Highly porous activated carbon derived from papaya plant (stems and leaves) for superior adsorption of alizarin red s and methylene blue dyes from water

Mona Moheb¹, Ahmad M. El-Wakil¹, and Fathi S. Awad^{1,2*}

¹Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.
² Chemistry Department, Faculty of Science, New Mansoura University, New Mansoura 35712, Egypt.

Supporting Information

Table S1. Properties of methylene blue and alizarin red	S
---	---

Dyes	Molecular formula	Molecular structure	Three- dimensional molecular	λ_{\max}	Molecular weight (g/mol)	Type of dye
		Ν	structure			
Methylene blue	C ₁₆ H ₁₈ ClN ₃ S	H ₃ C _N CH ₃ Cl ⁻		664nm	319.86 g/mol	Cationic dye
Alizarin red S	C ₁₄ H ₇ NaO ₇ S			424nm (acidic medium) 520 nm (basic medium)	342.26 g/mol	anionic dye

Table S2: Surface characteristics of SAC and LAC.

Sample	SAC	LAC	
BET surface area	1053.52 m²/g	441.671 m²/g	
BJH adsorption surface	266.186 m²/g	143.413 m²/g	
area			
Pore volume	0.785116 cc/g	0.338432 cc/g	
Pore radius	1.92765 nm	1.9282 nm	
DFT adsorption surface	923.3446 m²/g	352.5197 m²/g	
area			
Pore Volume	1.1580 cc/g	0.4858 cc/g	

Figure S1. Pore size distribution of SAC and LAC

Figure S2. Zeta potential of SAC.

Figure S3: SEM images of SAC (A-C).

Figure S4: Effect of temperature on the removal of MB and ARS dyes using LAC and SAC.

S1:

The PFO model usually predicts the behavior at the initial stage of the adsorption process, while PSO model predicts the behavior at all stages of the adsorption process[1].

Pseudo-first-order kinetic model:

$$\log(q_e - q_t) = \log q_e - \frac{K_1 t}{2.303}$$
(1)

Pseudo-second-order kinetic model:

$$\frac{t}{q_t} = \frac{1}{K_2 {q_e}^2} + \frac{t}{q_e}$$
(2)

Where $k_1 \pmod{1}$ and $k_2 \pmod{1} \min^{-1}$ are the rate constants. q_t and q_e are the adsorption uptake of heavy metal at time t (min) and at equilibrium. Where $k_1 \pmod{1}$ and $k_2 \pmod{1} \min^{-1}$ are the rate constants. q_t and q_e are the adsorption uptake of heavy metal at time t (min) and at equilibrium.

Figure S5: PFO kinetic models for the adsorption of MB and ARS onto SAC (A) and LAC (B); Freundlich isotherm model for the adsorption of MB and ARS onto SAC (C) and LAC (D).

Figure S6: FTIR spectra of SAC Before and after MB adsorption (A) and ARS adsorption.

References

[1] A.M. El-Wakil, S.M. Waly, W.M. Abou El-Maaty, M.M. Waly, M. Yılmaz, F.S. Awad, Triazine-Based Functionalized Activated Carbon Prepared from Water Hyacinth for the Removal of Hg2+, Pb2+, and Cd2+ Ions from Water, ACS omega 7(7) (2022) 6058-6069.