR (400 MHz, CDCl₃) of 4u

¹H NMR (400 MHz, CDCl₃) of 4v

¹H NMR (400 MHz, CDCl₃) of 4x

¹H and ¹³NMR spectra of 5

¹H NMR (400 MHz, DMSO-d₆) of **5a**

¹H NMR (400 MHz, CDCl₃) of **5**c

 1 H NMR (400 MHz, CDCl₃) of **5d**

 ^{13}C NMR (100 MHz, CDCl₃) of $\mathbf{5d}$

¹H NMR (400 MHz, CDCl₃) of 5e

¹H NMR (400 MHz, CDCl₃) of **5f**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

¹H NMR (400 MHz, CDCl₃) of **5h**

HRMS spectra of 4i

HRMS spectra of 4n

HRMS spectra of 40

HRMS spectra of 4u

RMS spectra of	4 v				NO ₂		
Elemental Com	position Repor	t		MeO		~	Page 1
Single Mass Ar Tolerance = 5.0 n Element predictio Number of isotop	n alysis nDa / DBE:min on:Off e peaks used for i-	= -1.5, max = 50 FIT = 3	0.0		N H I	N	
Monoisotopic Mass 22 formula(e) evalu Elements Used: C: 0-25 H: 0-50	s, Even Electron lons ated with 1 results v N: 0-3 O: 0-3	; vithin limits (up to	50 closest re	esults for e	ach mass)		
240123_BDS_73 41 ((Test Name :	0.437)		IITRPR			XEVO 24	G2-XS QTOF 0123_BDS_73
1: TOF MS ES+	281.09	56					5.20e+005
112.1167 16 014.44.44.44.44.44.44.44.44.44.44.44.44.4	7.0161 251.0857 26	12.0986 398 397.1430 1/11/11/11/11/11/11/11/11/11/11/11/11/1	1513 399.1589 00 450	515.3967_5 117-117-1 500	37.3805 579.5116 1	701.0274,722.510 650 700	9 765.9137 ۲۰۰۰ ۲۰۰۰ m/z 750
Minimum: Maximum:	5.0	-1.5 10.0 50.0					
Mass Cal	c. Mass mDa	PPM DBE	i-FIT	Norm	Conf(%) Formu	la	
398.1513 398	.1505 0.8	2.0 16.5	676.4	n/a	n/a C24 H	20 N3 O3	
Mass Cal	c. Mass mDa	PPM DBE	i-FIT	Norm	Conf(%) Formu	la	
398.1513 398	.1505 0.8	2.0 16.5	676.4	n/a	n/a C24 H	20 N3 O3	

HRMS spectra of 4x

Elemental	Composition	Report				l				Page 1
Single Mas Tolerance = Element pre Number of is	ss Analysis 5.0 mDa / D diction: Off sotope peaks us	BE: min sed for i-	= -1.5, n FIT = 3	nax = 50	.0		N H			
Monoisotopic Mass, Even Electron Ions 64 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: 0: 0.25 - U: 0.50 - N: 0.3 - 0: 0.3										
240123_BDS_7 Test Name	76 79 (0.809)	0.0-0			IITRPR					XEVO G2-XS QTOF 240123_BDS_76
100 100 182.98 182.98 182.98 182.98 182.98 182.98 182.98	30 273.14 227.1775 	289.1718 19 19 280 30	327.130	01 338.3413 	391.2688.4 391.2688.4 380 400	02.9562433 441000000000000000000000000000000000	.2399 498.21 1000 490 490 490 490 490 490 490 490 490	19 518.333(500 520	537.4227 540 560	1.04e+005 579.5369 1000 fragmenter m/z 580 600 620
Minimum: Maximum:		5.0	10.0	-1.5 50.0						
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula		
289.1718	289.1705	1.3	4.5	11.5	738.9	n/a	n/a	C20 H21	N2	

Reference:

- 1. R. Kumar, D. Kumar and A. K. Chakraborti, Synthesis, 2007, 2, 299–303.
- S. Majumdar, M. Chakraborty, D. K. Maiti, S. Chowdhury, J. Hossain, *RSC Adv.*, 2014, 4, 16497–16502.
- 3. S. Majumdar, A. Bhattacharjya and A. Patra, Tetrahedron, 1999, 55, 12157-12174.
- B. Deb, S. Debnath, A. Chakraborty, S. Majumdar, *RSC Adv.*, 2021, 11, 30827– 30839.
- 5. M. Zahran, Y. Abdin, H. Salama, Arkivoc, 2008, 11, 256–265.
- 6. P. Katrun, K. Atthawilai, C. Kuhakarn, Arkivoc, 2021, viii, 190-203.
- Z. Wu, G. Wang, S. Yuan, D. Wu, W. Liu, B. Ma, S. Bi, H. Zhan, X. Chen, *Green Chem.*, 2019, 21, 3542–3546.
- (a) V. T. Kamble, K. R. Kadam, N. S. Joshi, D. B. Muley, *Catal Commun.*, 2007, 8, 498–502.
 (b) J. T. Li, M. X. Sun, G. Y. He, X. Y. Xu, *Ultrason Sonochem.*, 2011, 18, 412–414.
- 9. Z. H. Zhang, L. Yin, Y. M. Wang, Synthesis, 2005, 12, 1949–1954.
- S. M. A. Kawsar, Md M. Islam, S. A. Chowdhury, T. Hasan, M. K. Hossain, M. A. Manchur, Y. Ozeki, *Hacettepe J. Biol. Chem.*, 2013, 41, 195–206.
- 11. I. Redmann, M. Pina, B. Guyot, P. Blaise, M. Farines, J. Graille, *Carbohydr. Res.*, 1997, **300**, 103-108.
- S. Majumdar, M. Chakraborty, D. K. Maiti, S. Chowdhury, J. Hossain, *RSC Adv.*, 2014, 4, 16497–16502.
- 13. M. Koos, B. Steiner, and J. Alfoldi, Chem. Papers, 1994, 48, 426-428.