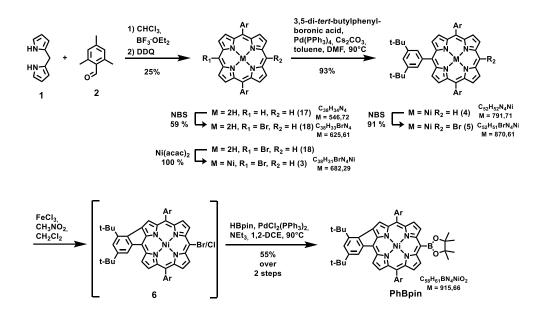
Table of Content


1 General Information	S2
2 Synthetic Procedures	S3
2.1 Synthesis of Phenyl-Fused Porphyrin-Precursor	S3
2.2 Synthesis of Pyrene-Fused Porphyrin-Precursor	S8
2.3 Synthesis of HBC-Fused Porphyrin-Precursor	S11
2.4 Synthesis of Naphthalene- and Perylenediimides	S15
2.5 Synthesis of Donor-Acceptor Dyads	S20
2.6 Synthesis of Donor-Acceptor-Donor Triads	S27
3 Spectral Appendix	S33
4 DFT Calculations	S144
5 References	S158

1 General Information

All chemicals were purchased from Sigma-Aldrich and used without any further purification. Solvents were distilled prior to usage. Dichloromethane was neutralized with K₂CO₃ before distillation. Thin layer chromatography (TLC) was performed on Merck silica gel 60 F524, detected by UV-light (254 nm, 366 nm). Column chromatography and flash column chromatography were performed on Macherey-Nagel silica gel 60 M (deactivated, 230-400 mesh, 0.04-0.063 mm). NMR spectroscopy was performed on Bruker Avance Neo Cryo-Probe DCH (¹H: 600 MHz, ¹³C: 150 MHz), Bruker Avance Neo 500 (¹H: 500 MHz, ¹³C: 126 MHz) and Bruker Avance 400 (¹H: 400 MHz, ¹³C{¹H}: 101 MHz). Deuterated solvents were purchased from Sigma-Aldrich and used as received. Chemical shifts are referenced to residual protic impurities in the solvents (¹H: CHCl₃: 7.24 ppm) and (¹H: CH₂Cl₂: 5.32 ppm) or deuterated solvent itself (${}^{13}C{}^{1}H{}$: CDCl₃: 77.0 ppm) and (${}^{13}C{}^{1}H{}$: the CD₂Cl₂: 53.8 ppm). The resonance multiplicities are indicated as "s" (singlet), "d" (doublet), "t" (triplet), "q" (quartet) and "m" (multiplet). Signals referred to as "bs" (broad singlet) are not clearly resolved or significantly broadened. IR spectra were recorded on a Bruker FT-IR Tensor 27 spectrometer with a Pike MIRacle ATR unit. LDI/MALDI-ToF mass spectrometry was performed on a Bruker Ultraflex Extreme machine. In case of MALDI, the following matrices were used: 2,5-dihydroxybenzoic acid (DHB) or trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenyl-idene]malononitrile (DCTB). Highresolution mass spectrometry (MS) was performed on an ESI/APPI-ToF mass spectrometer Bruker maXis 4G UHR MS/MS spectrometer, a Bruker micrOTOF II focus TOF MS spectrometer, or on a MALDI-ToF Bruker Ultraflex Extreme spectrometer. Microwave reactions were carried out in a monomode microwave reactor Biotage Initiator+ with an external IR surface temperature sensor. The microwave-assisted reactions were carried out exclusively in the fixed hold-time mode using an external IR temperature sensor. UV/vis spectroscopy was carried out on a Varian Cary 5000 UV-vis-NIR spectrometer.

2 Synthetic Procedures

2.1 Synthesis of Phenyl-Fused Porphyrin-Precursor

Scheme S1. Synthesis of phenyl-fused porphyrin building block **PhBpin**. Ar = mesityl.

5,15-Dimesitylporphyrin 17

Adapting a procedure from Chen *et al.*,^[1] Ethanol (4.5 mL) stabilized CHCl₃ (600 mL) was degassed for 15 min (bubbling N₂ through the solution). Dipyrromethane **1** (890 mg, 6.00 mmol, 1 equiv) and mesitaldehyde **2** (885 μ L, 6.00 mmol, 1 equiv) were added to the solution, and the reaction was degassed for another 10 min. BF₃·OEt₂ (500 μ L) was added, and the solution was stirred for 3 h at rt under the exclusion of light. DDQ (2.04 g, 9.00 mmol, 3 equiv) was added, and the mixture was stirred for a further 30 min. The acid was quenched via the addition of NEt₃ (8 mL), and the solvent was removed under reduced pressure. The crude was purified by filtration through silica (SiO₂, hexanes/CH₂Cl₂, 1:1, Ø 13 x 8 cm). The product **17** was obtained as a purple crystalline solid in 25% yield (407 mg, 744 µmol).

¹H NMR (400 MHz, CD₂Cl₂, rt): δ [ppm]: 10.25 (s, 2H), 9.37 (d, *J* = 4.6 Hz, 4H), 8.86 (d, *J* = 4.6 Hz, 4H), 7.35 (s, 4H), 2.66 (s, 6H), 1.84 (s, 12H), -3.13 (s, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃, rt): δ [ppm]: 139.34, 138.00, 137.47, 131.85, 129.92, 127.80, 117.31, 104.45, 21.36, 21.19.

HRMS (MALDI, DCTB) for C₃₈H₃₄N₄ (M⁺), calcd.: 546.2778, found: 546.2793.

Nickel-5,15-Dimesityl-10-Bromoporphyrin 3

Adapting a procedure from Mishra *et al.*^[2], 5,15-Dimesitylporphyrin **17** (410 mg, 750 µmol, 1 equiv) was dissolved in CHCl₃ (200 mL) and pyridine (320 µL). The mixture was cooled to 0 °C, and NBS (133 mg, 750 µmol, 1 equiv) was added. After stirring for 25 min, the reaction was quenched with acetone (10 mL). The solution was washed with H₂O (100 mL) and subsequently dried over Na₂SO₄. The crude was separated by column chromatography (SiO₂, hexanes/CH₂Cl₂, 3:1, Ø 10 x 30 cm, 2nd band). The product was obtained as a purple crystalline solid in 59% yield (278 mg, 444 µmol). 5,15-Dimesityl-10-Bromoporphyrin **18** (226 mg, 361 µmol, 1 equiv) and Ni(acac)₂ (464 mg, 1.81 mmol, 5 equiv) were dissolved in toluene (40 mL). The mixture was heated to reflux for 6 h (heat-on temperature: 140 °C). The solvent was removed under reduced pressure, and the crude was purified by silica plug filtration (SiO₂, CH₂Cl₂, Ø 3.5 cm x 12 cm). After removal of the solvent, the residue was dissolved in CH₂Cl₂ (10 mL), and the product precipitated with MeOH (50 mL). The precipitate was filtered off and dried *in vacuo*. The product **3** was obtained as a red-brown solid in 100% yield (246 mg, 361 µmol).

¹H NMR (400 MHz, CD₂Cl₂, rt): δ [ppm]: 9.80 (s, 1H), 9.55 (d, *J* = 4.9 Hz, 2H), 9.10 (d, *J* = 4.8 Hz, 2H), 8.67 (m, 4H), 7.26 (s, 4H), 2.59 (s, 6H), 1.78 (s, 12H).

¹³C{¹H} NMR (101 MHz, CD₂Cl₂, rt): δ [ppm]: 143.45, 143.26, 142.85, 142.19, 138.86, 138.08, 136.72, 133.30, 132.94, 131.99, 131.85, 127.79, 117.69, 104.86, 21.12, 21.00.

UV/Vis (CH₂Cl₂): λ [nm] (ε [M⁻¹cm⁻¹]): 409 (150000), 523 (12000).

HRMS (MALDI, DCTB) for C₃₈H₃₁N₄NiBr (M⁺), calcd.: 680.1080, found: 680.1070.

TLC: Rf [%]: 0.60 (hexanes/CH₂Cl₂ 4:1).

Nickel-5,15-Dimesityl-10-(3,5-di-tert-butylphenyl)-Porphyrin 4

Nickel-5,15-Dimesityl-10-Bromoporphyrin **3** (260 mg, 382 µmol, 1 equiv), 3,5-di-*tert*butylphenyl boronic acid (179 mg, 764 µmol, 2 equiv), Cs₂CO₃ (375 mg, 1.15 mmol, 3 equiv) and Pd(PPh₃)₄ (88 mg, 76 µmol, 0.2 equiv) were dissolved in toluene (20 mL) and DMF (10 mL) and were degassed. The reaction mixture was heated to 90 °C for 18 h. After cooling to rt, the solvent was removed under reduced pressure, and the crude was subjected to silica plug filtration (hexanes/CH₂Cl₂ - 1:1, Ø 3 x 12 cm). The product **4** was obtained in 93% yield (242 mg, 355 µmol).

¹H NMR (400 MHz, CDCl₃, rt): δ [ppm]: 9.78 (s, 1H), 9.09 (d, *J* = 4.7 Hz, 2H), 8.77 (d, *J* = 4.9, 2H), 8.71 (d, *J* = 4.7 Hz, 2H), 8.62 (d, *J* = 4.9, 2H), 7.91 (d, *J* = 1.8, 2H), 7.72 (m, 1H), 7.20 (s, 4H), 2.57 (s, 6H), 1.80 (s, 12H), 1.46 (s, 18H).

¹³C{¹H} NMR (101 MHz, CDCl₃, rt): δ [ppm]: 148.80, 142.87, 142.81, 142.67, 142.49, 140.23, 139.08, 137.66, 137.42, 132.75, 132.34, 131.40, 130.79, 129.00, 127.74, 121.00, 120.42, 116.92, 104.10, 35.03, 31.70, 21.43, 21.40.

UV/Vis (CH₂Cl₂): λ [nm] (ε [M⁻¹cm⁻¹]): 408 (225000), 521 (16000).

HRMS (MALDI, DCTB) for C₅₂H₅₂N₄Ni (M⁺), calcd.: 790.3540, found: 790.3529.

TLC: Rf [%]: 0.70 (hexanes/CH₂Cl₂ 3:1).

Nickel-5,15-Dimesityl-10-(3,5-di-tert-butylphenyl)-20-Bromoporphyrin 5

To a solution of CHCl₃ (25 mL), pyridine (600 μ L) and Nickel-5,15-Dimesityl-10-(3,5-di-*tert*-butylphenyl)-porphyrin **4** (300 mg, 380 μ mol, 1 equiv) NBS (68 mg, 380 μ mol, 1 equiv) in CHCl₃ (7.5 mL) was added slowly at rt. The mixture was stirred for 15 min at rt before the reaction was quenched with acetone (8 mL). The solvents were removed under reduced pressure, and the crude was purified by silica plug filtration (hexanes/CH₂Cl₂ - 1:1, Ø 3 x 12 cm). The product **5** was obtained as a dark-orange solid in 91% yield (301 mg, 346 μ mol).

¹H NMR (400 MHz, CDCl₃, rt): δ [ppm]: 9.47 (d, *J* = 4.9 Hz, 2H), 8.70 (d, *J* = 4.9 Hz, 2H), 8.63 (d, *J* = 4.9 Hz, 2H), 8.53 (d, *J* = 4.9 Hz, 2H), 7.86 (d, *J* = 1.8 Hz, 2H), 7.70 (t, *J* = 1.9 Hz, 1H), 7.20 (s, 4H), 2.56 (s, 6H), 1.80 (s, 12H), 1.45 (s, 18H).

¹³C{¹H} NMR (101 MHz, CDCl₃, rt): δ [ppm]: 148.95, 143.42, 142.88, 142.67, 142.36, 139.68, 138.95, 137.80, 136.91, 133.34, 133.20, 132.17, 131.42, 128.80, 127.77, 121.13, 120.61, 117.81, 101.68, 35.00, 31.65, 21.38, 21.34.

UV/Vis (CH₂Cl₂): *λ* [nm] (*ε* [M⁻¹cm⁻¹]): 417 (180000), 531 (13000).

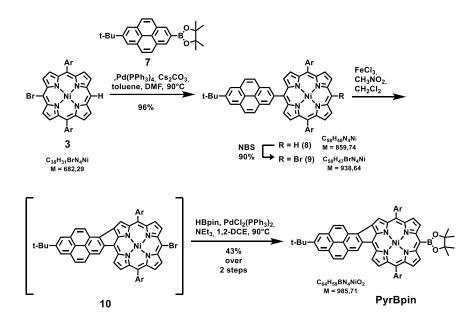
HRMS (MALDI, DCTB) for C₅₂H₅₁BrN₄Ni (M⁺), calcd.: 868.2645, found: 868.2624.

TLC: R_f [%]: 0.80 (hexanes/CH₂Cl₂ 3:1).

Fused Nickel-5,15-Dimesityl-10-(3,5-di-*tert*-butylphenyl)-20-Boronic-Ester-Porphyrin PhBpin

A 20 mL vial was filled with a solution of Nickel-5,15-Dimesityl-10-(3,5-di-tertbutylphenyl)-20-bromoporphyrin 5 (100 mg, 115 µmol, 1 equiv) in CH₂Cl₂ (20 mL) and cooled with an ice bath. The solution was degassed (bubbling N₂ through the solution for 15 min). The N₂ flow through the solution was increased, and a solution of dry FeCl₃ (149 mg, 920 µmol, 8 equiv) in CH₃NO₂ (0.5 mL) was added. The N₂ bubbling through the solution was stopped 15 min after FeCl₃ was added, and the solution was stirred under slow warming to rt for 24 h. MeOH (10 mL) was added to guench the reaction. After adding NEt₃ (1 mL), the solvent was removed, and the crude was purified by filtration through silica (SiO₂, hexanes/ CH₂Cl₂ - 1:1, Ø 3 x 12 cm). The obtained darkgreen solid was used in the next step without further purification. The porphyrin mixture **6** from the previous step, $PdCl_2(PPh_3)_2$ (4.2 mg, 5.9 µmol, 0.05 equiv) and NEt₃ (0.4 mL) were dissolved in dry 1,2 dichloroethane (10 mL) in a 20 mL microwave vial. The vial was sealed, and the reaction mixture was degassed before pinacolborane (142 µL, 983 µmol, 8.33 equiv) was added via a syringe. The reaction mixture was stirred for 18 h at 90 °C under the exclusion of light. The solvent was removed under reduced pressure, and the crude product was subjected to column chromatography (SiO₂, hexanes/CH₂Cl₂ - 4:1 \rightarrow 2:1, Ø 7 x 25 cm, 3rd band). **PhBpin** was obtained in 55% yield over the two reaction steps (58 mg, 63 µmol).

¹H NMR (400 MHz, CD₂Cl₂, rt): δ [ppm]: 9.27 (d, *J* = 4.9 Hz, 1H), 9.21 (d, *J* = 4.9 Hz, 1H), 9.12 (d, *J* = 5.0 Hz, 1H), 8.45 (d, *J* = 4.9 Hz, 1H), 8.26 (d, *J* = 4.9 Hz, 2H), 7.97 (d, *J* = 1.7 Hz, 1H), 7.68 (s, 1H), 7.22 (d, *J* = 4.4 Hz, 4H), 7.04 (d, *J* = 1.6 Hz, 1H), 2.57 (s, 6H), 1.92 (s, 6H), 1.82 (s, 6H), 1.68 (s, 12H), 1.56 (s, 9H), 1.47 (s, 9H).


¹³C{¹H} NMR (151 MHz, CD₂Cl₂, rt): δ [ppm]: 153.88, 153.02, 150.91, 148.84, 147.77, 147.65, 147.17, 146.54, 145.26, 144.71, 144.17, 140.40, 139.16, 138.94, 138.27, 138.18, 137.42, 135.91, 134.52, 133.74, 133.46, 132.32, 131.38, 130.59, 128.12, 127.39, 126.27, 123.45, 121.50, 121.15, 117.85, 113.96, 85.51, 35.51, 35.32, 31.17, 29.01, 25.30, 21.53, 21.49, 21.46, 21.33.

UV/Vis (CH₂Cl₂): λ [nm] (ε [M⁻¹cm⁻¹]): 377 (39000),437 (93000), 572 (9000), 620 (6000)

HRMS (MALDI, DCTB) for C₅₈H₆₁BN₄NiO₂ (M⁺), calcd.: 914.4236, found: 914.4235.

TLC: R_f [%]: 0.40 (hexanes/CH₂Cl₂ 2:1).

2.2 Synthesis of Pyrene-Fused Porphyrin-Precursor

Scheme S2. Synthesis of pyrene-fused porphyrin building block PyrBpin. Ar = mesityl.

Nickel-5,15-Dimesityl-10-(2-tert-butyl-Pyrene)-Porphyrin 8

Nickel-5,15-Dimesityl-10-Bromoporphyrin **3** (160 mg, 235 µmol, 1 equiv), 2-(7-(*tert*-butyl)pyren-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane **7*** (108 mg, 281 µmol, 1.2 equiv), Cs₂CO₃ (229 mg, 704 µmol, 3 equiv) and Pd(PPh₃)₄ (54 mg, 47 µmol, 0.2 equiv) were dissolved in toluene (12 mL) and DMF (6 mL) and were degassed. The reaction mixture was heated to 90 °C for 18 h. After cooling to rt, the solvent was removed under reduced pressure, and the crude was subjected to silica plug filtration (hexanes/CH₂Cl₂ - 1:1, Ø 3 x 12 cm). The product **8** was obtained in 96% yield (194 mg, 226 µmol).

¹H NMR (400 MHz, CDCl₃, rt): δ [ppm]: 9.83 (s, 1H), 9.12 (d, *J* = 4.7 Hz, 2H), 8.85 (s, 2H), 8.76 (d, *J* = 4.8 Hz, 2H), 8.68 (d, *J* = 4.9 Hz, 2H), 8.64 (d, *J* = 4.9 Hz, 2H), 8.36 (s, 2H), 8.23 (d, *J* = 9.0 Hz, 2H), 8.17 (d, *J* = 9.0 Hz, 2H), 7.23 (s, 4H), 2.58 (s, 6H), 1.83 (s, 12H), 1.67 (s, 9H).

¹³C{¹H} NMR (101 MHz, CDCl₃, rt): δ [ppm]: 149.43, 143.14, 142.98, 142.75, 142.73, 139.04, 138.58, 137.68, 137.33, 132.74, 132.44, 131.44, 131.21, 130.94, 130.04, 129.26, 128.62, 127.74, 127.39, 124.01, 122.94, 122.65, 119.16, 117.23, 104.40, 35.35, 32.00, 21.39, 21.38.

UV/Vis (CH₂Cl₂): *λ* [nm] (*ε* [M⁻¹cm⁻¹]): 324 (38000), 339 (36000), 410 (254000), 521 (23000).

HRMS (MALDI, DCTB) for C₅₈H₄₈N₄Ni (M⁺), calcd.: 858.3227, found: 858.3236.

TLC: R_f [%]: 0.70 (hexanes/CH₂Cl₂ 3:1).

*Synthesized according to [3]

Nickel-5,15-Dimesityl-10-(2-tert-butyl-Pyrene)-20-Bromoporphyrin 9

To a solution of CHCl₃ (20 mL), pyridine (300 μ L) and Nickel-5,15-Dimesityl-10-(2-*tert*butyl-pyrene)-porphyrin **8** (192 mg, 223 μ mol, 1 equiv) NBS (43 mg, 223 μ mol, 1 equiv) in CHCl₃ (4.5 mL) was added slowly at rt. The mixture was stirred for 15 min at rt before the reaction was quenched with acetone (5 mL). The solvents were removed under reduced pressure, and the crude was purified by silica plug filtration (hexanes/CH₂Cl₂ - 1:1, Ø 3 x 12 cm). The product **9** was obtained as a dark-orange solid in 90% yield (189 mg, 201 μ mol)

¹H NMR (400 MHz, CDCl₃, rt): δ [ppm]: 9.50 (d, *J* = 4.9 Hz, 2H), 8.77 (s, 2H), 8.64 (d, *J* = 5.0 Hz, 2H), 8.57 (d, *J* = 4.9 Hz, 2H), 8.51 (d, *J* = 4.9 Hz, 2H), 8.33 (s, 2H), 8.22 (d, *J* = 9.0 Hz, 2H), 8.16 (d, *J* = 8.9 Hz, 2H), 7.19 (s, 4H), 2.54 (s, 6H), 1.80 (s, 12H), 1.63 (s, 9H).

¹³C{¹H} NMR (101 MHz, CDCl₃, rt): δ [ppm]: 143.75, 143.15, 142.77, 142.51, 138.95, 138.00, 137.85, 136.86, 133.46, 133.19, 132.23, 131.59, 131.20, 129.89, 129.36, 128.70, 127.79, 127.33, 122.72, 118.13, 32.00, 21.38, 21.33.

UV/Vis (CH₂Cl₂): *λ* [nm] (*ε* [M⁻¹cm⁻¹]): 324 (34000), 339 (35000), 420 (281000), 531 (22000).

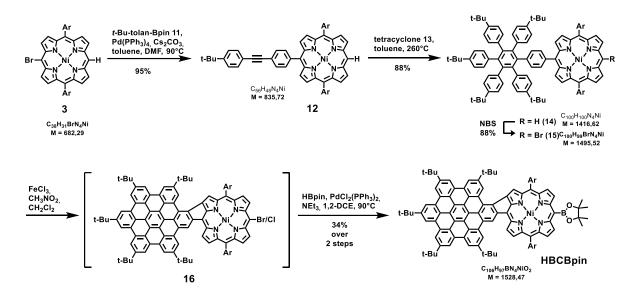
HRMS (MALDI, DCTB) for C₅₈H₄₇BrN₄Ni (M⁺), calcd.: 936.2332, found: 936.2340.

TLC: R_f [%]: 0.75 (hexanes/CH₂Cl₂ 3:1).

Fused Nickel-5,15-Dimesityl-10-(2-*tert*-butyl-Pyrene)-20-Boronic-Ester-Porphyrin PyrBpin

A 20 mL vial was filled with a solution of Nickel-5,15-Dimesityl-10-(2-tert-butyl-pyrene)-20-Bromoporphyrin 9 (40 mg, 43 µmol, 1 equiv) in CH₂Cl₂ (15 mL) and cooled with an ice bath. The solution was degassed (bubbling N₂ through the solution for 15 min). The N_2 flow through the solution was increased, and a solution of dry FeCl₃ (55 mg, 341 µmol, 8 equiv) in CH₃NO₂ (0.5 mL) was added. The N₂ bubbling through the solution was stopped 15 min after FeCl₃ was added, and the solution was stirred under slow warming to rt for 1 h. MeOH (10 mL) was added to quench the reaction. After adding NEt₃ (1 mL), the solvent was removed, and the crude was purified by filtration through silica (SiO₂, hexanes/ CH₂Cl₂ - 1:1, Ø 3 x 12 cm). The obtained dark-brown solid was used in the next step without further purification. The porphyrin mixture 10 from the previous step, PdCl₂(PPh₃)₂ (1.5 mg, 2.2 µmol, 0.05 equiv) and NEt₃ (0.2 mL) were dissolved in dry 1,2 dichloroethane (5 mL) in a 20 mL microwave vial. The vial was sealed, and the reaction mixture was degassed before pinacolborane (52 μ L, 358 µmol, 8.33 equiv) was added via a syringe. The reaction mixture was stirred for 4 h at 90 °C under the exclusion of light. The solvent was removed under reduced pressure, and the crude product was subjected to column chromatography (SiO₂, hexanes/CH₂Cl₂ - 4:1 \rightarrow 2:1, Ø 7 x 25 cm). **PyrBpin** was obtained in 43% yield over the two reaction steps (18 mg, 18 µmol).

¹H NMR (601 MHz, CD₂Cl₂, rt): δ [ppm]: 9.31 - 9.30 (m, 1H), 9.25 - 9.23 (m, 1H), 9.19 - 9.18 (m, 1H), 8.65 - 8.63 (m, 1H), 8.49 (d, *J* = 4.8 Hz, 1H), 8.28 - 8.26 (m, 2H), 8.11 - 8.09 (m, 1H), 8.05 (m, 1H), 8.02 (m, 1H), 7.98 - 7.95 (m, 1H), 7.92 - 7.89 (m, 2H), 7.88 - 7.85 (m, 1H), 7.27 (s, 2H), 7.24 (s, 2H), 2.61 (s, 3H), 2.58 (s, 3H), 1.97 (s, 6H), 1.84 (s, 6H), 1.69 (s, 9H), 1.55 (s, 12H).


¹³C{¹H} NMR (151 MHz, CD₂Cl₂, rt): δ [ppm]: 155.66, 150.01, 147.90, 147.57, 147.48, 147.40, 145.73, 145.23, 144.64, 141.27, 139.15, 139.01, 138.35, 138.23, 137.37, 136.06, 134.62, 133.84, 133.06, 132.89, 132.34, 131.77, 131.52, 130.73, 129.44, 128.24, 128.19, 128.14, 127.73, 127.48, 126.53, 124.82, 124.62, 123.86, 123.59, 122.01, 121.87, 118.28, 114.01, 31.79, 30.04, 30.01, 25.28, 23.06, 21.53, 21.49, 21.34, 21.11, 14.24.

UV/Vis (CH₂Cl₂): *λ* [nm] (*ε* [M⁻¹cm⁻¹]): 338 (30000), 401 (47000), 474 (71000), 498 (74000), 586 (10000), 634 (7000).

HRMS (MALDI, DCTB) for C₆₄H₅₇BN₄NiO₂ (M⁺), calcd.: 982.3923, found: 982.3935.

TLC: R_f [%]: 0.25 (hexanes/CH₂Cl₂ 3:1).

2.3 Synthesis of HBC-Fused Porphyrin-Precursor

Scheme S3. Synthesis of HBC-fused porphyrin building block HBCBpin. Ar = mesityl.

Nickel-5,15-Dimesityl-10-(tert-butyl-Tolane)-Porphyrin 12

Nickel-5,15-Dimesityl-10-Bromoporphyrin **3** (277 mg, 406 μ mol, 1 equiv), 2-(4-((4-(*tert*-butyl)phenyl)ethynyl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane **11*** (175 mg, 487 μ mol, 1.2 equiv), Cs₂CO₃ (398 mg, 1.22 mmol, 3 equiv) and Pd(PPh₃)₄ (94 mg, 81 μ mol, 0.2 equiv) were dissolved in toluene (24 mL) and DMF (12 mL) and were degassed. The reaction mixture was heated to 90 °C for 18 h. After cooling to rt, the solvent was removed under reduced pressure, and the crude was subjected to silica plug filtration (hexanes/CH₂Cl₂ - 1:1, Ø 3 x 12 cm). The product **12** was obtained in 95% yield (322 mg, 386 μ mol).

¹H NMR (400 MHz, CDCl₃, rt): δ [ppm]: 9.80 (s, 1H), 9.10 (d, *J* = 4.7 Hz, 2H), 8.76 - 8.72 (m, 4H), 8.66 (d, *J* = 4.9 Hz, 2H), 8.06 - 8.02 (m, 2H), 7.86 - 7.82 (m, 2H), 7.61 - 7.57 (m, 2H), 7.45 - 7.43 (m, 2H), 7.23 (s, 4H), 2.59 (s, 6H), 1.80 (s, 12H), 1.36 (s, 9H).

¹³C{¹H} NMR (101 MHz, CDCl₃, rt): δ [ppm]: 151.73, 142.97, 142.71, 142.30, 141.20, 139.04, 137.72, 137.27, 133.71, 133.04, 132.49, 132.11, 131.47, 131.22, 131.04, 129.96, 127.76, 125.45, 125.32, 122.92, 120.24, 118.19, 117.18, 116.37, 104.42, 90.57, 88.70, 31.22, 31.18, 21.41, 21.35.

UV/Vis (CH₂Cl₂): λ [nm] (ε [M⁻¹cm⁻¹]): 291 (44000), 408 (235000), 521 (17000).

HRMS (MALDI, DCTB) for C₅₆H₄₈N₄Ni (M⁺), calcd.: 834.3227, found:834.3244.

TLC: R_f [%]: 0.70 (hexanes/CH₂Cl₂ 2:1).

*Synthesized according to [4]

Nickel-5-15-Dimesityl-10-HAB-Porphyrin 14

A pressure tube was charged with tetracyclone 13^* (874 mg, 1.44 mmol, 4 equiv), 12 (300 mg, 359 µmol, 1 equiv) and Ph₂O (2 mL). The mixture was heated for 28 h at 220 °C. After removal of the solvent, the residue was dissolved in CH₂Cl₂ (10 mL), and the product was precipitated via the addition of MeOH (50 mL). The precipitate was filtered off and dried *in vacuo*. **11** was obtained as a red-brown solid in 88% yield (448 mg, 316 µmol).

¹H NMR (400 MHz, CDCl₃, rt): δ [ppm]: 9.74 (s, 1H), 9.05 (d, *J* = 4.7 Hz, 2H), 8.66 (d, *J* = 4.7 Hz, 2H), 8.48 (d, *J* = 4.9 Hz, 2H), 8.37 (d, *J* = 4.9 Hz, 2H), 7.50 - 7.46 (m, 2H), 7.21 (s, 4H), 7.11 - 7.03 (m, 6H), 6.96 - 6.92 (m, 4H), 6.90 - 6.83 (m, 6H), 6.82 - 6.77 (m, 6H), 2.59 (s, 6H), 1.74 (s, 12H), 1.22 (s, 18H), 1.13 (s, 18H), 1.12 (s, 9H).

¹³C{¹H} NMR (101 MHz, CDCl₃, rt): δ [ppm]: 148.01, 147.55, 147.50, 142.76, 142.54, 142.50, 142.43, 141.05, 140.77, 140.52, 140.32, 140.15, 139.03, 138.08, 137.90, 137.85, 137.59, 137.45, 137.26, 132.43, 132.22, 131.70, 131.41, 131.28, 131.16, 131.13, 130.64, 129.75, 129.64, 129.07, 127.64, 124.89, 124.55, 123.40, 123.15, 123.13, 119.14, 116.84, 34.25, 34.10, 34.08, 31.35, 31.22, 21.42, 21.26.

UV/Vis (CH₂Cl₂): λ [nm] (ε [M⁻¹cm⁻¹]): 408 (20000), 521 (17000).

HRMS (MALDI, DCTB) for C₁₀₀H₁₀₀N₄Ni (M⁺), calcd.: 1414.7296, found: 1414.7270.

TLC: R_f [%]: 0.60 (hexanes/CH₂Cl₂ 2:1).

*Synthesized according to [5]

Nickel-5-15-Dimesityl-10-HAB-20-Bromoporphyrin 15

To a solution of CHCl₃ (30 mL), pyridine (720 μ L) and Nickel-5-15-Dimesityl-10-HABporphyrin **14** (475 mg, 335 μ mol) NBS (60 mg, 335 μ mol) in CHCl₃ (5 mL) was added slowly at rt. The mixture was stirred for 15 min at rt before the reaction was quenched with acetone (5 mL). The solvents were removed under reduced pressure, and the crude was purified by silica plug filtration (hexanes/CH₂Cl₂ - 1:1, Ø 3 x 12 cm). The product **15** was obtained as a dark-orange solid in 88% yield (441 mg, 295 μ mol)

¹H NMR (400 MHz, CDCl₃, rt): δ [ppm]: 9.43 (d, *J* = 5.0 Hz, 2H), 8.56 (d, *J* = 4.9 Hz, 2H), 8.38 (d, *J* = 4.9 Hz, 2H), 8.28 (d, *J* = 4.9 Hz, 2H), 7.45 - 7.40 (m, 2H), 7.21 - 7.17 (m, 4H), 7.10 - 7.06 (m, 2H), 7.06 - 7.02 (m, 4H), 6.95 - 6.91 (m, 4H), 6.89 - 6.84 (m, 6H), 6.80 - 6.74 (m, 6H), 2.57 (s, 6H), 1.75 (s, 12H), 1.21 (s, 18H), 1.13 (s, 18H), 1.12 (s, 9H).

¹³C{¹H} NMR (101 MHz, CDCl₃, rt): δ [ppm]: 148.00, 147.58, 147.52, 143.15, 142.85, 142.50, 142.26, 141.22, 140.81, 140.53, 140.28, 140.05, 138.93, 138.06, 137.87, 137.81, 137.77, 136.87, 136.77, 133.26, 132.89, 132.08, 131.57, 131.39, 131.30, 131.15, 131.11, 129.88, 127.69, 123.39, 123.16, 123.13, 119.33, 117.75, 34.25, 34.10, 34.08, 31.34, 31.22, 21.41, 21.23.

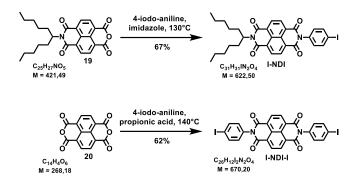
UV/Vis (CH₂Cl₂): λ [nm] (ε [M⁻¹cm⁻¹]): 417 (256000), 531 (22000).

HRMS (MALDI, DCTB) for C₁₀₀H₉₉BrN₄Ni (M⁺), calcd.: 1492.6401, found: 1492.6404.

TLC: R_f [%]: 0.60 (hexanes/CH₂Cl₂ 2:1).

Fused Nickel-5-15-Dimesityl-10-HBC-20-Boronic-Ester-Porphyrin HBCBpin

A 20 mL vial was filled with a solution of Nickel-5-15-Dimesityl-10-HAB-20bromoporphyrin **15** (100 mg, 67 μ mol, 1 equiv) in CH₂Cl₂ (20 mL) and cooled with an ice bath. The solution was degassed (bubbling N₂ through the solution for 15 min). The N₂ flow through the solution was increased, and a solution of dry FeCl₃ (325 mg, 2.01 mmol, 30 equiv) in CH₃NO₂ (1 mL) was added. The N₂ bubbling through the solution was stopped 15 min after FeCl₃ was added, and the solution was stirred under slow warming to rt for 48 h. MeOH (10 mL) was added to quench the reaction. After adding NEt₃ (1 mL), the solvent was removed, and the crude was purified by filtration through silica (SiO₂, hexanes/ CH₂Cl₂ - 1:1, Ø 3 x 12 cm). The obtained dark-brown solid was used in the next step without further purification. The porphyrin mixture **16** from the previous step, PdCl₂(PPh₃)₂ (2.2 mg, 3.2 µmol, 0.05 equiv.) and NEt₃ (0.4 mL) were dissolved in dry 1,2 dichloroethane (10 mL) in a 20 mL microwave vial. The vial was sealed, and the reaction mixture was degassed before pinacolborane (77 µL, 529 µmol, 8.33 equiv) was added via a syringe. The reaction mixture was stirred for 18 h at 90 °C under the exclusion of light. The solvent was removed under reduced pressure, and the crude product was subjected to column chromatography (SiO₂, hexanes/CH₂Cl₂ - 4:1 \rightarrow 2:1, Ø 7 x 35 cm). **HBCBpin** was obtained in 34% yield over the two reaction steps (35 mg, 23 µmol).


¹H NMR (601 MHz, CD₂Cl₂, rt): δ [ppm]: 9.84 - 9.76 (m, 3H), 9.61 (d, *J* = 4.9 Hz, 1H), 9.41 (s, 1H), 9.36 - 9.33 (m, 5H), 9.29 (d, *J* = 4.8 Hz, 1H), 9.28 - 9.27 (m, 1H), 9.25 -9.22 (m, 2H), 8.65 (d, *J* = 4.8 Hz, 1H), 8.42 (s, 1H), 8.34 - 8.33 (m, 2H), 7.29 (s, 2H), 7.24 (s, 2H), 2.62 (s, 3H), 2.60 (s, 3H), 1.96 (s, 6H), 1.92 - 1.90 (m, 15H), 1.84 (s, 18H), 1.71 (s, 9H), 1.58 (s, 9H).

¹³C{¹H} NMR (151 MHz, CD₂Cl₂, rt): δ [ppm]: 155.50, 149.96, 149.85, 149.56, 149.25, 149.23, 148.26, 147.87, 146.87, 145.72, 145.12, 144.70, 140.94, 139.20, 138.76, 138.40, 138.35, 137.41, 135.93, 134.72, 134.09, 133.92, 132.66, 131.70, 131.50, 131.06, 131.05, 130.93, 130.85, 130.83, 130.73, 130.64, 130.45, 130.42, 128.66, 128.52, 128.18, 127.35, 125.09, 124.18, 124.12, 124.05, 123.89, 123.75, 123.05, 122.36, 121.70, 121.29, 121.24, 121.21, 121.13, 120.98, 120.68, 119.74, 119.67, 119.64, 119.59, 119.56, 119.47, 119.43, 119.37, 118.53, 113.71, 54.16, 36.05, 32.35, 32.06, 30.05, 25.31, 21.60, 21.39.

UV/Vis (CH₂Cl₂): *λ* [nm] (*ε* [M⁻¹cm⁻¹]): 379 (84000), 437 (64000), 509 (83000), 594 (14000), 641 (11000).

HRMS (MALDI, DCTB) for C₁₀₆H₉₇BN₄NiO₂ (M⁺), calcd.: 1526.7053, found: 1562.7027.

TLC: R_f [%]: 0.40 (hexanes/CH₂Cl₂ 3:1).

2.4 Synthesis of Naphthalene- and Perylenediimides

Scheme S4. Synthesis of halogenated naphthalenediimides.

Iodo-Phenyl-Naphthalenediimide I-NDI

To a 20 mL microwave vial, naphthalenemonoimide **19**^{*} (100 mg, 237 µmol), 4-iodoaniline (78 mg, 356 µmol, 1.5 equiv) and imidazole (1.00 g) were added, and the vial was sealed and evacuated and refilled with nitrogen three times. Then, the reaction mixture was heated to 130 °C. When the imidazole was fully molten, the reaction mixture was stirred at 130 °C for 2 h. Following, aqueous HCl (2M, 15 mL) was added, and the reaction was stirred at room temperature overnight. Then, the formed precipitate was collected *via* filtration, and the solid residue was washed with H₂O until neutrality and dried *in vacuo*, yielding the desired **I-NDI** as a beige solid (99 mg, 159 µmol, 67%).

¹H NMR (400 MHz, CDCl₃, rt): δ [ppm]: 8.85 - 8.72 (m, 4H), 7.95 - 7.86 (m, 2H), 7.12 - 7.02 (m, 2H), 5.22 - 5.12 (m, 1H), 2.28 - 2.15 (m, 2H), 1.93 - 1.80 (m, 2H), 1.37 - 1.17 (m, 12H), 0.84 (t, *J* = 6.8 Hz, 6H).

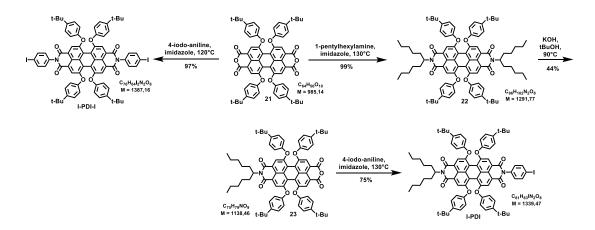
¹³C{¹H} NMR (101 MHz, CDCl₃, rt): δ [ppm]: 163.01, 138.93, 134.48, 131.64, 130.59, 127.16, 126.37, 95.12, 55.50, 32.36, 31.79, 26.71, 22.66, 14.14.

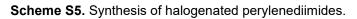
UV/Vis (CH₂Cl₂): *λ* [nm] (*ε* [M⁻¹cm⁻¹]): 343 (14000), 360 (26000), 381 (27000).

HRMS (APPI) for C₃₁H₃₂IN₂O₄ [M+H]⁺, calcd.: 623.1401, found: 623.1433.

*Synthesized according to [6]

Bis-Iodo-Phenyl-Naphthalenediimide I-NDI-I


Adapting a procedure from Spitler *et al.*,^[7] in a 20 mL microwave vial, naphthalenetetracarboxylic dianhydride **20** (268 mg, 1.00 mmol, 1 equiv) and 4-iodo-aniline (948 mg, 4.32 mmol, 4.32 equiv) were dissolved in propionic acid (16 mL) under nitrogen atmosphere and stirred for 48 h at 140 °C. After cooling to room temperature, the then-formed precipitate was collected by filtration, and the crude product was washed with MeOH (3 x 10 mL) and hexane (20 mL) and dried *in vacuo*, yielding the desired **I-NDI-I** as a beige powder (423 mg, 623 µmol, 62%).


¹H NMR (400 MHz, DMSO-d6, rt): δ [ppm]: 8.72 (s, 4H), 7.96 - 7.91 (m, 4H), 7.33 - 7.26 (m, 4H).

¹³C{¹H} NMR (101 MHz, CDCl₃, rt): δ [ppm]: The poor solubility of the compound precluded the acquisition of a ¹³C-NMR spectrum.

UV/Vis (CH₂Cl₂): λ [nm] (ε [M⁻¹cm⁻¹]): 343 (16000), 359 (26000), 380 (29000).

HRMS (APPI) for C₂₆H₁₃I₂N₂O₄ [M+H]⁺, calcd.: 670.8959, found: 670.8969.

Tetra-(tert-butyl-phenoxy)perylenediimide 22

In a 20 mL microwave vial, perylenebisanhydride **21**^{*} (100 mg, 101 μ mol, 1 equiv), 1-pentylhexylamine (86.5 mg, 505 μ mol, 5 equiv) and Imidazole (1.00 g) were added and the vial was evacuated and refilled with nitrogen three times. Then, the reaction mixture was headed to 130 °C and was stirred once the imidazole was molten for 4 h. Subsequently, aqueous HCI (1M, 10 mL) was added, and the reaction was stirred at room temperature overnight. The formed precipitate was collected by filtration and washed with water until neutrality. Drying *in vacuo* yielded the desired perylenediimide **22** as a red solid (130 mg, 100 μ mol, 99%).

¹H NMR (400 MHz, CDCl₃, rt): δ [ppm]: 8.21 (d, *J* = 10.9 Hz, 4H), 7.25 - 7.20 (m, 8H), 6.90 - 6.79 (m, 8H), 5.13 - 5.03 (m, 2H), 2.21 - 2.04 (m, 4H), 1.85 - 1.70 (m, 4H), 1.29 (s, 36H), 1.27 - 1.13 (m, 24H), 0.85 - 0.73 (m, 12H).

¹³C{¹H} NMR (101 MHz, CDCl₃, rt): δ [ppm]: 156.08, 152.96, 147.34, 133.01, 126.79, 122.48, 120.50, 120.36, 120.32, 119.86, 54.87, 34.51, 32.56, 31.88, 31.62, 26.77, 22.69, 14.18.

HRMS (APPI) for C₈₆H₁₀₂N₂O₈ [M+H]⁺, calcd.: 1291.7709, found: 1291.7716.

*Synthesized according to [8]

Tetra-(tert-butyl-phenoxy)perylenemonoimide 23

In a 100 mL round-bottom flask equipped with a condenser, perylenediimide **22** (124 g, 96 µmol, 1 equiv) and KOH (16.2 mg, 288 µmol, 3 equiv) were dissolved in tBuOH (15 mL). The reaction mixture was stirred at 90 °C for 3 h. Following, the mixture was allowed to cool to room temperature, and subsequently, AcOH (3 mL) and aqueous HCI (1M, 15 mL) were added, and the mixture was stirred overnight. The formed precipitate was collected via filtration and washed with H₂O until neutrality. The obtained solid was further purified by silica gel plug filtration (SiO₂, hexanes/CH₂Cl₂ - 1:1 \rightarrow 1:2), eluting the desired product as the second fraction. Evaporation of the solvents afforded **23** as a red powder (48 mg, 42 µmol, 44%)

¹H NMR (400 MHz, CDCl₃, rt): δ [ppm]: 8.25 - 8.18 (m, 4H), 7.25 - 7.22 (m, 8H), 6.88 - 6.77 (m, 8H), 5.13 - 5.00 (m, 1H), 2.20 - 2.04 (m, 2H), 1.84 - 1.72 (m, 2H), 1.29 (s, 36H), 1.26 - 1.15 (m, 12H), 0.86 - 0.76 (m, 6H).

¹³C{¹H} NMR (101 MHz, CDCl₃, rt): δ [ppm]: 160.21, 156.81, 155.90, 152.78, 152.64, 147.85, 147.70, 133.31, 133.28, 126.96, 126.90, 122.46, 121.92, 121.74, 119.59, 119.44, 118.04, 77.48, 77.16, 76.84, 55.01, 34.55, 31.86, 31.60, 31.58, 26.77, 22.68, 14.17.

HRMS (APPI) for C₇₅H₇₉NO₉ [M+H]⁺, calcd.: 1138.5828, found: 1138.5814.

Tetra-(tert-butyl-phenoxy)-lodo-Phenyl-Perylenebisimide I-PDI

To a 20 mL sealable vial, perylenemonoimide **23** (45 mg, 40 µmol, 1 equiv), 4-iodoaniline (13 mg, 59 µmol, 1.5 eq.) and imidazole (500 mg) were added, and the reaction vessel was evacuated and refilled with nitrogen three times. After that, the reaction mixture was heated to 130 °C, until the imidazole was molten, and then the reaction mixture was stirred at that temperature for 3 h. Following, aqueous HCI (1M, 15 mL) was added, and the reaction was stirred at room temperature overnight. Then, the red precipitate was collected via filtration and washed with more aqueous HCI (1M, 10 mL) and subsequently with H₂O until neutrality. The crude product was further purified by a silica plug filtration (SiO₂, hexanes/CH₂Cl₂ - 1:1), yielding the perylenediimide **I-PDI** as a dark purple solid (40 mg, 29.9 µmol, 75%)

¹H NMR (400 MHz, CDCl₃, rt): δ [ppm]: 8.17 (s, 1H), 8.13 - 8.04 (m, 1H), 7.87 - 7.81 (m, 2H), 7.31 - 7.22 (m, 8H), 7.06 - 6.99 (m, 2H), 6.88 - 6.80 (m, 8H), 5.09 - 5.02 (m, 1H), 2.19 - 2.07 (m, 2H), 1.81 - 1.68 (m, 2H), 1.30 (s, 18H), 1.28 (s, 18H), 1.27 - 1.19 (m, 12H), 0.84 - 0.77 (m, 6H).

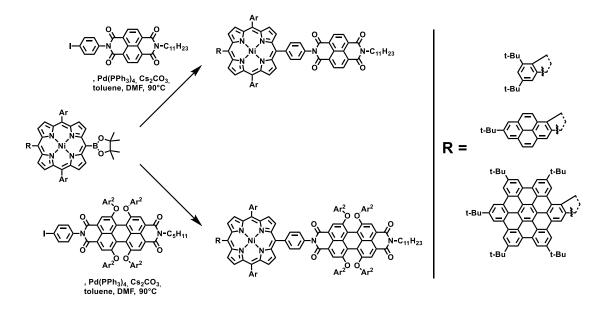
¹³C{¹H} NMR (101 MHz, CDCl₃, rt): δ [ppm]: 163.51, 156.38, 155.99, 153.00, 147.52, 147.48, 138.60, 135.12, 133.30, 132.96, 130.70, 126.85, 126.80, 122.18, 121.35, 120.46, 119.98, 119.74, 119.52, 119.45, 94.46, 54.93, 34.52, 34.50, 32.56, 31.88, 31.61, 31.56, 26.78, 22.69, 14.18.

UV/Vis (CH₂Cl₂): λ [nm] (ε [M⁻¹cm⁻¹]): 452 (15000), 542 (27000), 581 (44000).

HRMS (APPI) for C₈₁H₈₄IN₂O₈ [M+H]⁺, calcd.: 1339.5267, found: 1339.5282.

Tetra-(tert-butyl-phenoxy)-Bis-lodo-Phenyl-Perylenediimide I-PDI-I

Adapting a procedure from Schlosser *et al.*,^[9] to a 10 mL sealable vial, perylenebisanhydride **21** (40 mg, 41 µmol, 1 equiv), 4-iodo-aniline (177 mg, 8.12 mmol, 20 equiv), and imidazole (500 mg) were added, and the vessel was sealed and evacuated and refilled with nitrogen three times. Then, the reaction mixture was heated to 120 °C until the imidazole was molten and stirred at that temperature for 5 h. After that, aqueous HCI (2M, 7 mL) was added, and the mixture was stirred overnight at room temperature. Then, the formed precipitate was collected by filtration, and the solid residue was washed until neutrality. The crude product was then redissolved in DCM (50 mL), washed with aqueous HCI (2M, 2 x 100 mL) and H₂O (2 x 100 mL), and dried over MgSO₄. Removal of the solvent under reduced pressure gave the desired **I-PDI-I** as a dark purple powder (55 mg, 39.6 µmol, 97%)


¹H NMR (400 MHz, CDCl₃, rt): δ [ppm]: 8.23 (s, 4H), 7.84 - 7.80 (m, 4H), 7.25 - 7.20 (m, 8H), 7.02 - 6.97 (m, 4H), 6.86 - 6.82 (m, 8H), 1.27 (s, 36H).

¹³C{¹H} NMR (101 MHz, CDCl₃, rt): δ [ppm]: 163.46, 156.28, 152.88, 147.66, 138.62, 135.07, 133.26, 130.68, 126.86, 122.48, 120.98, 120.38, 119.86, 119.46, 94.52, 34.52, 31.56.

UV/Vis (CH₂Cl₂): *λ* [nm] (*ε* [M⁻¹cm⁻¹]): 454 (18000), 543 (31000), 583 (51000).

HRMS (MALDI, DCTB) for C₇₆H₆₄I₂N₂O₈ [M+H]⁺, calcd.: 1386.2752, found: 1386.2935.

2.5 Synthesis of Donor-Acceptor Dyads

Scheme S6. General scheme for the Synthesis of the D-A dyads. Ar = mesityl; $Ar^2 = 4-tBu$ -phenyl.

General Procedure for Synthesis of the D-A Dyads

Fused boronic-ester porphyrin, rylenediimide, Cs_2CO_3 , and $Pd(PPh_3)_4$ were dissolved in toluene and DMF and were degassed under sonication. The reaction mixture was heated to 90 °C for 18 h. After cooling to rt, the solvent was removed under reduced pressure, and the crude was subjected to silica plug filtration (hexanes/CH₂Cl₂ - 1:1, Ø 3 x 12 cm) to remove the inorganics. The crude was further purified by size exclusion chromatography (Biobeads SX1, toluene, Ø 5 x 120 cm). After filtration through silica (hexanes/CH₂Cl₂ - 1:1, Ø 3 x 12 cm), the product was obtained as a dark solid.

Phenyl-Fused-Porphyrin-Naphthalenediimide Ph-NDI

Phenyl-fused boronic-ester porphyrin **PhBpin** (13 mg, 14 μ mol, 1.05 equiv), 2-(4iodophenyl)-7-undecylbenzo[Imn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone **I-NDI** (8.3 mg, 13 μ mol, 1 equiv), Cs₂CO₃ (13 mg, 40 μ mol, 3 equiv), and Pd(PPh₃)₄ (3.1 mg, 2.7 μ mol, 0.2 equiv) were dissolved in toluene (2 mL) and DMF (1 mL) and the **General Procedure for Synthesis of the D-A Dyads** was followed. **Ph-NDI** was obtained in 41% yield (6.9 mg, 5.4 μ mol). ¹H NMR (601 MHz, CD₂Cl₂, rt): δ [ppm]: 9.12 - 9.10 (m, 1H), 8.88 (d, *J* = 7.5 Hz, 2H), 8.81 (s, 2H), 8.47 - 8.45 (m, 2H), 8.39 (d, *J* = 4.8 Hz, 1H), 8.21 (d, *J* = 4.9 Hz, 1H), 8.17 (d, *J* = 4.8 Hz, 1H), 8.16 - 8.12 (m, 2H), 7.97 (d, *J* = 1.9 Hz, 1H), 7.69 (s, 1H), 7.65 -7.60 (m, 2H), 7.25 - 7.18 (m, 4H), 7.04 (d, *J* = 1.7 Hz, 1H), 2.56 (m, 6H), 1.93 (s, 6H), 1.84 (s, 6H), 1.61 (s, 9H), 1.47 (s, 9H), 1.36 - 0.81 (m, 23H).

¹³C{¹H} NMR (151 MHz, CD₂Cl₂, rt): δ [ppm]: 163.63, 154.79, 153.17, 150.91, 148.66, 147.91, 146.55, 145.89, 144.85, 144.53, 143.65, 141.71, 141.21, 139.11, 138.88, 138.33, 138.23, 137.32, 135.78, 135.14, 134.35, 133.98, 133.37, 133.16, 131.59, 131.01, 130.80, 130.04, 128.15, 127.69, 127.48, 127.31, 126.96, 126.64, 123.29, 122.07, 121.33, 120.97, 118.26, 113.09, 35.52, 35.34, 32.60, 32.09, 31.17, 28.98, 26.94, 22.93, 21.51, 21.47, 21.33, 14.15.

UV/Vis (CH₂Cl₂): *λ* [nm] (*ε* [M⁻¹cm⁻¹]): 362 (43000), 381 (57000), 441 (92000), 571 (9000), 612 (5000).

HRMS (MALDI, DCTB) for C₈₃H₈₀N₆NiO₄ (M⁺), calcd.: 1282.5589, found: 1282.5566.

TLC: R_f [%]: 0.40 (hexanes/CH₂Cl₂ 1:1).

Phenyl-Fused-Porphyrin-Perylenediimide Ph-PDI

Phenyl-fused boronic-ester porphyrin **PhBpin** (10 mg, 11 μmol, 1.05 equiv), 5,6,12,13tetrakis(4-(*tert*-butyl)phenoxy)-2-(4-iodophenyl)-9-undecylanthra[2,1,9-def:6,5,10d'e'f']diisoquinoline-1,3,8,10(2H,9H)-tetraone **I-PDI** (14 mg, 13 μmol, 1 equiv), Cs₂CO₃ (10 mg, 31 μmol, 3 equiv) and Pd(PPh₃)₄ (2.4 mg, 2.1 μmol, 0.2 equiv) were dissolved in toluene (2 mL) and DMF (1 mL) and the **General Procedure for Synthesis of the D-A Dyads** was followed. **Ph-PDI** was obtained in 57% yield (12 mg, 5.9 μmol).

¹H NMR (601 MHz, CD₂Cl₂, rt): δ [ppm]: 9.10 (d, *J* = 5.1 Hz, 1H), 8.45 (d, *J* = 4.9 Hz, 1H), 8.40 (d, *J* = 4.9 Hz, 1H), 8.34 (d, *J* = 4.8 Hz, 1H), 8.30 (s, 2H), 8.16 (d, *J* = 4.9 Hz, 2H), 8.12 (d, *J* = 4.8 Hz, 2H), 8.08 - 8.05 (m, 2H), 7.97 (d, *J* = 1.6 Hz, 1H), 7.68 (s, 1H), 7.57 - 7.54 (m, 2H), 7.34 - 7.26 (m, 8H), 7.22 - 7.17 (m, 4H), 7.04 (d, *J* = 1.6 Hz, 1H), 6.94 - 6.85 (m, 8H), 2.55 (s, 6H), 1.91 (s, 6H), 1.81 (s, 6H), 1.56 (s, 9H), 1.47 (s, 9H), 1.32 (s, 18H), 1.30 (s, 18H), 1.28 - 0.81 (m, 23H).

¹³C{¹H} NMR (601 MHz, CD₂Cl₂, rt): δ [ppm]: 163.87, 156.54, 156.05, 154.73, 153.64, 153.12, 150.92, 148.60, 147.87, 147.81, 147.72, 146.49, 145.85, 144.82, 144.47, 143.68, 143.67, 141.27, 141.17, 139.09, 138.86, 138.29, 138.18, 137.32, 135.78, 135.65, 134.19, 133.93, 133.62, 133.37, 133.22, 133.16, 131.06, 130.73, 130.20, 129.98, 128.13, 128.12, 127.71, 127.25, 127.03, 126.60, 123.25, 122.95, 122.02, 121.64, 121.51, 120.94, 120.80, 120.41, 120.01, 119.74, 119.72, 119.45, 118.21, 113.01, 35.51, 35.33, 34.65, 34.63, 32.67, 32.12, 31.57, 31.56, 31.17, 30.05, 28.97, 27.53, 26.90, 22.94, 21.50, 21.45, 21.31.

UV/Vis (CH₂Cl₂): *λ* [nm] (*ε* [M⁻¹cm⁻¹]): 377 (37000), 441 (95000), 540 (34000), 580 (54000).

HRMS (MALDI, DCTB) for $C_{133}H_{132}N_6NiO_8$ (M⁺), calcd.: 1998.9455, found: 1998.9482.

TLC: R_f [%]: 0.70 (hexanes/CH₂Cl₂ 1:2).

Pyrene-Fused-Porphyrin-Naphthalenediimide Pyr-NDI

Pyrene-fused boronic-ester porphyrin **PyrBpin** (10 mg, 10 µmol, 1.05 equiv), 2-(4iodophenyl)-7-undecylbenzo[Imn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone **I-NDI** (6.0 mg, 9.7 µmol, 1 equiv), Cs₂CO₃ (9.5 mg, 29 µmol, 3 equiv) and Pd(PPh₃)₄ (2.3 mg, 1.9 µmol, 0.2 equiv) were dissolved in toluene (2 mL) and DMF (1 mL) and the **General Procedure for Synthesis of the D-A Dyads** was followed. **Pyr-NDI** was obtained in 34% yield (4.5 mg, 3.3 µmol).

¹H NMR (601 MHz, CD₂Cl₂, rt): δ [ppm]: 9.33 - 9.31 (m, 1H), 8.86 (d, *J* = 7.4 Hz, 2H), 8.80 (s, 2H), 8.67 (s, 1H), 8.52 (d, *J* = 4.9 Hz, 1H), 8.44 (d, *J* = 4.8 Hz, 1H), 8.38 (d, *J* = 4.7 Hz, 1H), 8.21 - 8.20 (m, 2H), 8.16 - 8.11 (m, 3H), 8.07 (d, *J* = 1.8 Hz, 1H), 8.04 (d, *J* = 1.7 Hz, 1H), 8.00 (d, *J* = 8.8 Hz, 1H), 7.95 (s, 1H), 7.95 - 7.92 (m, 1H), 7.91 -7.88 (m, 1H), 7.66 - 7.61 (m, 2H), 7.27 (s, 2H), 7.25 (s, 2H), 2.61 (s, 3H), 2.58 (s, 3H), 2.01 (s, 6H), 1.87 (s, 6H), 1.56 (s, 9H), 0.99 - 0.69 (m, 23H).

¹³C{¹H} NMR (151 MHz, CD₂Cl₂, rt): δ [ppm]: 164.27, 163.49, 163.05, 156.23, 149.77, 147.62, 147.23, 146.99, 146.06, 145.01, 144.76, 143.85, 143.79, 141.83, 141.35, 138.90, 138.75, 138.22, 138.10, 137.06, 135.71, 134.93, 134.21, 134.18, 133.20, 132.89, 132.26, 132.00, 131.49, 131.43, 131.41, 131.17, 130.78, 130.02, 129.31, 128.06, 128.01, 127.85, 127.54, 127.30, 127.20, 127.15, 127.09, 126.64, 126.58, 126.10, 124.62, 124.28, 123.79, 123.50, 122.44, 122.14, 121.68, 121.57, 118.54, 112.93, 35.23, 32.36, 32.16, 31.96, 31.62, 29.94, 29.90, 26.80, 22.96, 22.85, 21.43, 21.38, 21.28, 14.19, 14.11.

UV/Vis (CH₂Cl₂): *λ* [nm] (ε [M⁻¹cm⁻¹]): 357 (39000), 382 (47000), 400 (48000), 448 (53000), 474 (72000), 501 (75000), 586 (11000), 630 (7000), 684 (5000).

HRMS (MALDI, DCTB) for C₈₉H₇₆N₆NiO₄ (M⁺), calcd.: 1350.5276, found: 1350.5258. TLC: R_f [%]: 0.50 (hexanes/CH₂Cl₂ 1:2).

Pyrene-Fused-Porphyrin-Perylenediimide Pyr-PDI

Pyrene-fused boronic-ester porphyrin **PyrBpin** (10 mg, 11 µmol, 1.05 equiv), 5,6,12,13-tetrakis(4-(*tert*-butyl)phenoxy)-2-(4-iodophenyl)-9-undecylanthra[2,1,9-def:6,5,10-d'e'f']diisoquinoline-1,3,8,10(2H,9H)-tetraone **I-PDI** (13 mg, 9.7 µmol, 1 equiv), Cs_2CO_3 (9.5 mg, 29 µmol, 3 equiv) and $Pd(PPh_3)_4$ (2.3 mg, 1.9 µmol, 0.2 equiv) were dissolved in toluene (2 mL) and DMF (1 mL) and the **General Procedure for Synthesis of the D-A Dyads** was followed. **Ph-PDI** was obtained in 20% yield (4.0 mg, 1.9 µmol).

¹H NMR (601 MHz, CD₂Cl₂/CS₂, rt): δ [ppm]: 9.28 (d, *J* = 5.0 Hz, 1H), 8.62 (s, 1H), 8.52 (d, *J* = 4.8 Hz, 1H), 8.40 (d, *J* = 4.9 Hz, 1H), 8.35 (d, *J* = 4.7 Hz, 1H), 8.28 (s, 2H), 8.19 - 8.17 (m, 2H), 8.16 - 8.10 (m, 3H), 8.09 - 8.06 (m, 2H), 8.06 - 8.03 (m, 2H), 7.99 - 7.98 (m, 1H), 7.94 - 7.89 (m, 3H), 7.57 - 7.52 (m, 2H), 7.39 - 7.34 (m, 8H), 7.29 - 7.27 (m, 2H), 7.26 - 7.24 (m, 2H), 6.99 - 6.90 (m, 8H), 2.69 (s, 3H), 2.65 (s, 3H), 2.08 (s, 6H), 1.95 (s, 6H), 1.68 (s, 9H), 1.42 (m, 36H), 1.33 - 0.94 (m, 23H).

¹³C{¹H} NMR (151 MHz, CD₂Cl₂/CS₂, rt): δ [ppm]: 164.03, 163.05, 162.86, 156.48, 156.40, 156.00, 153.42, 153.23, 153.18, 149.37, 147.68, 147.61, 147.40, 147.32, 147.20, 146.03, 145.00, 144.70, 144.07, 143.97, 141.98, 141.09, 138.90, 138.77, 138.19, 137.98, 137.36, 136.01, 135.34, 134.05, 133.85, 133.56, 133.32, 133.20, 133.08, 132.75, 132.28, 131.76, 131.38, 130.92, 130.15, 129.49, 128.44, 128.41, 128.38, 128.24, 127.88, 127.77, 127.31, 127.06, 127.04, 126.42, 124.95, 124.71, 123.87, 123.82, 123.63, 123.07, 122.94, 122.41, 122.11, 121.98, 121.79, 121.43, 121.42, 120.63, 120.38, 120.32, 120.19, 120.16, 119.85, 119.77, 119.59, 118.57, 113.37, 35.20, 34.47, 32.75, 32.47, 32.05, 31.77, 31.77, 30.51, 27.21, 23.52, 22.02, 21.98, 21.91, 21.79, 14.80.

UV/Vis (CH₂Cl₂): *λ* [nm] (*ε* [M⁻¹cm⁻¹]): 400 (45000), 473 (69000), 501 (71000), 536 (37000), 583 (48000).

HRMS (MALDI, DCTB) for $C_{139}H_{128}N_6NiO_8$ (M⁺), calcd.: 2066.9142, found: 2066.9146.

TLC: R_f [%]: 0.55 (hexanes/CH₂Cl₂ 1:1).

HBC-Fused-Porphyrin-Naphthalenediimide HBC-NDI

HBC-fused boronic-ester porphyrin **HBCBpin** (10 mg, 6.5 μ mol, 1.05 equiv), 2-(4iodophenyl)-7-undecylbenzo[Imn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone **I-NDI** (3.9 mg, 6.2 μ mol, 1 equiv), Cs₂CO₃ (6.1 mg, 19 μ mol, 3 equiv) and Pd(PPh₃)₄ (1.5 mg, 1.3 μ mol, 0.2 equiv) were dissolved in toluene (2 mL) and DMF (1 mL) and the **General Procedure for Synthesis of the D-A Dyads** was followed. **HBC-NDI** was obtained in 40% yield (4.7 mg, 2.5 μ mol).

¹H NMR (601 MHz, CD₂Cl₂, rt): δ [ppm]: 9.82 - 9.81 (m, 2H), 9.61 (d, *J* = 5.0 Hz, 1H), 9.42 (s, 1H), 9.39 - 9.33 (m, 6H), 9.29 - 9.26 (m, 2H), 8.78 (d, *J* = 7.4 Hz, 2H), 8.72 (s, 2H), 8.68 (d, *J* = 4.8 Hz, 1H), 8.48 - 8.45 (m, 2H), 8.41 (d, *J* = 4.7 Hz, 1H), 8.29 - 8.27 (m, 2H), 8.14 - 8.10 (m, 2H), 7.59 - 7.55 (m, 2H), 7.30 (s, 2H), 7.25 (s, 2H), 2.62 (s, 3H), 2.59 (s, 3H), 2.00 (s, 6H), 1.94 (s, 6H), 1.92 (s, 9H), 1.86 - 1.81 (m, 27H), 1.60 (s, 9H).

¹³C{¹H} NMR (151 MHz, CD₂Cl₂, rt): δ [ppm]: 163.48, 156.35, 149.99, 149.88, 149.56, 149.24, 149.09, 146.87, 146.33, 145.37, 144.94, 144.40, 144.31, 141.76, 141.52, 139.18, 138.72, 138.48, 138.41, 137.35, 135.86, 135.13, 134.62, 134.27, 133.53, 133.38, 131.59, 131.46, 131.15, 131.13, 130.88, 130.85, 130.74, 130.63, 130.53, 130.43, 130.42, 130.19, 128.73, 128.33, 128.25, 127.72, 127.38, 127.27, 126.80, 125.08, 124.18, 124.11, 124.05, 123.89, 123.08, 122.99, 121.74, 121.24, 121.22, 121.18, 121.06, 120.91, 120.67, 119.79, 119.70, 119.64, 119.61, 119.57, 119.46, 119.40, 119.31, 119.04, 112.88, 32.36, 32.15, 32.07, 30.05, 26.94, 22.93, 21.62, 21.52, 21.50, 21.42, 14.14.

UV/Vis (CH₂Cl₂): *λ* [nm] (*ε* [M⁻¹cm⁻¹]): 362 (83000), 381 (100000), 439 (67000), 510 (90000), 592 (17000), 638 (11000).

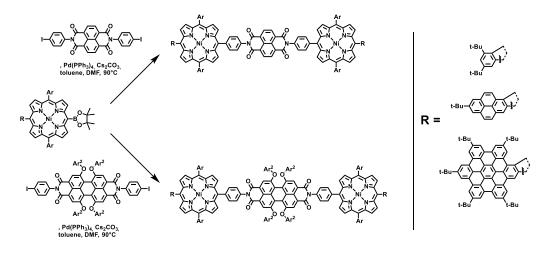
HRMS (MALDI, DCTB) for C₁₁₃H₁₁₆N₆NiO₄ (M⁺), calcd.: 1894.8406, found: 1894.8384.

TLC: R_f [%]: 0.40 (hexanes/CH₂Cl₂ 1:1).

HBC-Fused-Porphyrin-Perylenediimide HBC-PDI

HBC-fused boronic-ester porphyrin **HBCBpin** (10 mg, 6.5 μ mol, 1.05 equiv), 5,6,12,13-tetrakis(4-(*tert*-butyl)phenoxy)-2-(4-iodophenyl)-9-undecylanthra[2,1,9-def:6,5,10-d'e'f']diisoquinoline-1,3,8,10(2H,9H)-tetraone **I-PDI** (8.3 mg, 6.2 μ mol, 1 equiv), Cs₂CO₃ (6.1 mg, 19 μ mol, 3 equiv) and Pd(PPh₃)₄ (1.5 mg, 1.3 μ mol, 0.2 equiv) were dissolved in toluene (2 mL) and DMF (1 mL) and the **General Procedure for Synthesis of the D-A Dyads** was followed. **Ph-PDI** was obtained in 68% yield (11 mg, 4.4 μ mol).

¹H NMR (601 MHz, CD₂Cl₂, rt): δ [ppm]: 9.84 - 9.78 (m, 2H), 9.61 (d, *J* = 4.9 Hz, 1H), 9.41 (s, 1H), 9.39 - 9.32 (m, 6H), 9.28 (s, 1H), 9.25 (s, 1H), 8.67 (d, J = 4.7 Hz, 1H), 8.48 - 8.43 (m, 2H), 8.38 (d, *J* = 4.7 Hz, 1H), 8.32 (s, 2H), 8.25 - 8.22 (m, 2H), 8.19 -8.10 (m, 4H), 7.59 - 7.58 (m, 2H), 7.33 - 7.30 (m, 8H), 7.28 (s, 2H), 7.23 (s, 2H), 6.94 - 6.92 (m, 4H), 6.92 - 6.86 (m, 4H), 2.61 - 2.59 (m, 6H), 1.98 (s, 6H), 1.92 (s, 6H), 1.90 (s, 9H), 1.84 (s, 18H), 1.82 (s, 9H), 1.58 (s, 9H), 1.33 (s, 18H), 1.31 (s, 18H), 1.23 – 0.81 (m, 23H).


¹³C{¹H} NMR (151 MHz, CD₂Cl₂, rt): δ [ppm]: 163.89, 156.54, 156.32, 156.07, 153.66, 153.41, 149.96, 149.84, 149.59, 149.22, 149.07, 147.83, 147.74, 146.82, 146.30, 145.35, 144.88, 144.45, 144.35, 141.72, 141.21, 139.16, 138.70, 138.44, 138.38, 137.35, 135.86, 135.75, 134.56, 134.22, 133.64, 133.54, 133.41, 133.23, 131.60, 131.48, 131.16, 131.08, 130.90, 130.83, 130.73, 130.65, 130.49, 130.43, 130.19, 129.71, 128.70, 128.34, 128.23, 127.80, 127.23, 127.04, 125.10, 124.18, 124.07, 123.05, 122.97, 122.94, 121.91, 121.73, 121.67, 121.27, 121.25, 121.18, 121.09, 120.94, 120.83, 120.69, 120.44, 120.02, 119.76, 119.67, 119.65, 119.60, 119.56, 119.47, 119.43, 119.40, 119.28, 118.99, 112.84, 36.05, 34.64, 32.68, 32.35, 32.15, 32.07, 31.57, 30.06, 26.91, 22.94, 21.61, 21.51, 21.48, 21.40, 14.25, 14.17.

UV/Vis (CH₂Cl₂): *λ* [nm] (*ε* [M⁻¹cm⁻¹]): 380 (80000), 439 (70000), 511 (86000), 525 (88000), 584 (58000), 635 (11000).

HRMS (MALDI, DCTB) for C₁₈₁H₁₆₈N₆NiO₈ (M⁺), calcd.: 2611.2272, found: 2611.2258.

TLC: R_f [%]: 0.50 (hexanes/CH₂Cl₂ 3:1).

2.6 Synthesis of Donor-Acceptor-Donor Triads

Scheme S7. General scheme for the Synthesis of the D-A-D Triads. Ar = mesityl; $Ar^2 = 4-tBu$ -phenyl.

General Procedure for Synthesis of the D-A-D Triads

Fused boronic-ester porphyrin, rylenediimide, Cs_2CO_3 , and $Pd(PPh_3)_4$ were dissolved in toluene and DMF and were degassed under sonication. The reaction mixture was heated to 90 °C for 18 h. After cooling to rt, the solvent was removed under reduced pressure, and the crude was subjected to silica plug filtration (hexanes/CH₂Cl₂ - 1:1, Ø 3 x 12 cm) to remove the inorganics. The crude was further purified by size exclusion chromatography (Biobeads SX1, toluene, Ø 5 x 120 cm). After filtration through silica (hexanes/CH₂Cl₂ - 1:1, Ø 3 x 12 cm), the product was obtained as a dark solid.

Bis-(Phenyl-Fused-Porphyrin)-Naphthalenediimide Ph-NDI-Ph

Phenyl-fused boronic-ester porphyrin **PhBpin** (10 mg, 11 µmol, 2.1 equiv), 2,7-bis(4iodophenyl)benzo[Imn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone **I-NDI-I** (3.5 mg, 5.2 µmol, 1 equiv), Cs₂CO₃ (5.1 mg, 16 µmol, 3 equiv), and Pd(PPh₃)₄ (1.2 mg, 1.0 µmol, 0.2 equiv) were dissolved in toluene (2 mL) and DMF (1 mL) and the **General Procedure for Synthesis of the D-A-D Triads** was followed. **Ph-NDI-Ph** was obtained in 28% yield (2.9 mg, 1.5 µmol).

¹H NMR (601 MHz, CD₂Cl₂, rt): δ [ppm]: 9.12 (d, *J* = 5.0 Hz, 2H), 8.98 (s, 4H), 8.49 - 8.47 (m, 4H), 8.42 (d, *J* = 4.7 Hz, 2H), 8.23 (d, *J* = 4.9 Hz, 2H), 8.20 - 8.16 (m, 6H),

7.98 (d, *J* = 1.6 Hz, 2H), 7.70 (s, 2H), 7.69 - 7.66 (m, 4H), 7.25 - 7.21 (m, 8H), 7.05 (d, *J* = 1.6 Hz, 2H), 2.57 (m, 12H), 1.94 (s, 12H), 1.85 (s, 12H), 1.57 (s, 18H), 1.48 (s, 18H).

¹³C{¹H} NMR (151 MHz, CD₂Cl₂, rt): δ [ppm]: 163.53, 154.80, 153.18, 150.92, 148.68, 147.92, 146.57, 145.91, 144.86, 144.54, 143.66, 141.80, 141.22, 139.12, 138.89, 138.34, 138.24, 137.33, 135.79, 135.07, 134.40, 133.99, 133.38, 133.13, 131.79, 131.02, 130.83, 130.07, 128.16, 127.76, 127.70, 127.64, 127.33, 126.65, 123.30, 122.09, 121.32, 120.98, 118.28, 113.11, 35.52, 35.34, 32.29, 31.18, 30.05, 28.98, 21.52, 21.48, 21.34.

UV/Vis (CH₂Cl₂): λ [nm] (ε [M⁻¹cm⁻¹]): 380 (77000), 441 (149000), 571 (15000).

HRMS (MALDI, DCTB) for C₁₃₀H₁₁₀N₁₀Ni₂O₄ (M⁺), calcd.: 1990.7413, found: 1990.7429.

TLC: R_f [%]: 0.20 (hexanes/CH₂Cl₂ 1:2).

Bis-(Phenyl-Fused-Porphyrin)-Perylenediimide Ph-PDI-Ph

Phenyl-fused boronic-ester porphyrin **PhBpin** (10 mg, 11 µmol, 2.1 equiv), 5,6,12,13tetrakis(4-(*tert*-butyl)phenoxy)-2,9-bis(4-iodophenyl)anthra[2,1,9-def:6,5,10-

d'e'f']diisoquinoline-1,3,8,10(2H,9H)-tetraone I-PDI-I (7.2 mg, 5.2 μ mol, 1 equiv), Cs₂CO₃ (5.1 mg, 16 μ mol, 3 equiv), and Pd(PPh₃)₄ (1.2 mg, 1.0 μ mol, 0.2 equiv) were dissolved in toluene (2 mL) and DMF (1 mL) and the **General Procedure for Synthesis of the D-A-D Triads** was followed. **Ph-PDI-Ph** was obtained in 19% yield (2.7 mg, 1.0 μ mol).

¹H NMR (601 MHz, CD₂Cl₂, rt): δ [ppm]: 9.10 (d, *J* = 5.0 Hz, 2H), 8.45 (d, *J* = 4.8 Hz, 2H), 8.41 (d, *J* = 4.8 Hz, 2H), 8.36 - 8.32 (m, 6H), 8.17 (d, *J* = 4.8 Hz, 2H), 8.13 (d, *J* = 4.8 Hz, 2H), 8.09 - 8.06 (m, 4H), 7.97 (d, *J* = 1.6 Hz, 2H), 7.69 (s, 2H), 7.59 - 7.55 (m, 4H), 7.36 - 7.32 (m, 8H), 7.21 (d, *J* = 7.2 Hz, 8H), 7.04 (d, *J* = 1.6 Hz, 2H), 6.97 - 6.93 (m, 8H), 2.56 - 2.55 (m, 12H), 1.92 (s, 12H), 1.82 (s, 12H), 1.56 (s, 18H), 1.47 (s, 18H), 1.32 (s, 36H).

¹³C{¹H} NMR (151 MHz, CD₂Cl₂, rt): δ [ppm]: 163.87, 156.40, 154.74, 153.57, 153.13, 150.92, 148.61, 147.88, 147.85, 146.50, 145.86, 144.82, 144.48, 143.68, 141.31,

141.17, 139.09, 138.86, 138.29, 138.19, 137.33, 135.78, 135.63, 134.21, 133.94, 133.63, 133.37, 133.16, 131.06, 130.74, 129.99, 128.14, 127.72, 127.26, 127.07, 126.61, 123.26, 123.23, 122.03, 121.50, 121.38, 120.95, 120.72, 120.34, 119.57, 118.22, 113.02, 53.98, 31.57, 31.17, 28.98, 21.45, 21.32.

UV/Vis (CH₂Cl₂): λ [nm] (ε [M⁻¹cm⁻¹]) = 377 (80000), 441 (196000), 542 (50000), 582 (80000).

HRMS (MALDI, DCTB) for C₁₈₀H₁₆₂N₁₀Ni₂O₈ (M⁺), calcd: 2707.1278, found: 2707.1226.

TLC: R_f [%] = 0.20 (hexanes/CH₂Cl₂ 1:1).

Bis-(Pyrene-Fused-Porphyrin)-Naphthalenediimide Pyr-NDI-Pyr

Pyrene-fused boronic-ester porphyrin **PyrBpin** (10 mg, 10 µmol, 2.1 equiv), 2,7-bis(4iodophenyl)benzo[Imn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone **I-NDI-I** (3.2 mg, 4.8 µmol, 1 equiv), Cs₂CO₃ (4.7 mg, 14 µmol, 3 equiv), and Pd(PPh₃)₄ (1.1 mg, 1.0 µmol, 0.2 equiv) were dissolved in toluene (2 mL) and DMF (1 mL) and the **General Procedure for Synthesis of the D-A-D Triads** was followed. **Pyr-NDI-Pyr** was obtained in 21% yield (2.1 mg, 1.0 µmol).

¹H NMR (601 MHz, CD₂Cl₂/CS₂, rt): δ [ppm]: 9.28 (d, *J* = 4.9 Hz, 2H), 8.99 (s, 2H), 8.61 (s, 2H), 8.52 (d, *J* = 4.8 Hz, 2H), 8.43 (d, *J* = 4.7 Hz, 2H), 8.38 (s, 2H), 8.22 - 8.21 (m, 4H), 8.15 (s, 2H), 8.11 (s, 2H), 8.04 (s, 2H), 8.01 (s, 2H), 7.92 - 7.89 (m, 6H), 7.66 - 7.63 (m, 4H), 7.35 (s, 4H), 7.27 (s, 4H), 7.25 (s, 4H), 2.65 (s, 6H), 2.63 (s, 6H), 2.06 (s, 12H), 1.93 (s, 12H), 1.61 (s, 18H).

¹³C{¹H} NMR (151 MHz, CD₂Cl₂/CS₂, rt): δ [ppm]: 162.99, 156.69, 149.70, 147.89, 147.75, 147.43, 146.29, 145.26, 145.00, 144.16, 144.08, 142.19, 141.86, 139.07, 138.93, 138.40, 138.21, 136.10, 134.26, 134.20, 133.25, 132.80, 132.42, 131.89, 131.79, 131.09, 130.31, 129.62, 128.52, 128.45, 128.37, 128.04, 127.78, 127.65, 127.46, 126.56, 124.99, 124.81, 123.98, 123.74, 122.62, 122.26, 122.05, 121.64, 118.78, 113.56, 32.06, 30.45, 21.87, 21.74.

UV/Vis (CH₂Cl₂): *λ* [nm] (*ε* [M⁻¹cm⁻¹]) = 339 (49000), 402 (76000), 418 (76000), 475 (110000), 500 (109000), 586 (55000), 650 (15000).

HRMS (MALDI, DCTB) for $C_{142}H_{102}N_{10}Ni_2O_4$ (M⁺), calcd.: 2126.6787, found: 2126.6781.

TLC: R_f [%]: 0.60 (hexanes/CH₂Cl₂ 1:3).

Bis-(Pyrene-Fused-Porphyrin)-Perylenediimide Pyr-PDI-Pyr

Pyrene-fused boronic-ester porphyrin **PyrBpin** (10 mg, 10 µmol, 2.1 equiv), 5,6,12,13tetrakis(4-(*tert*-butyl)phenoxy)-2,9-bis(4-iodophenyl)anthra[2,1,9-def:6,5,10-

d'e'f']diisoquinoline-1,3,8,10(2H,9H)-tetraone I-PDI-I (6.7 mg, 4.8 μ mol, 1 equiv), Cs₂CO₃ (4.7 mg, 14 μ mol, 3 equiv), and Pd(PPh₃)₄ (1.1 mg, 1.0 μ mol, 0.2 equiv) were dissolved in toluene (2 mL) and DMF (1 mL) and the **General Procedure for Synthesis of the D-A-D Triads** was followed. **Pyr-PDI-Pyr** was obtained in 23% yield (3.0 mg, 1.1 μ mol).

¹H NMR (601 MHz, CD₂Cl₂, rt): δ [ppm]: 9.23 (d, *J* = 4.7 Hz, 2H), 8.56 (s, 2H), 8.48 (d, *J* = 4.8 Hz, 2H), 8.37 (d, *J* = 4.7 Hz, 2H), 8.31 (d, *J* = 4.7 Hz, 2H), 8.28 - 8.25 (m, 4H), 8.13 - 8.16 (m, 4H), 8.05 - 7.96 (m, 10H), 7.88 - 7.86 (m, 4H), 7.53 - 7.52 (m, 4H), 7.35 - 7.33 (m, 12H), 7.24 (s, 4H), 7.21 (s, 4H), 6.97 - 6.90 (m, 8H), 2.66 -2.58 (m 12H), 2.06 (s, 12H), 1.91 (s, 12H), 1.62 (s, 9H), 1.40 (s, 9H), 1.31 (s, 36H).

¹³C{¹H} NMR (101 MHz, CDCl₃, rt): δ [ppm]: 162.95, 156.65, 156.45, 153.44, 149.42, 147.88, 147.78, 147.60, 147.37, 146.14, 145.18, 144.83, 144.26, 144.13, 142.11, 141.24, 139.05, 138.88, 138.28, 138.05, 138.02, 137.67, 137.51, 136.17, 134.11, 133.89, 133.75, 133.40, 133.26, 132.92, 132.44, 131.97, 131.47, 131.04, 130.88, 130.26, 129.82, 129.67, 129.60, 128.77, 128.58, 128.55, 128.51, 128.36, 128.04, 127.92, 127.38, 127.21, 126.59, 125.09, 124.90, 123.94, 123.71, 123.44, 122.49, 122.18, 122.11, 121.89, 121.19, 120.64, 120.30, 119.86, 118.64, 113.54, 32.81, 32.21, 31.92, 30.61, 30.57, 30.29, 23.76, 22.17, 22.13, 22.02, 21.90.

UV/Vis (CH₂Cl₂): *λ* [nm] (*ε* [M⁻¹cm⁻¹]): 341 (63000), 400 (78000), 475 (109000), 502 (114000), 579 (30000).

HRMS (MALDI, DCTB) for C₁₉₂H₁₅₄N₁₀Ni₂O₈ (M⁺), calcd.: 2843.0652, found:2843.0636.

TLC: R_f [%]: 0.35 (hexanes/CH₂Cl₂ 1:1).

Bis-(HBC-Fused-Porphyrin)-Naphthalenediimide HBC-NDI-HBC

HBC-fused boronic-ester porphyrin **HBCBpin** (12 mg, 7.9 μ mol, 2.1 equiv), 2,7-bis(4iodophenyl)benzo[Imn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone **I-NDI-I** (2.5 mg, 3.7 μ mol, 1 equiv), Cs₂CO₃ (3.7 mg, 11 μ mol, 3 equiv), and Pd(PPh₃)₄ (0.9 mg, 0.8 μ mol, 0.2 equiv) were dissolved in toluene (2 mL) and DMF (1 mL) and the **General Procedure for Synthesis of the D-A-D Triads** was followed. **HBC-NDI-HBC** was obtained in 21% yield (2.5 mg, 0.8 μ mol).

¹H NMR (601 MHz, CD₂Cl₂/CS₂, rt): δ [ppm]: 9.75 - 9.71 (m, 4H), 9.53 (d, *J* = 5.0 Hz, 2H), 9.38 (s, 2H), 9.32 - 9.24 (m, 10H), 9.22 (s, 2H), 9.19 (s, 2H), 8.74 (s, 2H), 8.67 (d, *J* = 4.6 Hz, 2H), 8.42 (d, *J* = 4.6 Hz, 2H), 8.39 (s, 2H), 8.36 (d, *J* = 4.5 Hz, 2H), 8.25 - 8.24 (m, 4H), 8.03 (d, *J* = 7.5 Hz, 4H), 7.49 (d, *J* = 7.5 Hz, 4H), 7.33 (s, 4H), 7.28 (s, 4H), 7.25 (s, 4H), 2.73 - 2.66 (m, 12H), 2.06 (s, 12H), 2.01 - 1.99 (m, 30H), 1.92 (s, 18H), 1.89 (m, 36H), 1.65 (s, 18H).

¹³C{¹H} NMR (151 MHz, CD₂Cl₂/CS₂, rt): δ [ppm]: 162.25, 156.53, 149.76, 149.36, 149.24, 149.18, 148.70, 146.75, 146.16, 145.18, 144.74, 144.38, 144.30, 141.87, 141.60, 139.14, 138.76, 138.23, 138.22, 138.19, 138.14, 137.59, 136.10, 134.42, 133.91, 133.85, 131.73, 131.43, 131.39, 131.27, 131.15, 131.07, 130.97, 130.88, 130.76, 130.40, 130.37, 129.83, 128.92, 128.90, 128.79, 128.63, 127.82, 127.49, 127.32, 125.41, 124.51, 124.45, 124.39, 124.22, 124.05, 123.25, 123.23, 122.79, 121.72, 121.59, 121.50, 121.40, 121.36, 121.26, 121.20, 120.86, 119.76, 119.71, 119.63, 119.61, 119.48, 119.45, 118.95, 113.42, 53.98, 32.69, 32.59, 32.52, 32.47, 30.65, 28.09, 22.16, 22.04.

UV/Vis (CH₂Cl₂): *λ* [nm] (*ε* [M⁻¹cm⁻¹]): 380 (139000), 439 (100000), 511 (138000), 594 (28000), 638 (17000).

HRMS (MALDI, DCTB) for $C_{226}H_{182}N_{10}Ni_2O_8$ (M⁺), calcd.: 3215.3047, found: 3215.3004.

TLC: Rf [%]: 0.30 (CH₂Cl₂).

Bis-(HBC-Fused-Porphyrin)-Perylenediimide HBC-PDI-HBC

HBC-fused boronic-ester porphyrin **HBCBpin** (10 mg, 6.5 µmol, 2.1 equiv), 5,6,12,13-tetrakis(4-(*tert*-butyl)phenoxy)-2,9-bis(4-iodophenyl)anthra[2,1,9-def:6,5,10-

d'e'f']diisoquinoline-1,3,8,10(2H,9H)-tetraone I-PDI-I (4.3 mg, 3.1 μ mol, 1 equiv), Cs₂CO₃ (3.1 mg, 9.4 μ mol, 3 equiv), and Pd(PPh₃)₄ (0.7 mg, 0.6 μ mol, 0.2 equiv) were dissolved in toluene (2 mL) and DMF (1 mL) and the **General Procedure for Synthesis of the D-A-D Triads** was followed. HBC-PDI-HBC was obtained in 16% yield (2.0 mg, 0.5 μ mol).

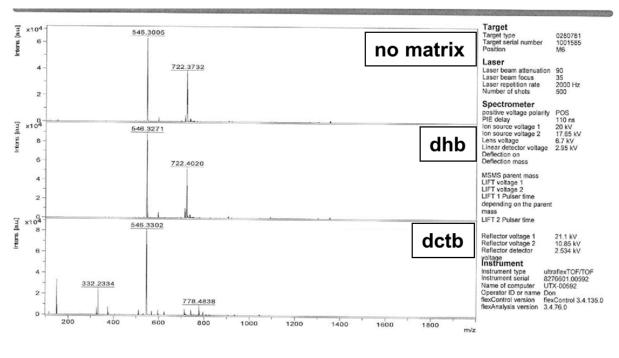
¹H NMR (601 MHz, CD₂Cl₂, rt): δ [ppm]: 9.77 - 9.73 (m, 4H), 9.54 (d, *J* = 4.9 Hz, 2H), 9.38 (s, 2H), 9.32 - 9.25 (m, 12H), 9.22 (s, 2H), 9.18 (s, 2H), 8.66 (d, *J* = 4.7 Hz, 2H), 8.42 (d, *J* = 4.7 Hz, 2H), 8.39 s 8.35 (m, 4H), 8.28 (s, 2H), 8.21 (d, *J* = 4.7 Hz, 2H), 8.09 - 8.06 (m, 4H), 7.56 - 7.55 (m, 4H), 7.41 - 7.30 (m, 12H), 7.26 - 7.23 (m, 8H), 6.98 - 6.92 (m, 8H), 2.66 - 2.64 (m, 12H), 2.04 (s, 12H), 1.97 (s, 21H), 1.91 - 1.89 (m, 45H), 1.62 (s, 18H), 1.41 (s, 18H).

¹³C{¹H} NMR (151 MHz, CD₂Cl₂, rt): δ [ppm]: 162.51, 156.08, 156.01, 152.99, 149.33, 148.89, 148.79, 148.72, 148.17, 147.13, 146.23, 145.68, 144.72, 144.22, 143.99, 143.89, 141.35, 140.77, 138.64, 138.25, 137.67, 137.63, 137.10, 135.61, 135.00, 133.88, 133.47, 133.38, 133.27, 132.96, 131.24, 131.11, 130.98, 130.71, 130.70, 130.57, 130.48, 130.46, 130.43, 130.40, 130.29, 130.13, 130.07, 128.37, 128.15, 128.07, 127.47, 126.80, 126.74, 126.70, 124.93, 124.03, 123.96, 123.91, 123.73, 123.51, 122.97, 122.73, 122.28, 121.39, 121.23, 121.09, 120.95, 120.83, 120.75, 120.39, 120.18, 119.80, 119.39, 119.25, 119.16, 119.11, 118.96, 118.43, 32.15, 32.05, 31.98, 31.95, 31.44, 21.65, 21.59, 21.47.

UV/Vis (CH₂Cl₂): *λ* [nm] (ε [M⁻¹cm⁻¹]): 380 (145000), 439 (121000), 511 (151000), 525 (150000), 589 (92000), 635 (22000).

HRMS (MALDI, DCTB) for C₂₇₆H₂₃₄N₁₀Ni₂O₈ (M⁺), calcd.: 3931.6913, found: 3931.6970.

TLC: R_f [%]: 0.80 (hexanes/CH₂Cl₂ 1:3).


3 Spectral Appendix

¹H NMR (400 MHz, CD₂Cl₂, rt)

Figure S1. ¹H and ¹³C NMR of 17.

MS (MALDI)

HRMS (MALDI)

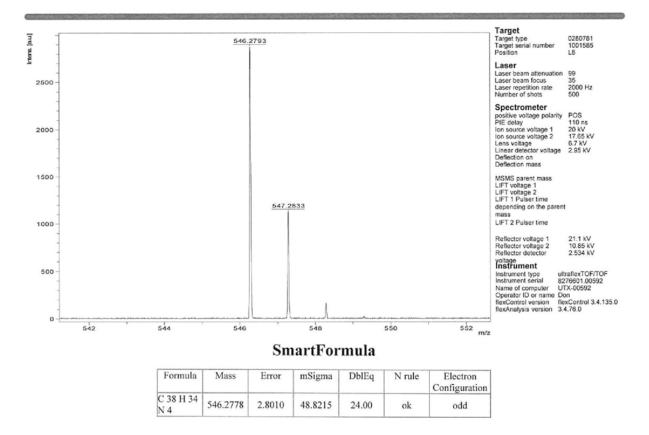


Figure S2. MS/HRMS (MALDI) of 17.

¹H NMR (400 MHz, CD₂Cl₂, rt)

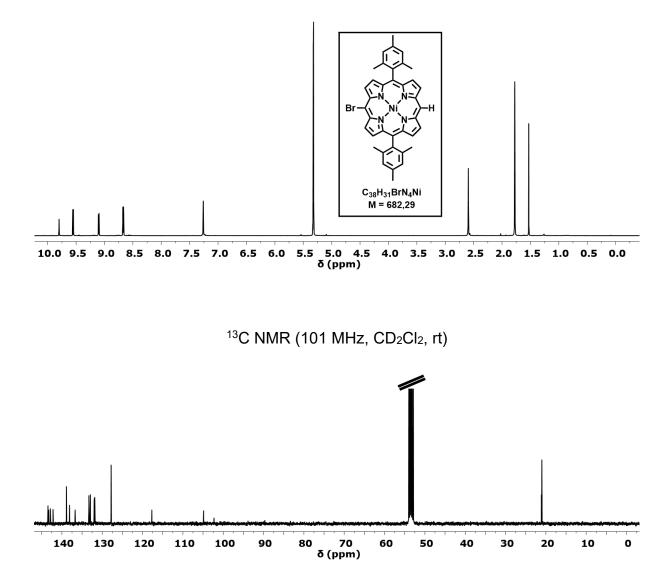
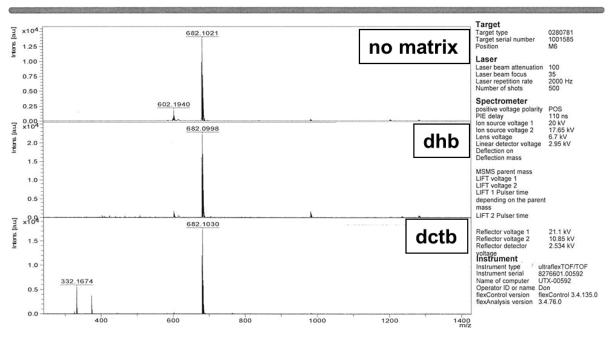



Figure S3. ¹H and ¹³C NMR of 3.

HRMS (MALDI)

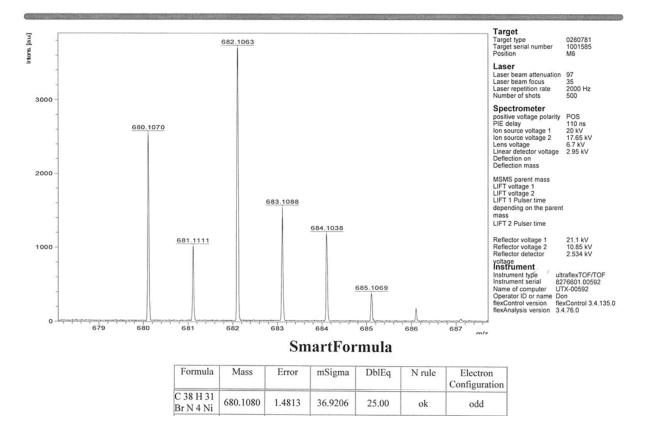
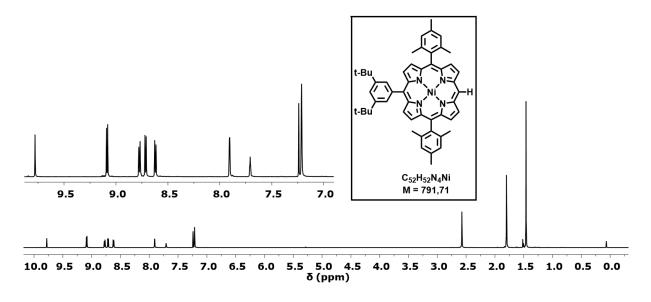



Figure S4. MS/HRMS (MALDI) of 3.

¹H NMR (400 MHz, CDCl₃, rt)

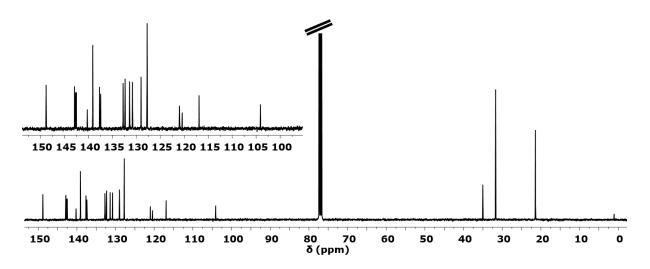
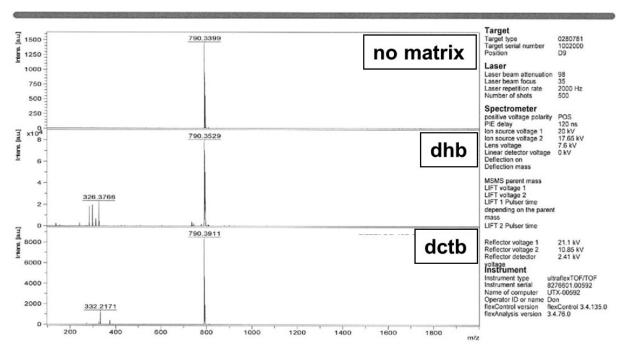



Figure S5. ¹H and ¹³C NMR of 4.

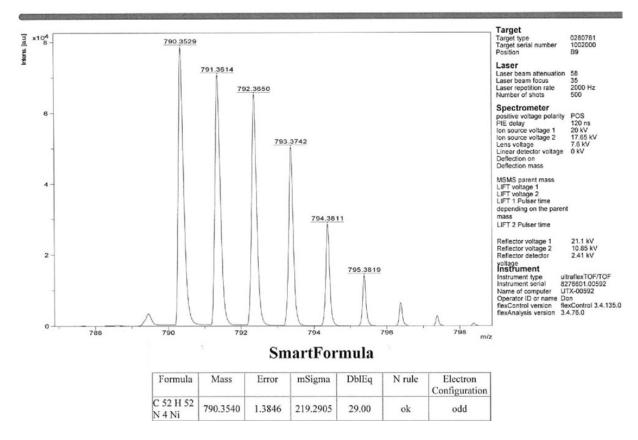
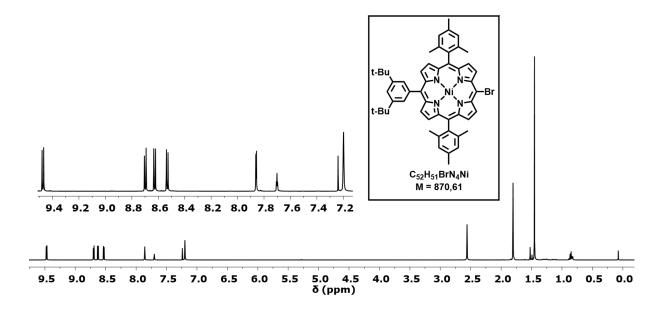



Figure S6. MS/HRMS (MALDI) of 4.

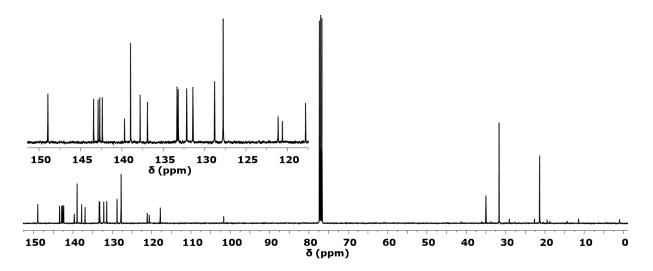
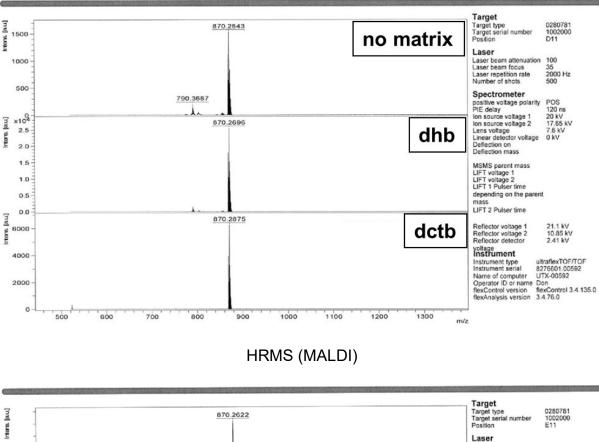



Figure S7. ¹H and ¹³C NMR of 5.

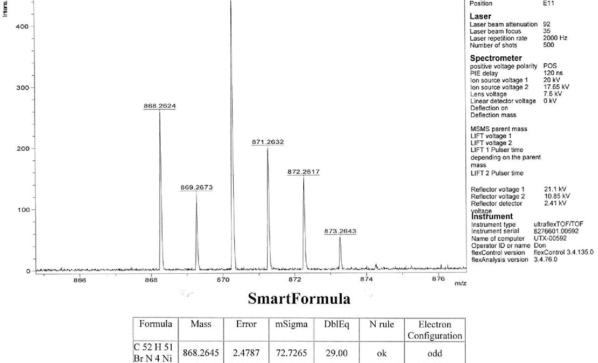
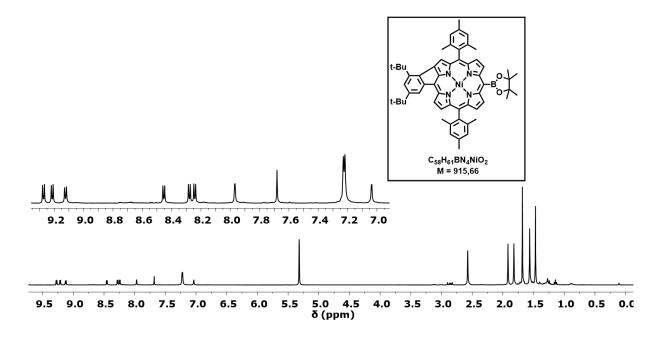



Figure S8. MS/HRMS (MALDI) of 5.

¹³C NMR (101 MHz, CD₂Cl₂, rt)

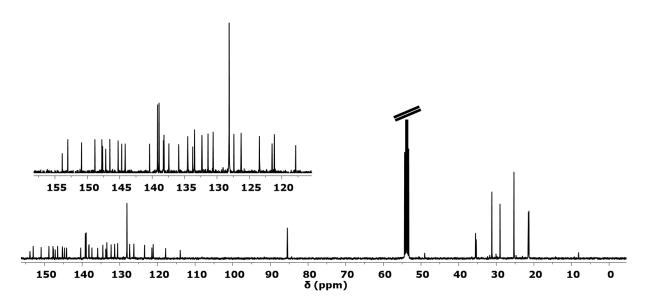
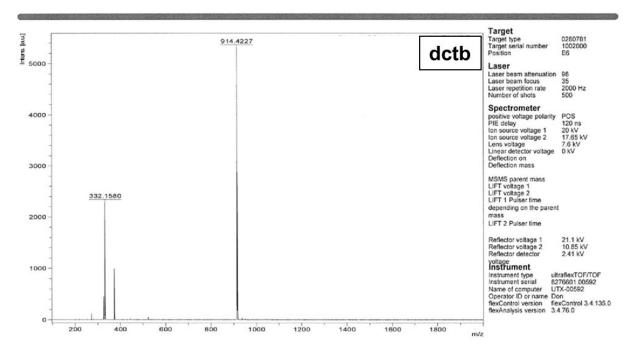



Figure S9. ¹H and ¹³C NMR of PhBpin.

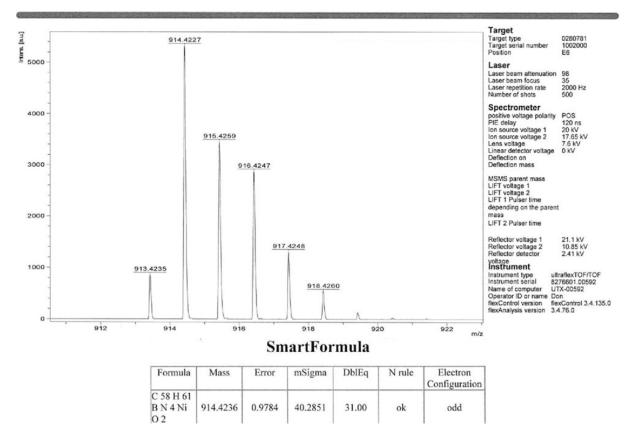
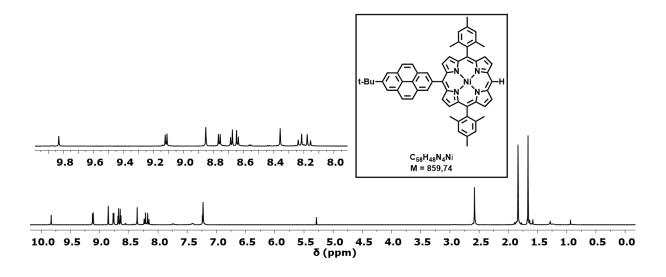



Figure S10. MS/HRMS (MALDI) of PhBpin.

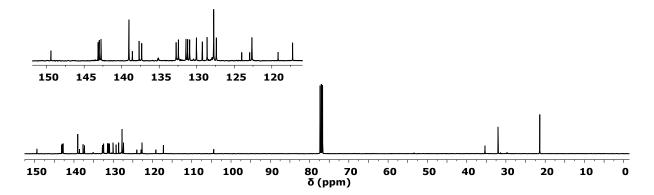
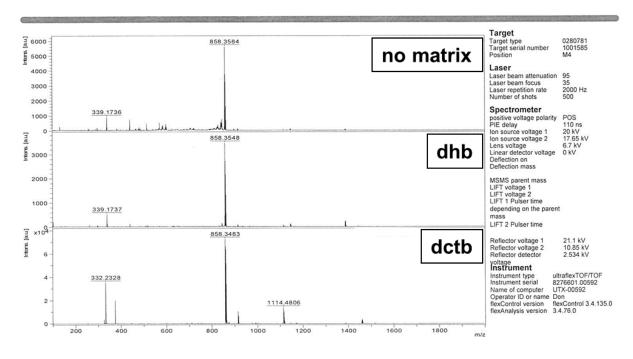



Figure S11. ¹H and ¹³C NMR of 8.

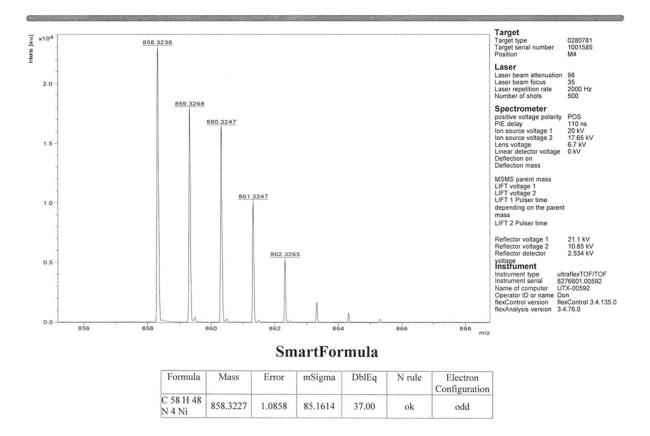


Figure S12. MS/HRMS (MALDI) of 8.

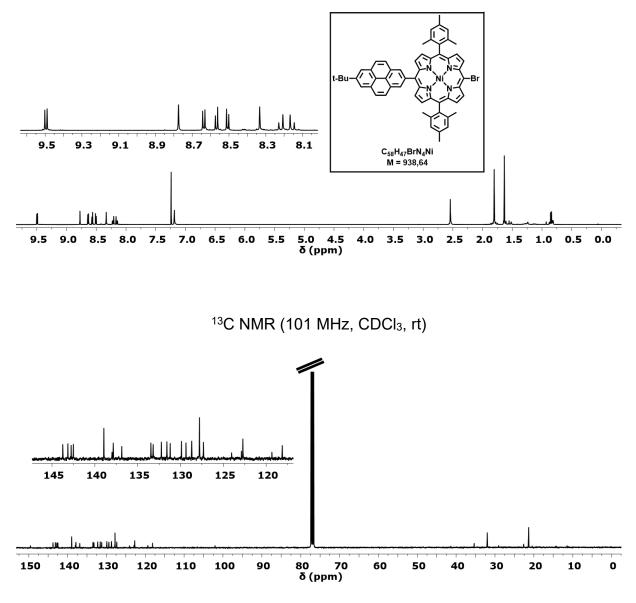
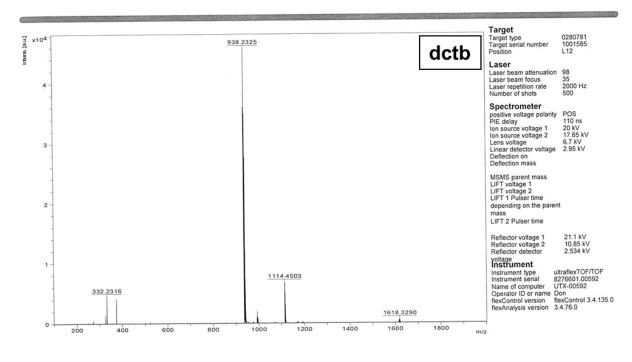



Figure S13. ¹H and ¹³C NMR of 9.

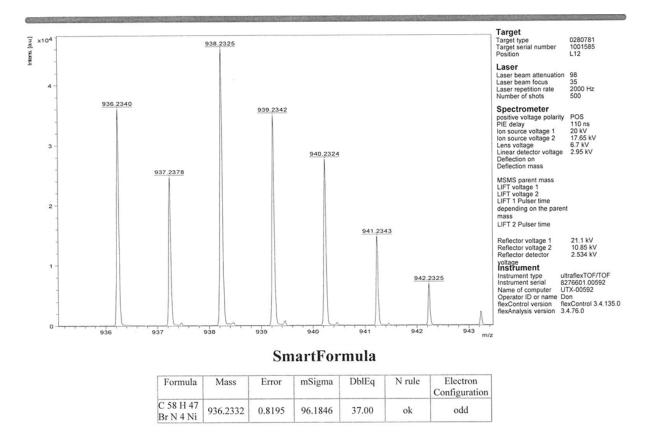


Figure S14. MS/HRMS (MALDI) of 9.

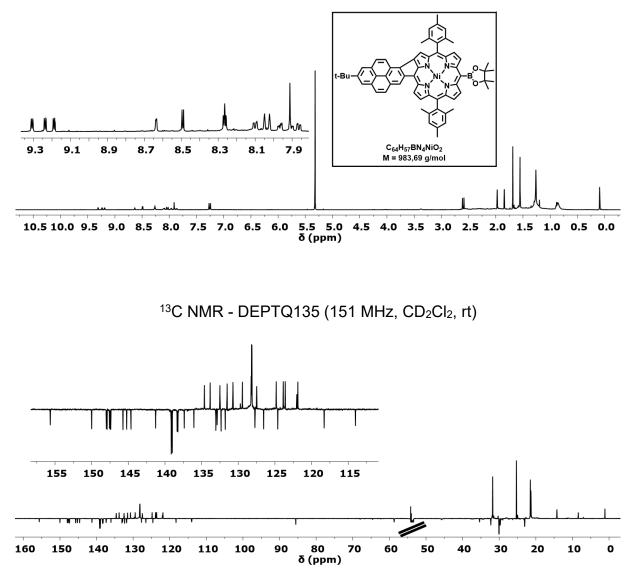


Figure S15. ¹H and ¹³C NMR (DEPTQ135) of PyrBpin.

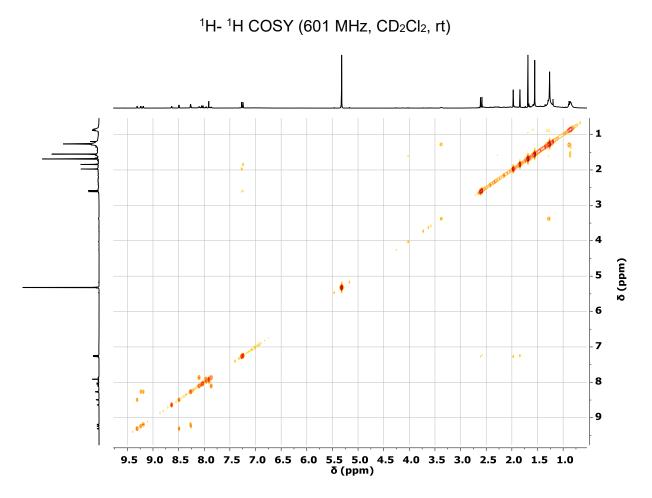


Figure S16. ¹H- ¹H COSY of PyrBpin.

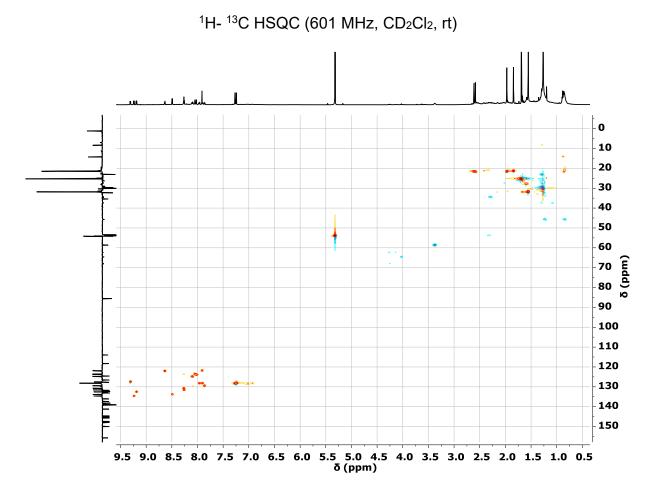


Figure S17. ¹H- ¹³C HSQC of PyrBpin.

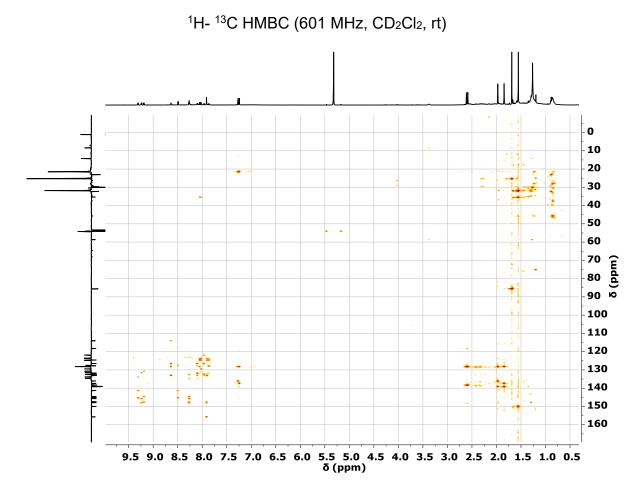
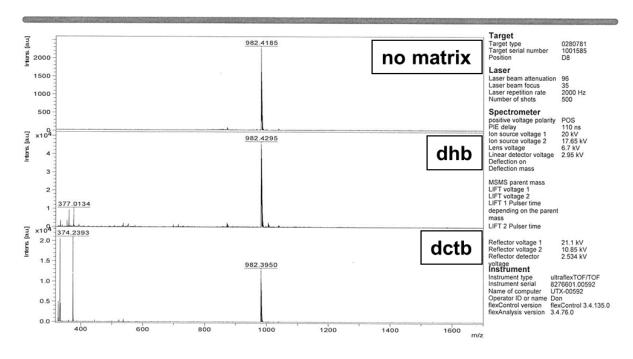



Figure S18. ¹H- ¹³C HMBC of PyrBpin.

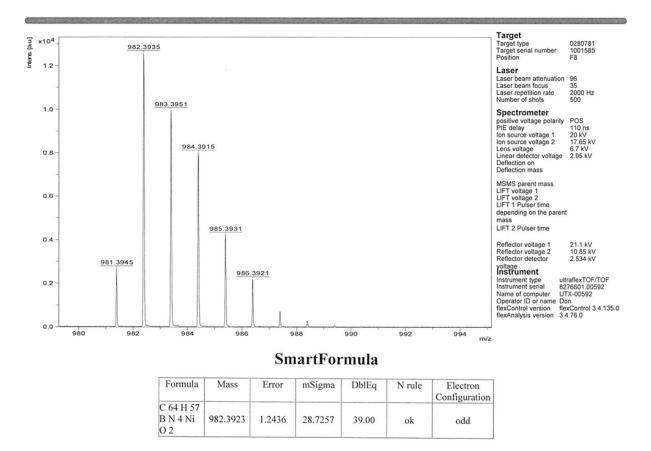


Figure S19. MS/HRMS (MALDI) of PyrBpin.

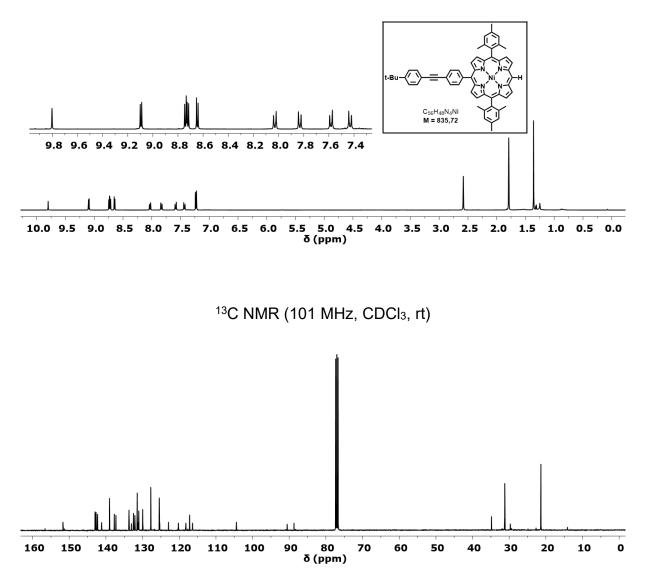
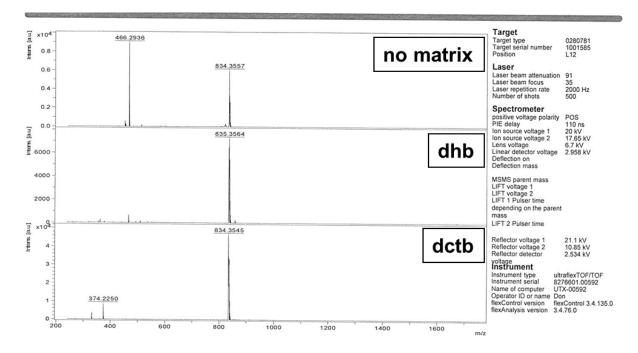



Figure S20. ¹H and ¹³C NMR of 12.

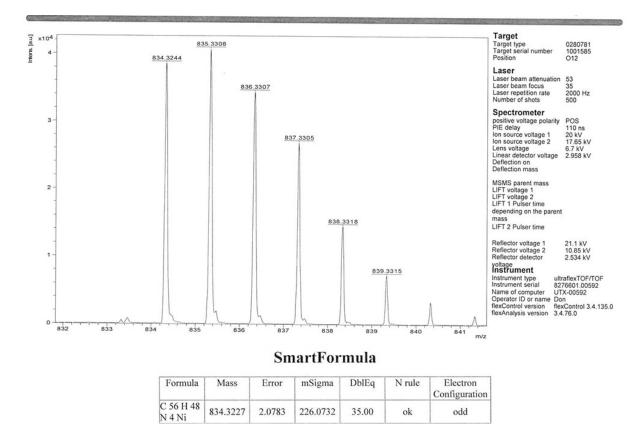
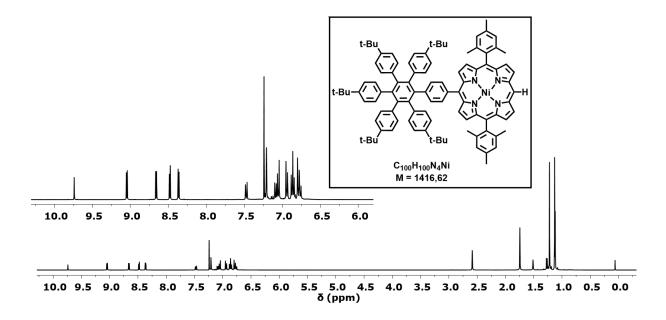



Figure S21. MS/HRMS (MALDI) of 12.

¹H NMR (400 MHz, CDCl₃, rt)

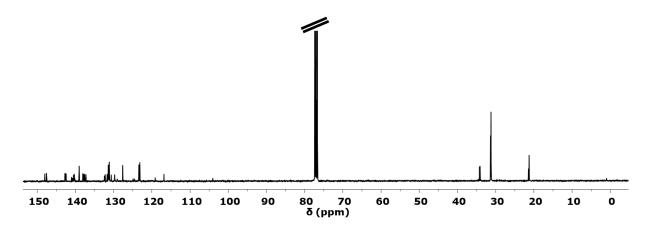
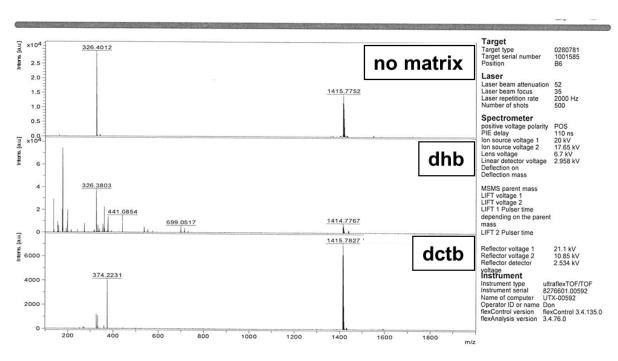



Figure S22. ¹H and ¹³C NMR of 14.

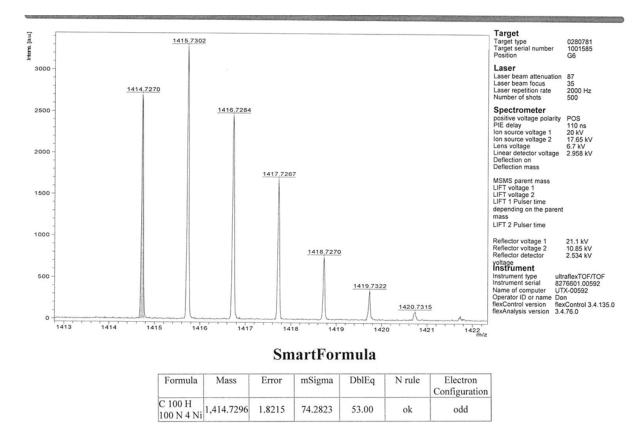


Figure S23. MS/HRMS (MALDI) of 14.

¹H NMR (400 MHz, CDCl₃, rt)

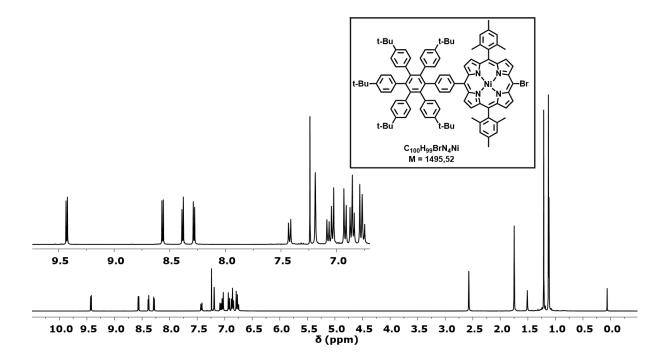
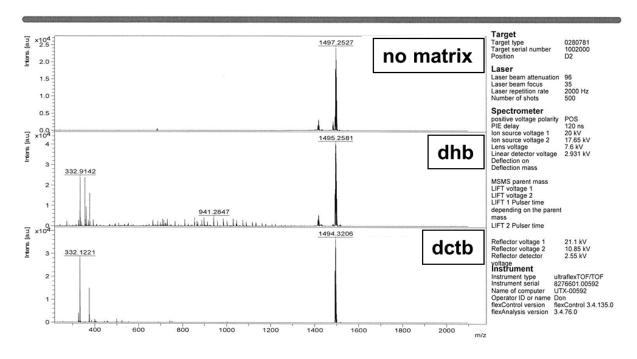



Figure S24. ¹H and ¹³C NMR of **15**.

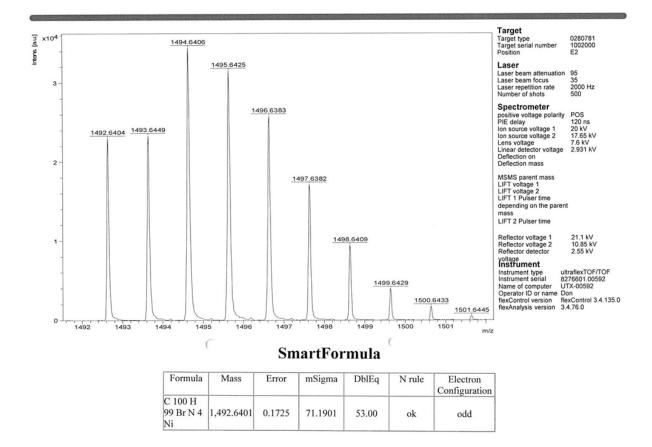
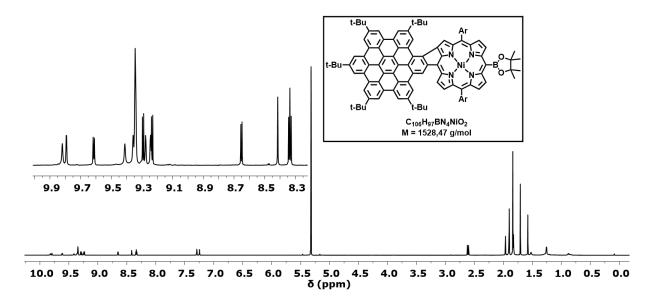



Figure S25. MS/HRMS (MALDI) of 15.

¹H NMR (601 MHz, CD₂Cl₂, rt)

¹³C NMR - DEPTQ135 (151 MHz, CD₂Cl₂, rt)

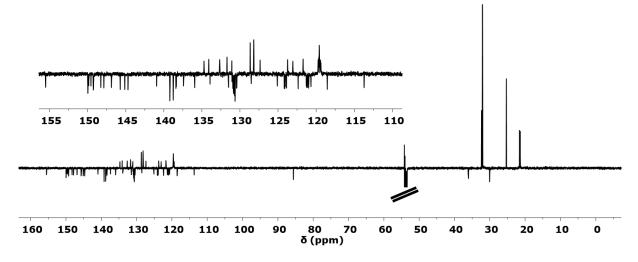


Figure S26. ¹H and ¹³C NMR (DEPTQ135) of HBCBpin.

¹H- ¹H COSY (601 MHz, CD₂Cl₂, rt)

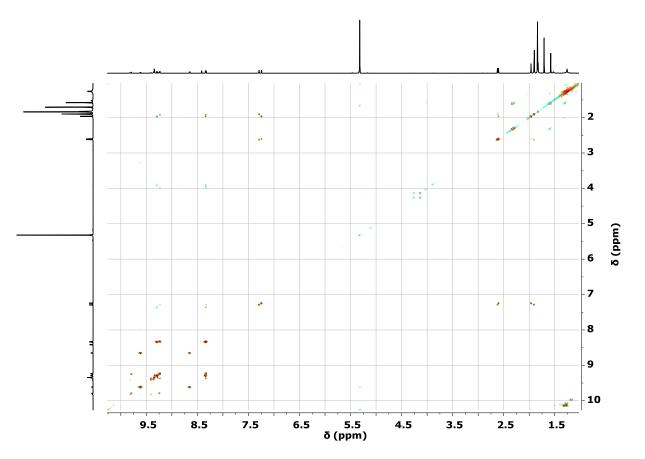


Figure S27. ¹H- ¹H COSY of HBCBpin.

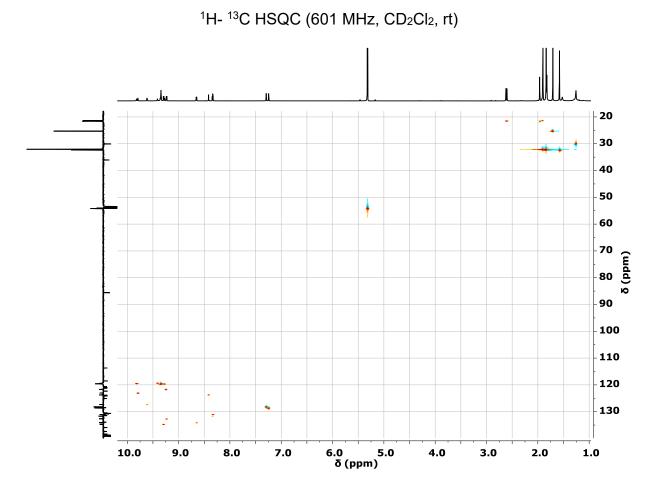


Figure S28. ¹H- ¹³C HSQC of HBCBpin.

¹H- ¹³C HMBC (601 MHz, CD₂Cl₂, rt)

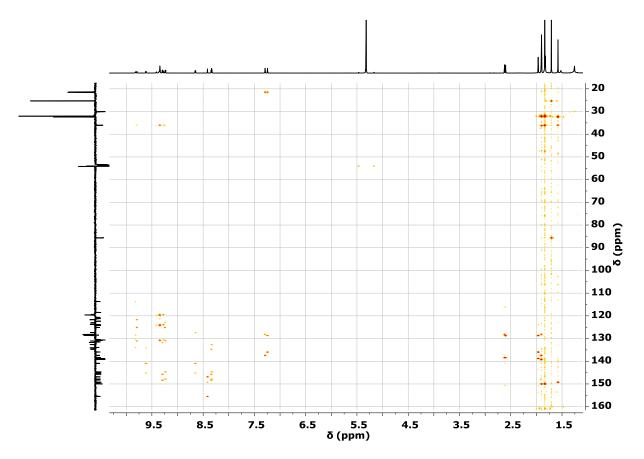


Figure S29. ¹H- ¹³C HMBC of HBCBpin.

¹H- ¹H ROESY (601 MHz, CD₂Cl₂, rt)

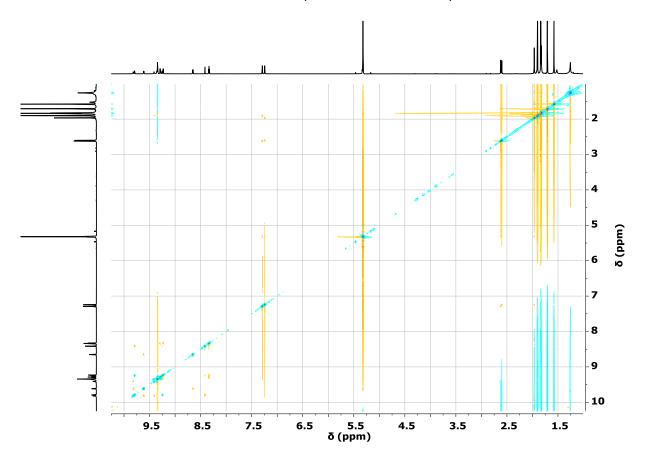


Figure S30. ¹H- ¹H ROESY of HBCBpin.

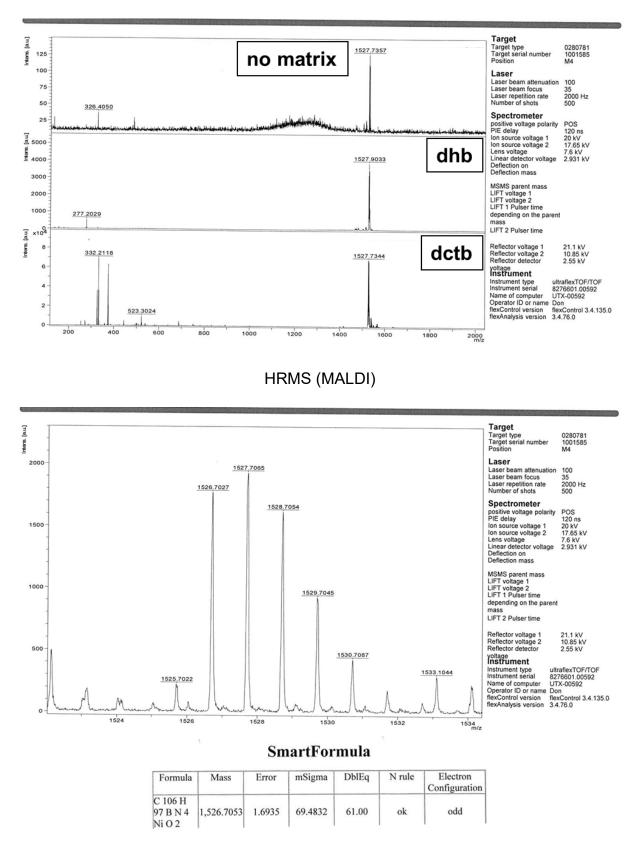


Figure S31. MS/HRMS (MALDI) of HBCBpin.

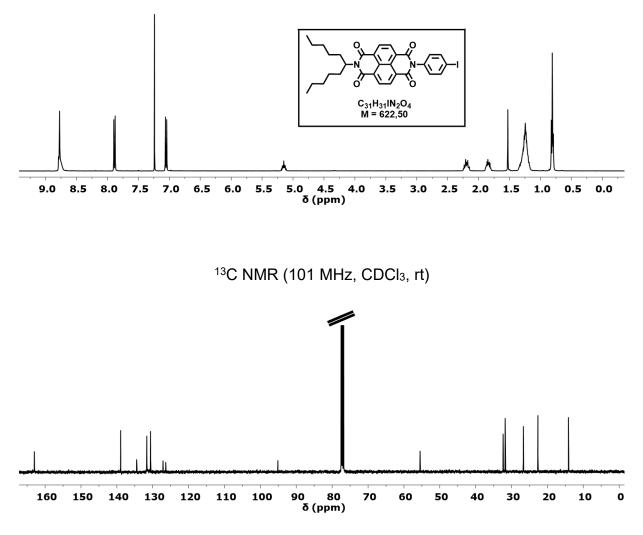


Figure S32. ¹H and ¹³C NMR of I-NDI.

HRMS (APPI)

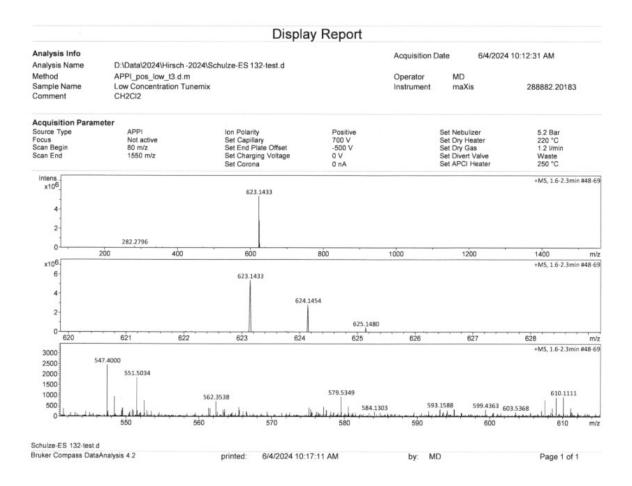


Figure S33. MS/HRMS (APPI) of I-NDI.

¹H NMR (400 MHz, DMSO-d6, rt)

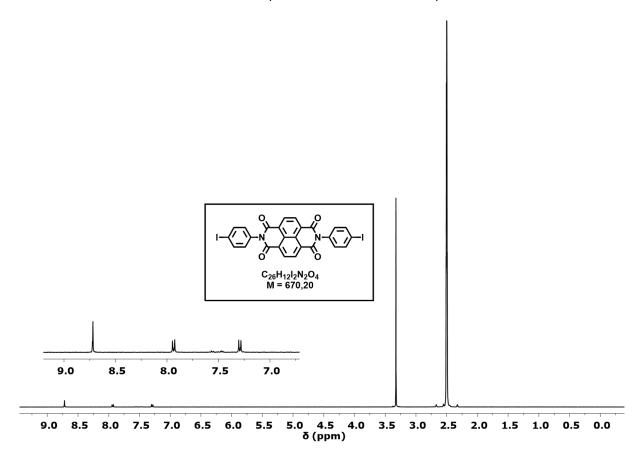


Figure S34. ¹H NMR of I-NDI-I.

HRMS (APPI)

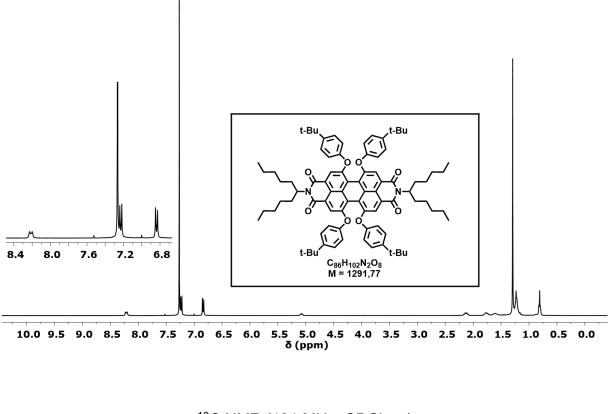



Figure S35. MS/HRMS (APPI) of I-NDI-I.

¹H NMR (400 MHz, CDCI₃, rt)

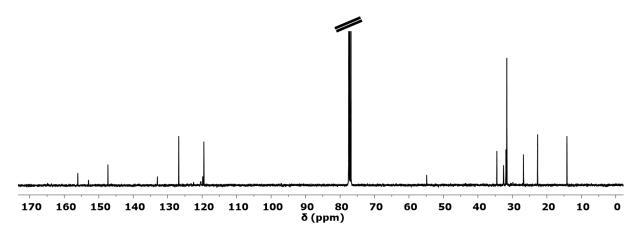


Figure S36. ¹H and ¹³C NMR of 22.

HRMS (APPI)

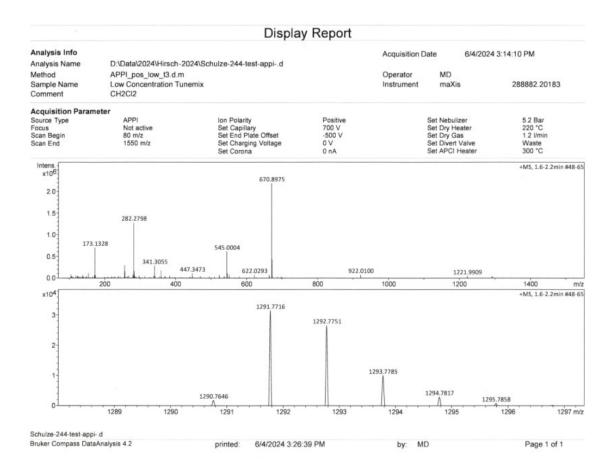
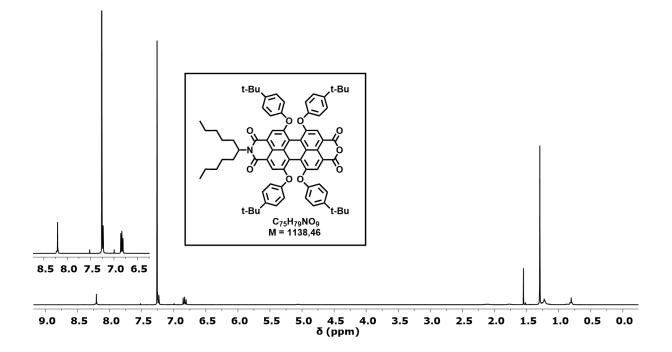



Figure S37. MS/HRMS (APPI) of 22.

¹H NMR (400 MHz, CDCl₃, rt)

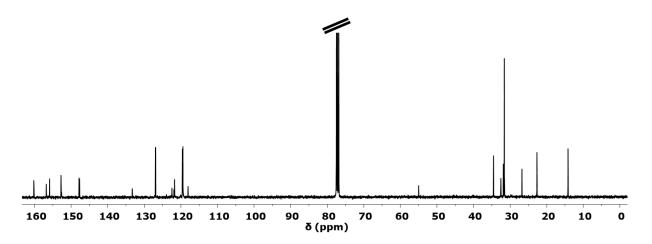


Figure S38. ¹H and ¹³C NMR of 23.

HRMS (APPI)

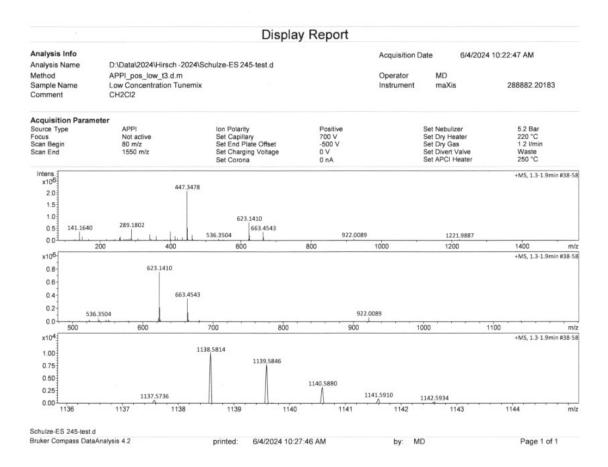


Figure S39. MS/HRMS (APPI) of 23.

¹H NMR (400 MHz, CDCI₃, rt)

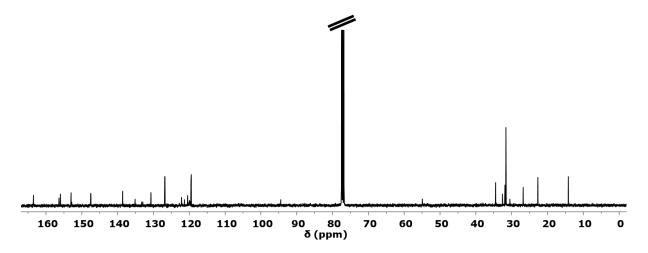


Figure S40. ¹H and ¹³C NMR of I-PDI.

HRMS (APPI)

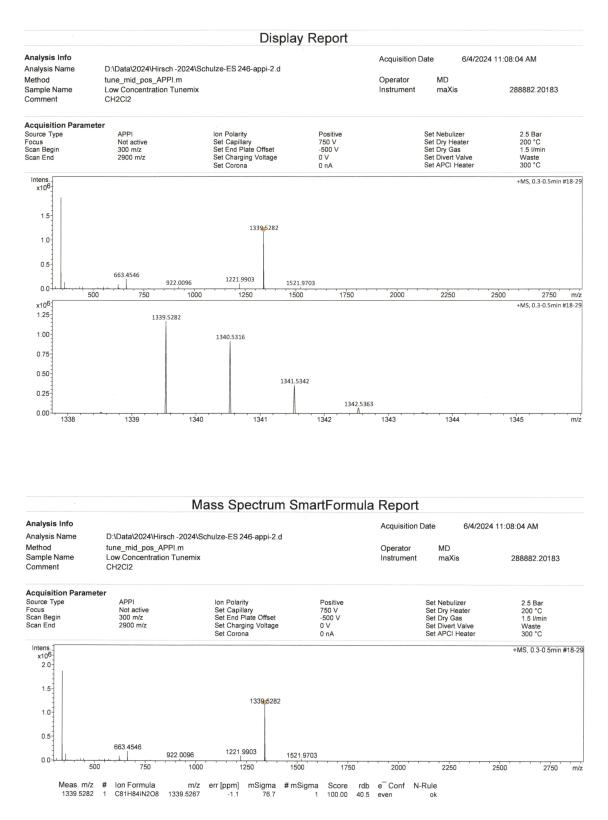
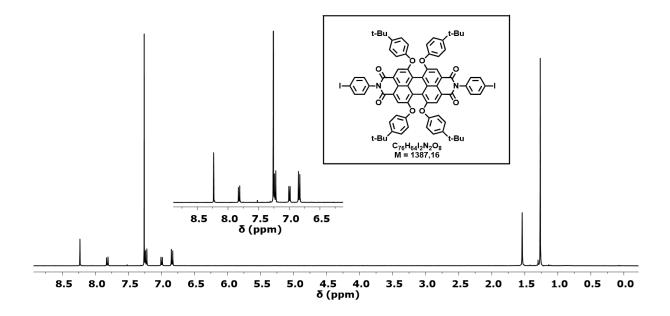



Figure S41. MS/HRMS (APPI) of I-PDI.

¹H NMR (400 MHz, CDCl₃, rt)

¹³C NMR (101 MHz, CDCl₃, rt)

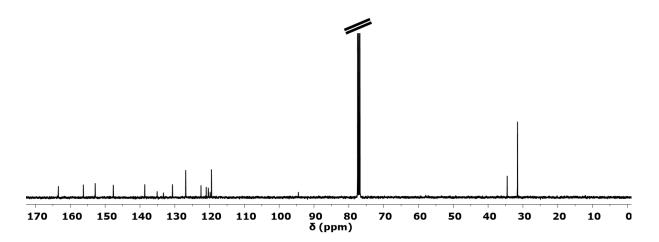
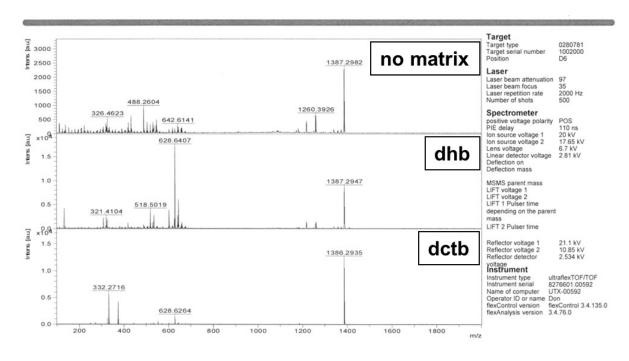



Figure S42. ¹H and ¹³C NMR of I-PDI-I.

MS (MALDI)

HRMS (MALDI)

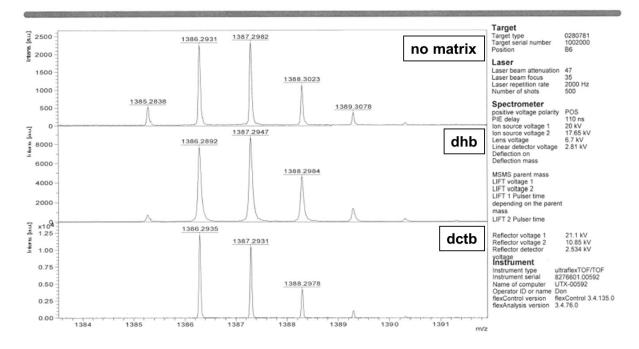


Figure S43. MS/HRMS (MALDI) of I-PDI-I.

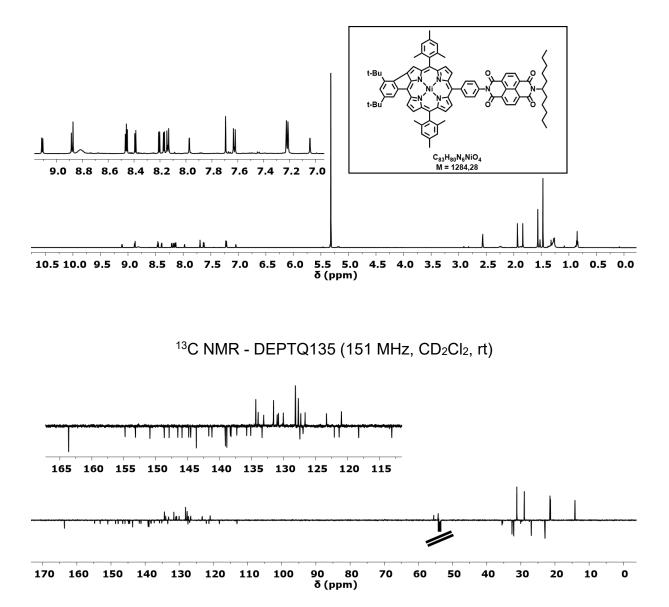


Figure S44. ¹H and ¹³C NMR (DEPTQ135) of Ph-NDI.

¹H- ¹H COSY (601 MHz, CD₂Cl₂, rt)

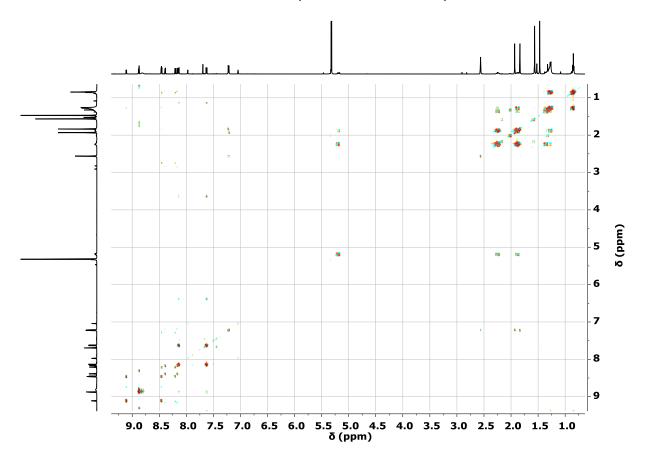


Figure S45. ¹H- ¹H COSY of Ph-NDI.

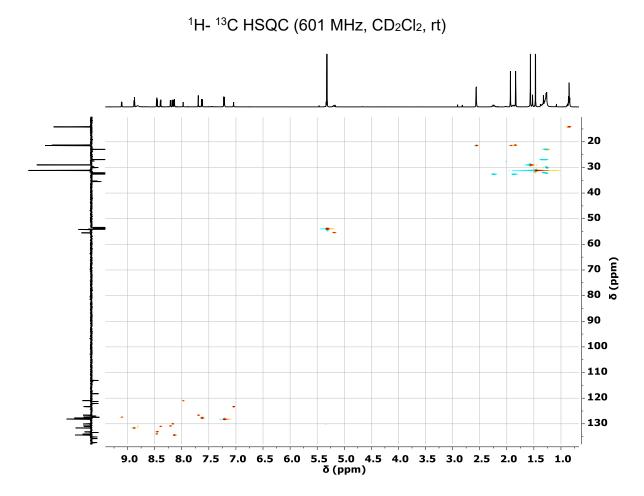


Figure S46. ¹H- ¹³C HSQC of Ph-NDI.

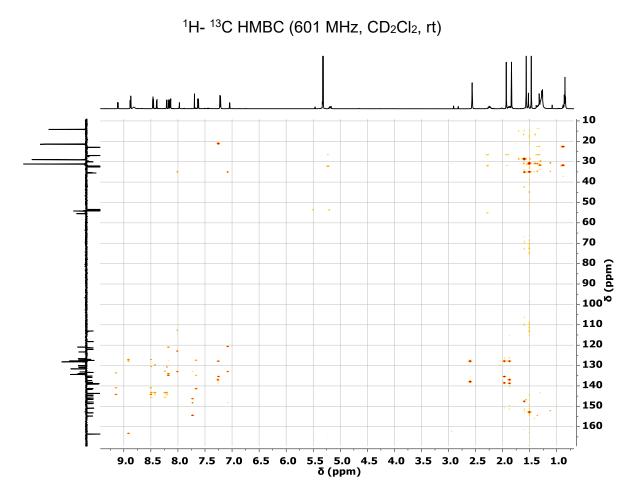
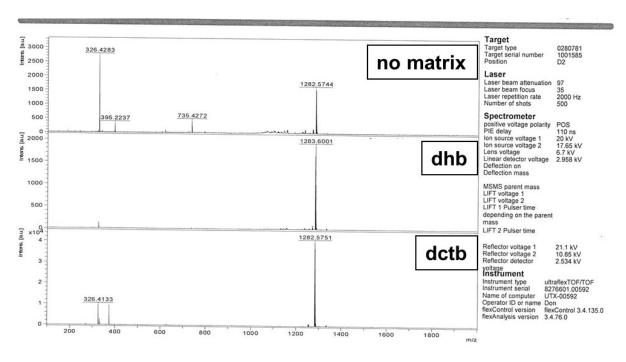



Figure S47. ¹H- ¹³C HMBC of Ph-NDI.

HRMS (MALDI)

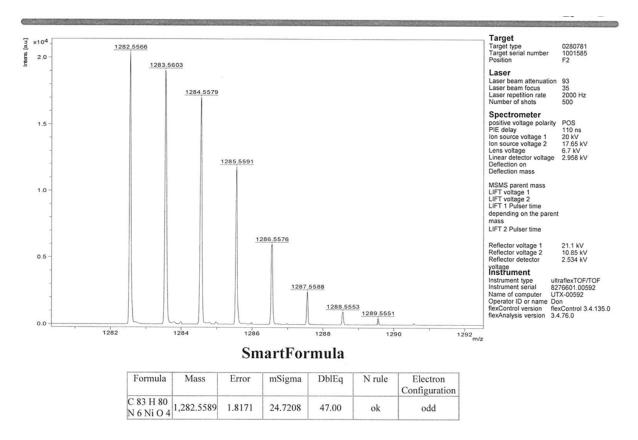


Figure S48. MS/HRMS (MALDI) of Ph-NDI.

¹H NMR (601 MHz, CD₂Cl₂, rt) 9.1 8.9 8.7 8.5 8.3 8.1 7.9 7.7 7.5 7.3 7.1 6.9 6.7 M = 2001,25 1. 6.5 6.0 5.5 5.0 4.5 δ (ppm) 2.0 1.0 9.5 9.0 8.5 7.0 4.0 3.5 3.0 2.5 1.5 0.5 0.0 8.0 7.5

¹³C NMR - DEPTQ135 (151 MHz, CD₂Cl₂, rt)

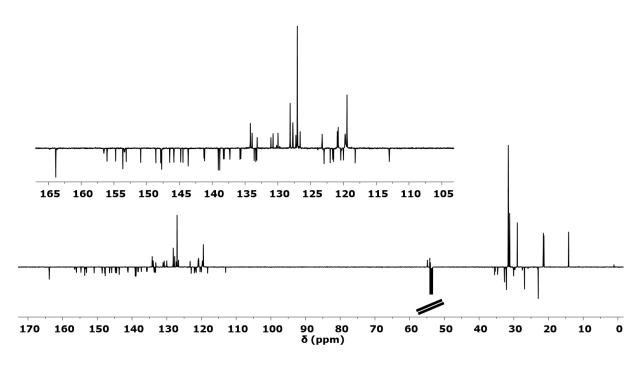


Figure S49. ¹H and ¹³C NMR (DEPTQ135) of Ph-PDI.

¹H- ¹H COSY (601 MHz, CD₂Cl₂, rt)

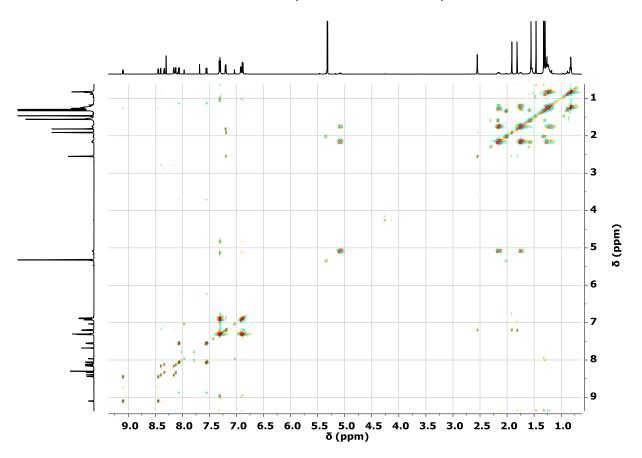


Figure S50. ¹H- ¹H COSY of Ph-PDI.

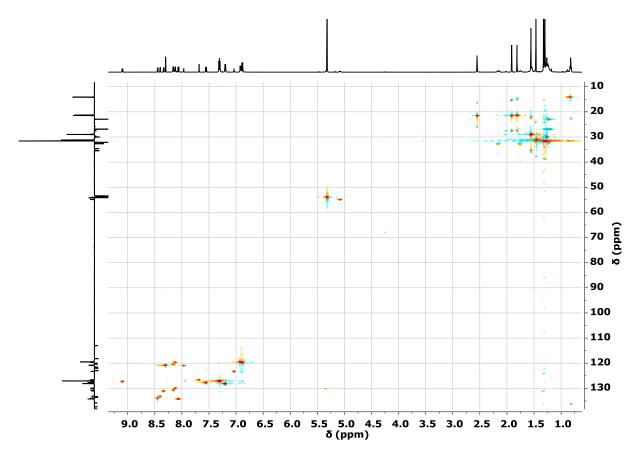


Figure S51. ¹H- ¹³C HSQC of Ph-PDI.

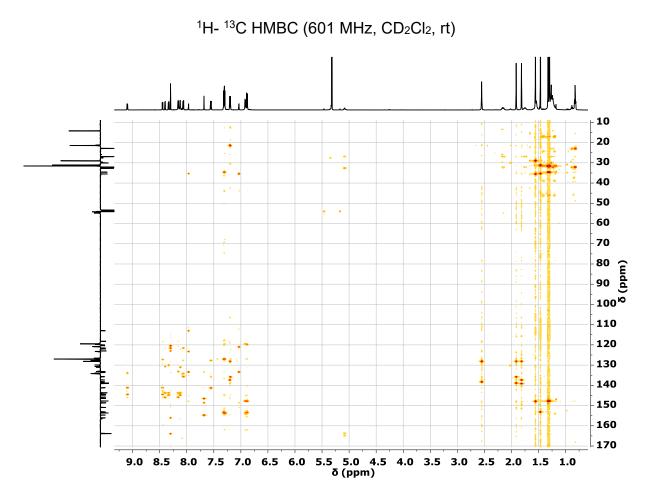
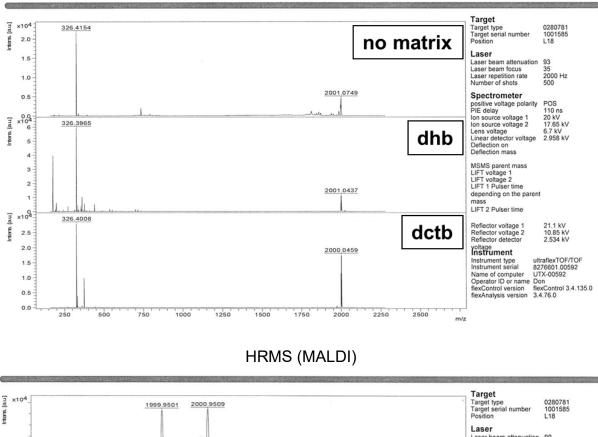



Figure S52. ¹H- ¹³C HMBC of Ph-PDI.

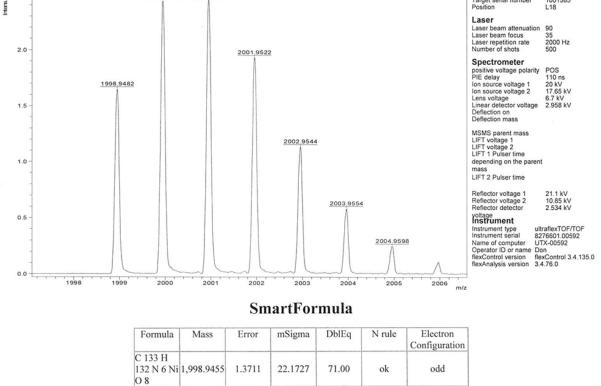
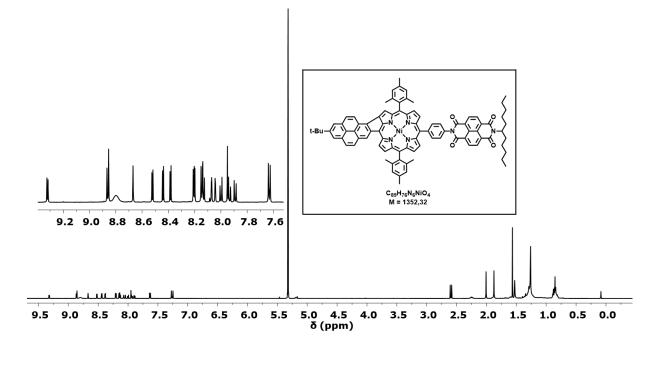
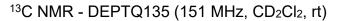




Figure S53. MS/HRMS (MALDI) of Ph-PDI.

¹H NMR (601 MHz, CD₂Cl₂, rt)

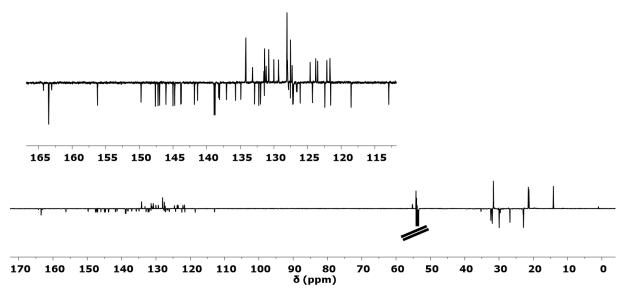


Figure S54. ¹H and ¹³C NMR (DEPTQ135) of Pyr-NDI.

¹H- ¹H COSY (601 MHz, CD₂Cl₂, rt)

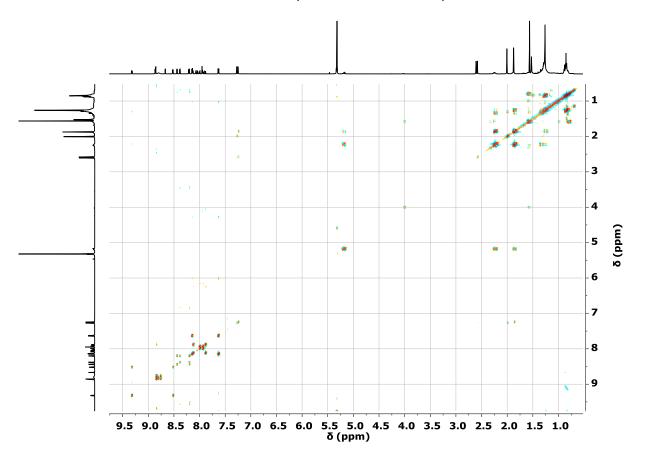


Figure S55. ¹H- ¹H COSY of Pyr-NDI.

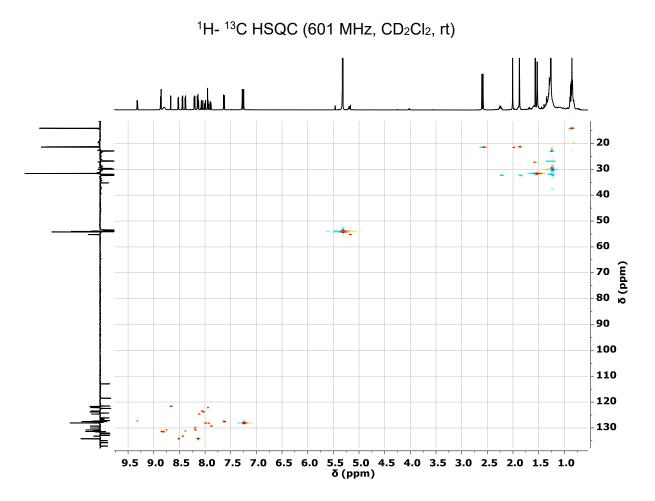


Figure S56. ¹H- ¹³C HSQC of Pyr-NDI.

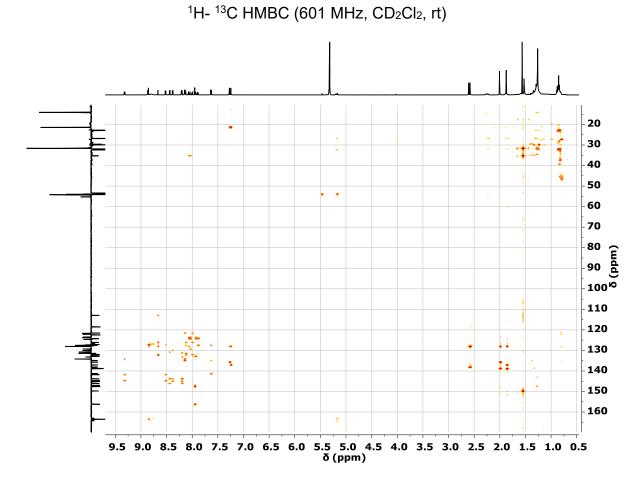


Figure S57. ¹H- ¹³C HMBC of Pyr-NDI.

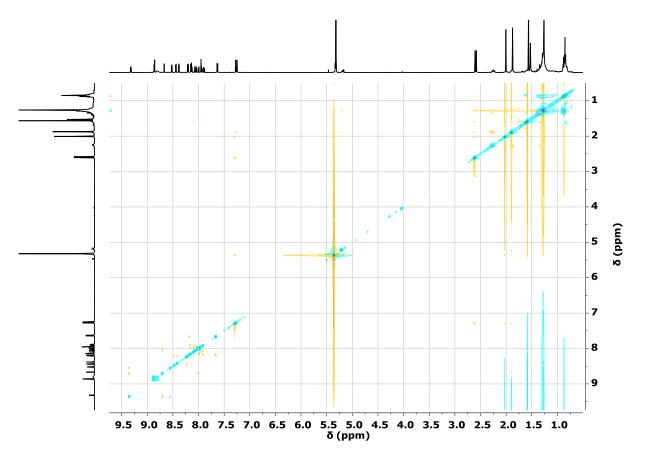
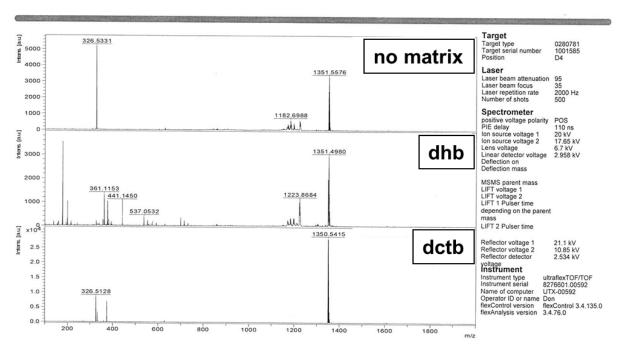



Figure S58. ¹H- ¹H ROESY of Pyr-NDI.

MS (MALDI)

HRMS (MALDI)

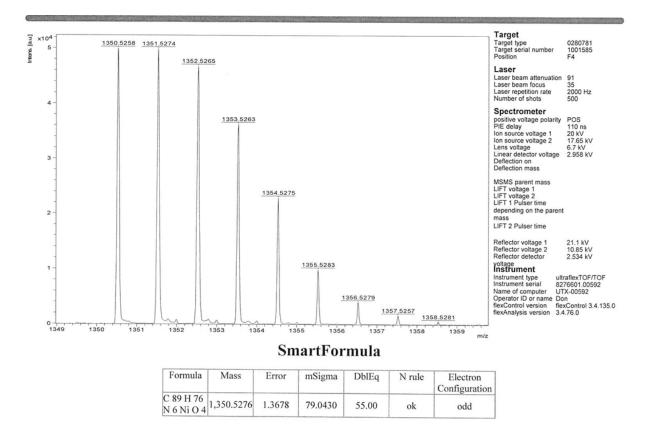


Figure S59. MS/HRMS (MALDI) of Pyr-NDI.

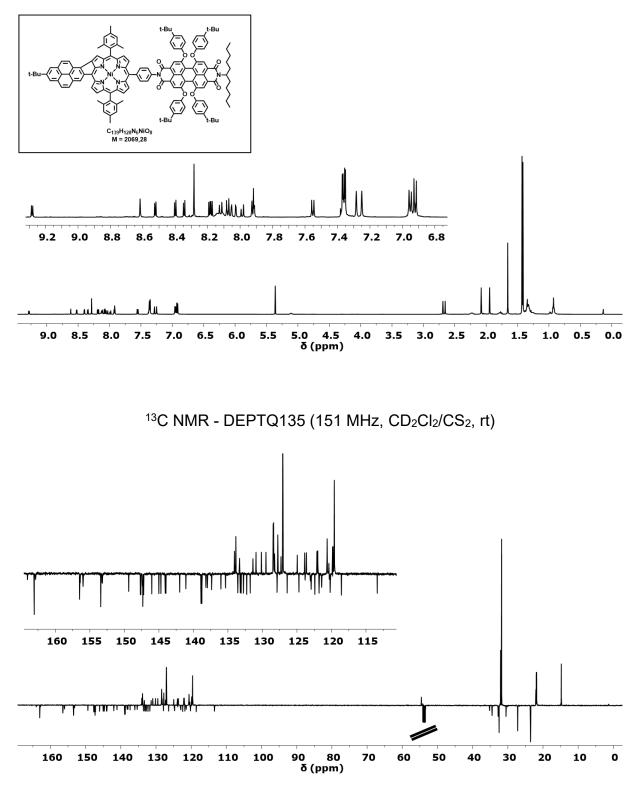


Figure S60. ¹H and ¹³C NMR (DEPTQ135) of Pyr-PDI.

¹H- ¹H COSY (601 MHz, CD₂Cl₂/CS₂, rt)

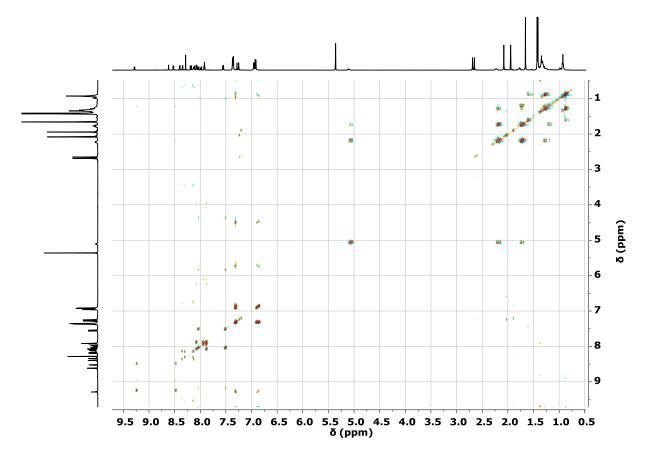


Figure S61. ¹H- ¹H COSY of Pyr-PDI.

¹H- ¹³C HSQC (601 MHz, CD₂Cl₂/CS₂, rt)

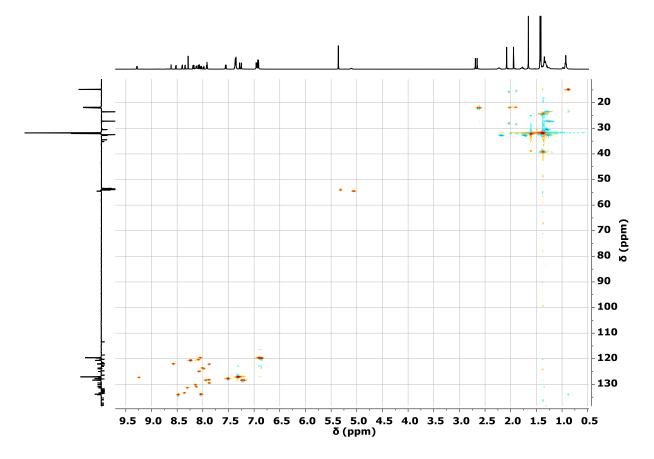


Figure S62. ¹H- ¹³C HSQC of Pyr-PDI.

¹H- ¹³C HMBC (601 MHz, CD₂Cl₂/CS₂, rt)

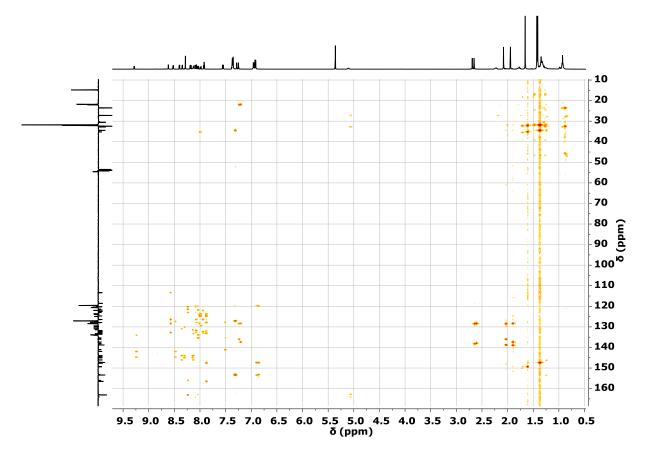


Figure S63. ¹H- ¹³C HMBC of Pyr-PDI.

¹H- ¹H ROESY (601 MHz, CD₂Cl₂/CS₂, rt)

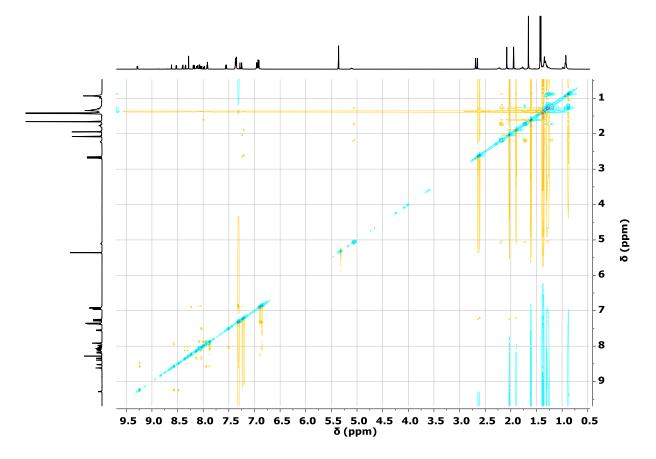


Figure S64. ¹H- ¹H ROESY of Pyr-PDI.

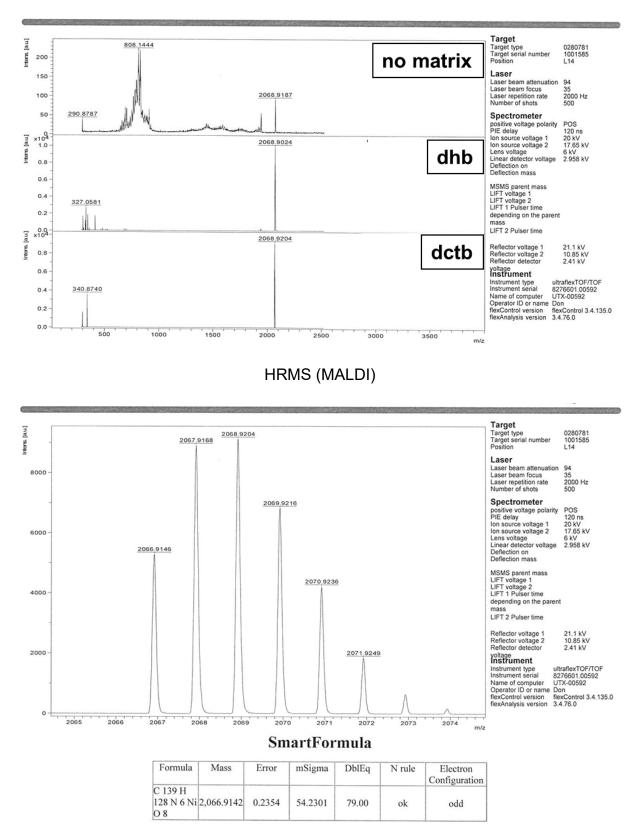
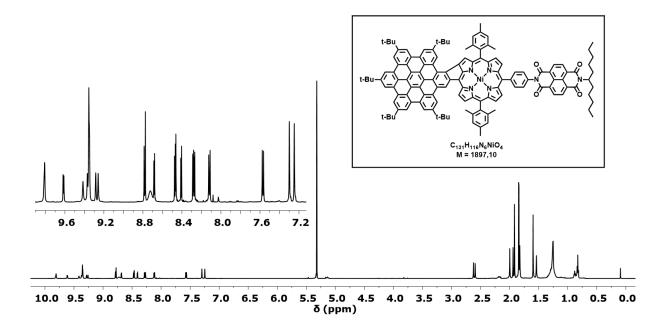



Figure S65. MS/HRMS (MALDI) of Pyr-PDI.

¹H NMR (601 MHz, CD₂Cl₂, rt)

¹³C NMR - DEPTQ135 (151 MHz, CD₂Cl₂, rt)

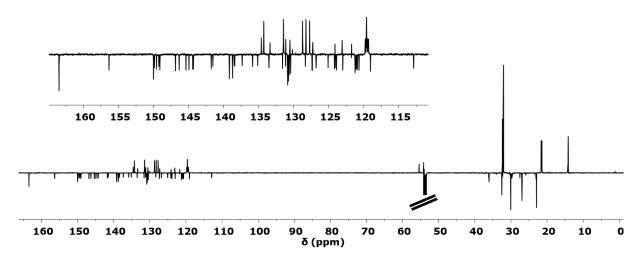


Figure S66. ¹H and ¹³C NMR (DEPTQ135) of HBC-NDI.

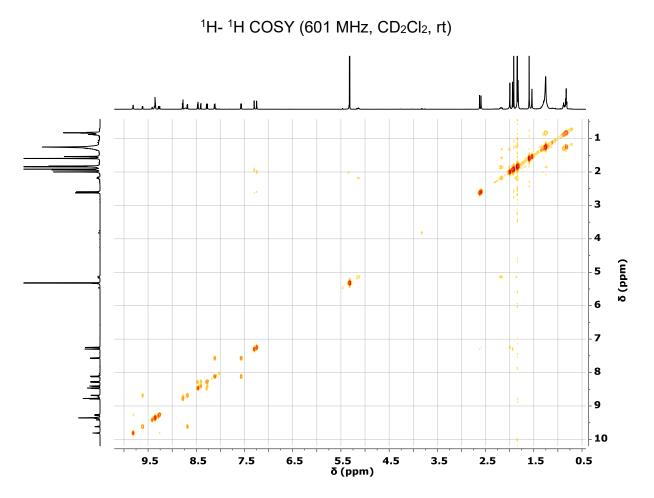


Figure S67. ¹H- ¹H COSY of HBC-NDI.

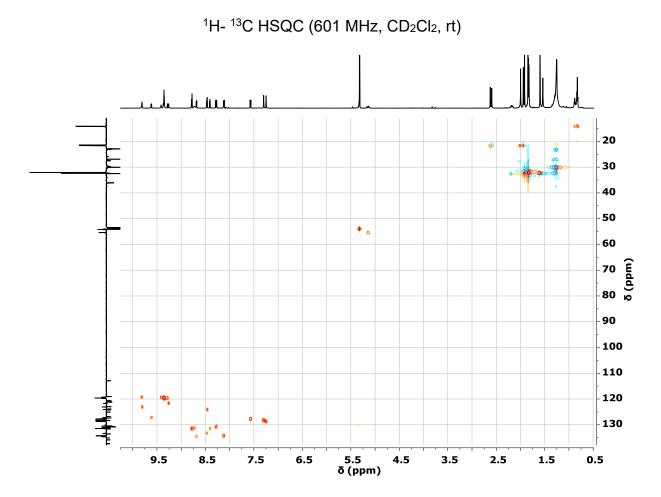


Figure S68. ¹H- ¹³C HSQC of HBC-NDI.

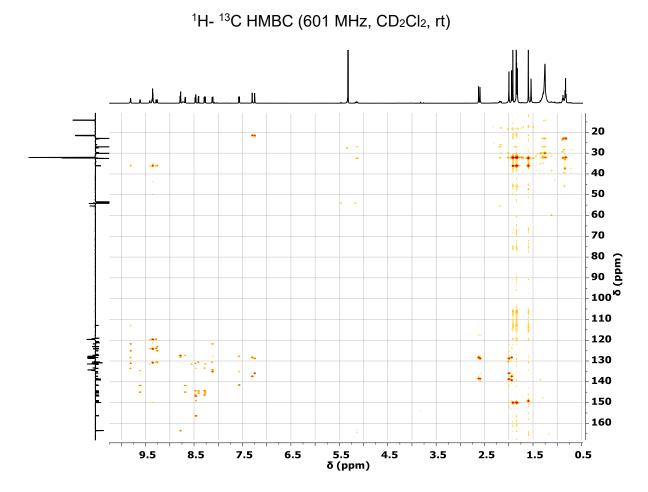
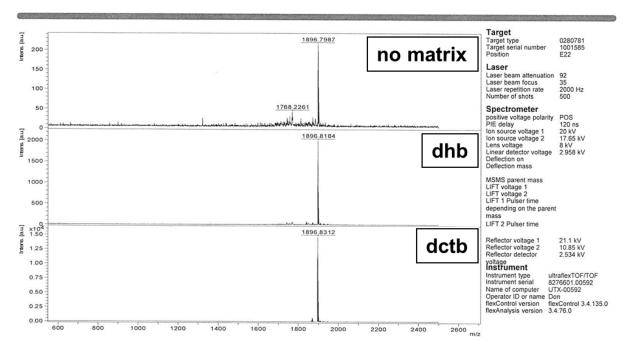
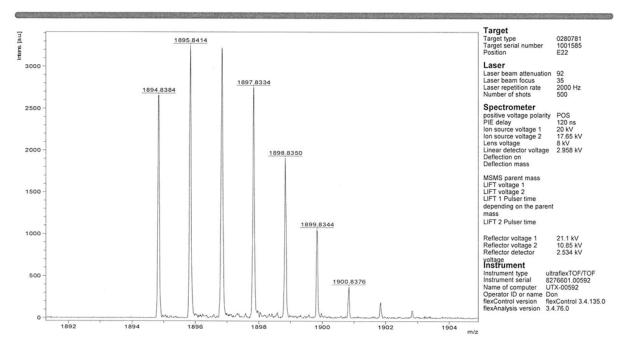
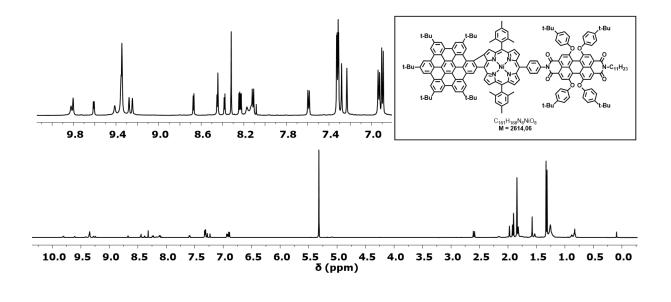
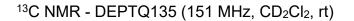




Figure S69. ¹H- ¹³C HMBC of HBC-NDI.

MS (MALDI)


HRMS (MALDI)



SmartFormula

Formula	Mass	Error	mSigma	DblEq	N rule	Electron Configuration
C 131 H 116 N 6 Ni O 4	1,894.8406	1.1652	72.2838	77.00	ok	odd

Figure S70. MS/HRMS (MALDI) of HBC-NDI.

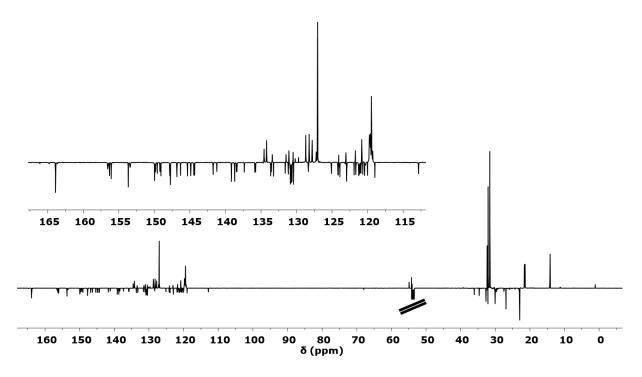


Figure S71. ¹H and ¹³C NMR (DEPTQ135) of HBC-PDI.

Figure S72. ¹H- ¹H COSY of HBC-PDI.

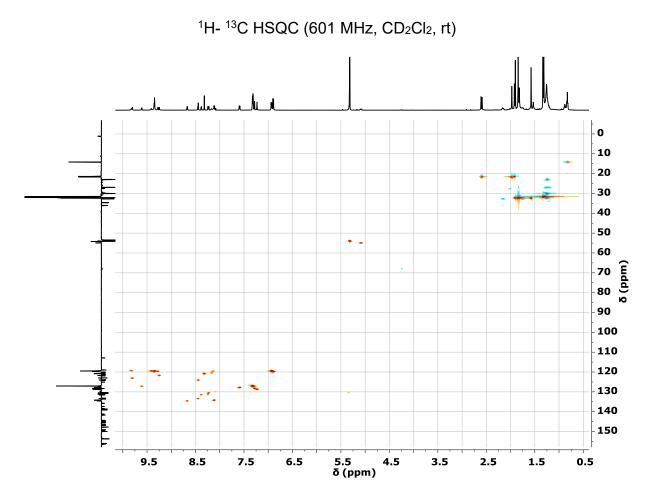


Figure S73. ¹H- ¹³C HSQC of HBC-PDI.

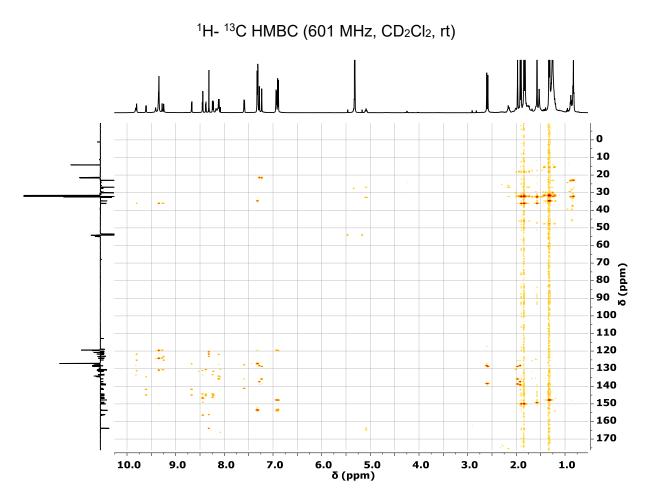


Figure S74. ¹H- ¹³C HMBC of HBC-PDI.

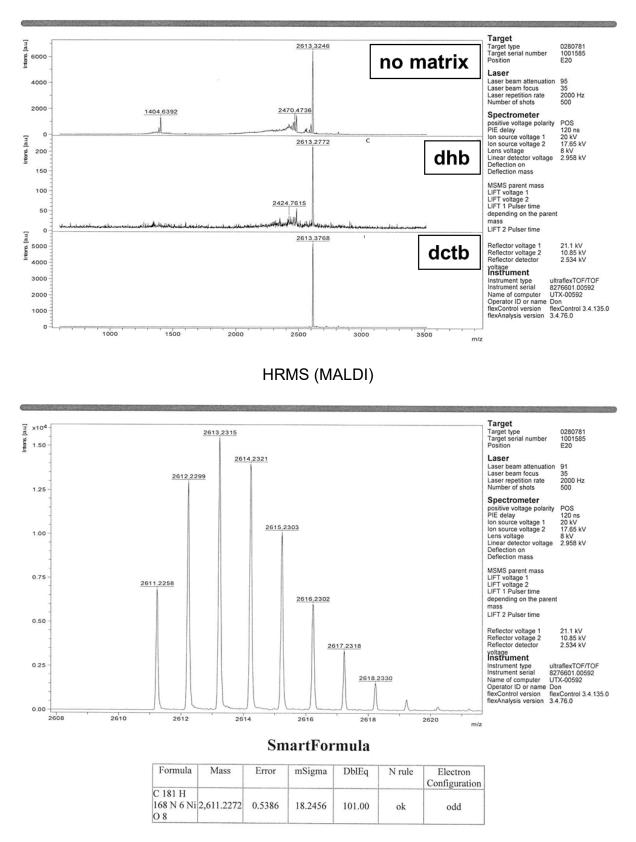


Figure S75. MS/HRMS (MALDI) of HBC-PDI.

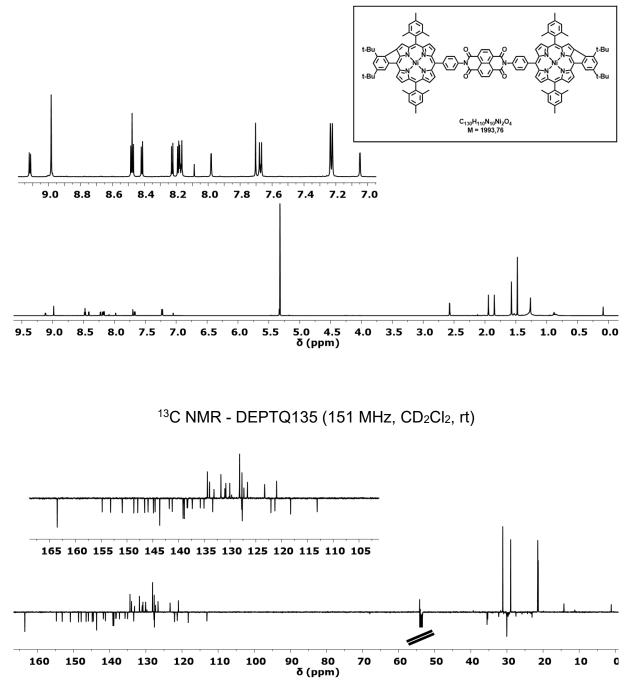


Figure S76. ¹H and ¹³C NMR (DEPTQ135) of Ph-NDI-Ph.

¹H- ¹H COSY (601 MHz, CD₂Cl₂, rt)

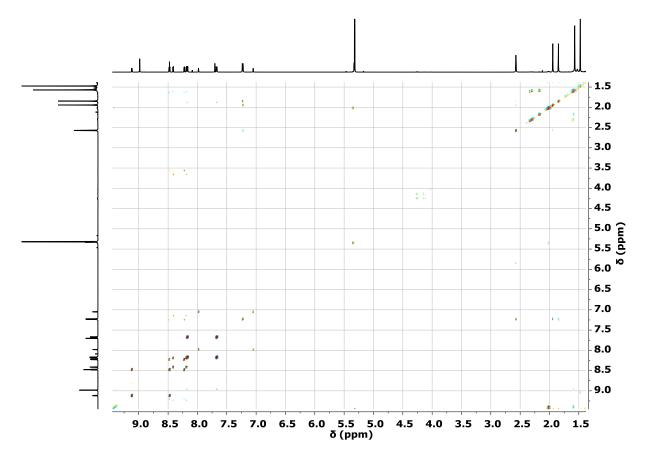


Figure S77. ¹H- ¹H COSY of Ph-NDI-Ph.

¹H- ¹³C HSQC (601 MHz, CD₂Cl₂, rt)

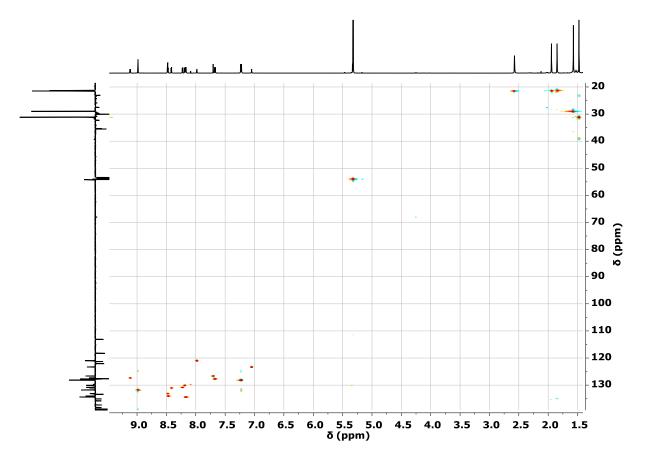


Figure S78. ¹H- ¹³C HSQC of Ph-NDI-Ph.

¹H- ¹³C HMBC (601 MHz, CD₂Cl₂, rt)

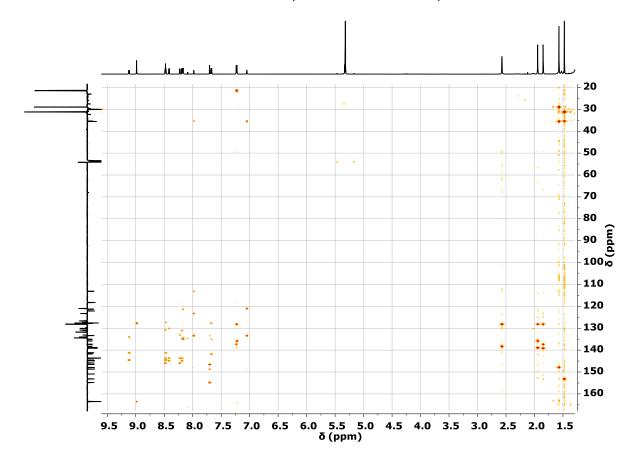


Figure S79. ¹H- ¹³C HMBC of Ph-NDI-Ph.

¹H- ¹H ROESY (601 MHz, CD₂Cl₂, rt)

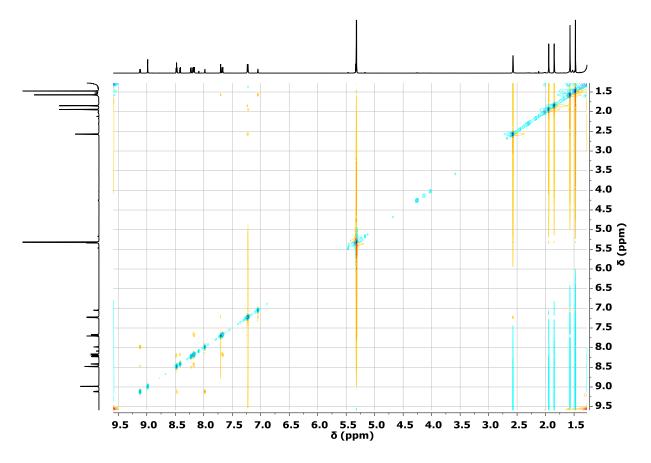
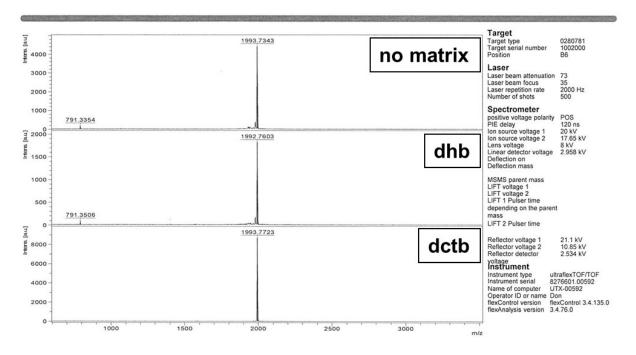



Figure S80. ¹H- ¹H ROESY of Ph-NDI-Ph.

HRMS (MALDI)

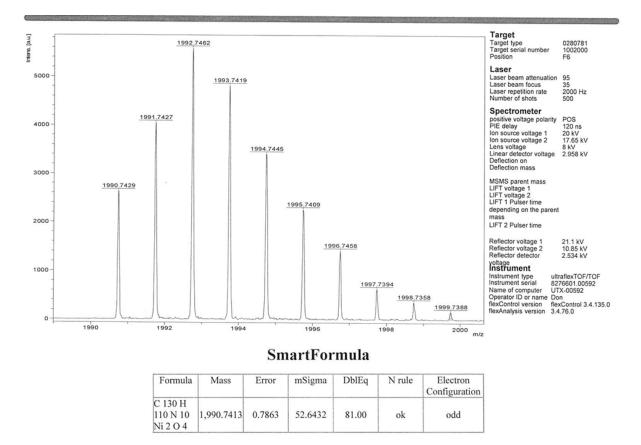


Figure S81. MS/HRMS (MALDI) of Ph-NDI-Ph.

¹H NMR (601 MHz, CD₂Cl₂, rt)

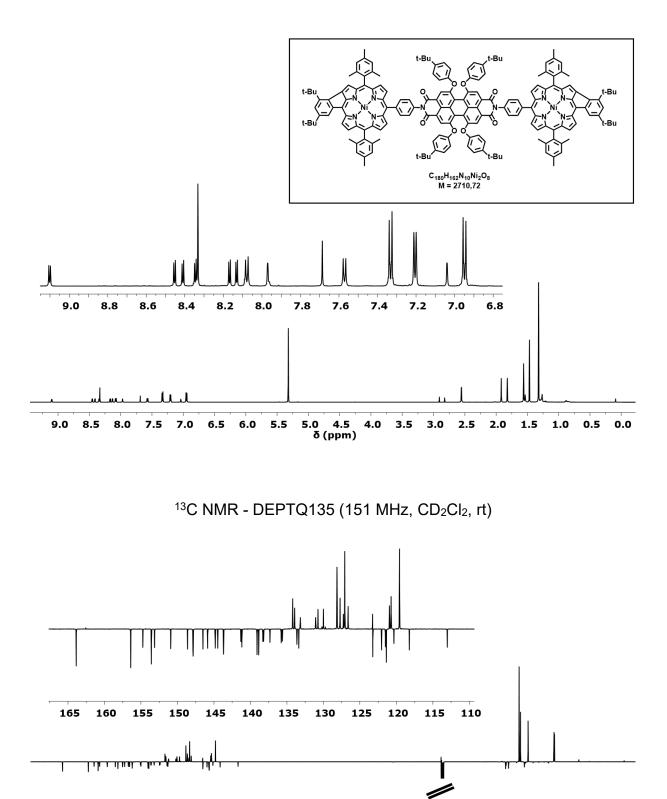


Figure S82. ¹H and ¹³C NMR (DEPTQ135) of Ph-PDI-Ph.

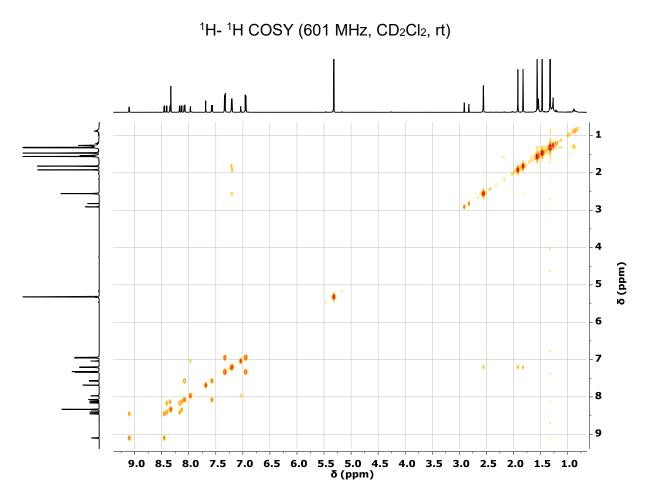

90 80 δ (ppm)

Figure S83. ¹H- ¹H COSY of Ph-PDI-Ph.

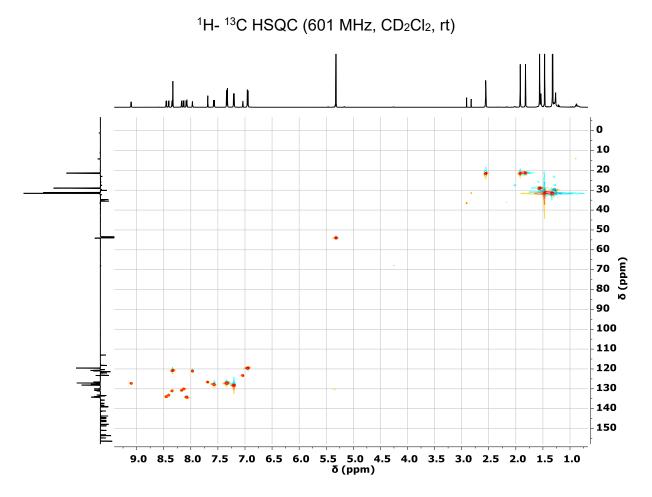


Figure S84. ¹H- ¹³C HSQC of Ph-PDI-Ph.

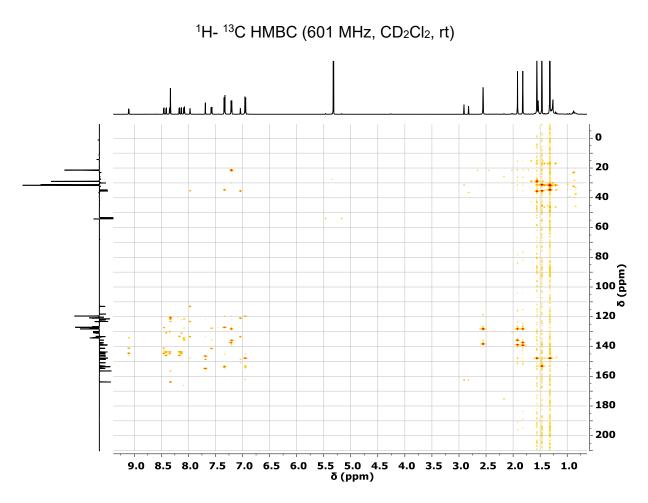


Figure S85. ¹H- ¹³C HMBC of Ph-PDI-Ph.

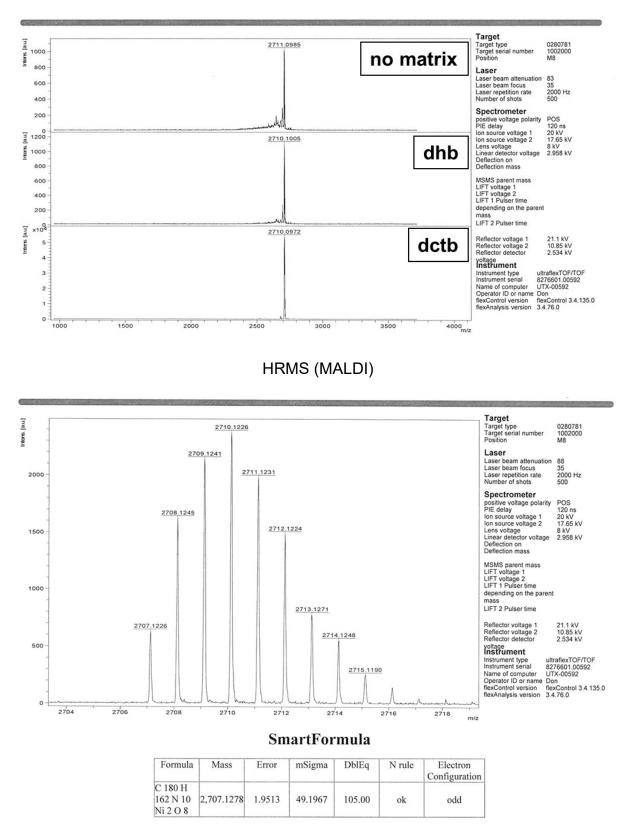


Figure S86. MS/HRMS (MALDI) of Ph-PDI-Ph.

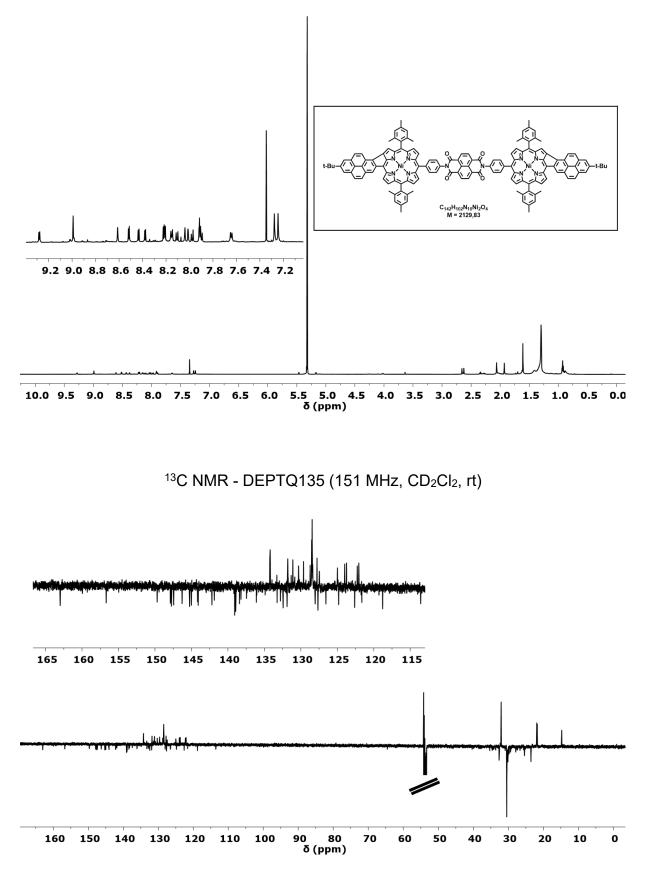


Figure S87. ¹H and ¹³C NMR (DEPTQ135) of Pyr-NDI-Pyr.

¹H- ¹H COSY (601 MHz, CD₂Cl₂/CS₂, rt)

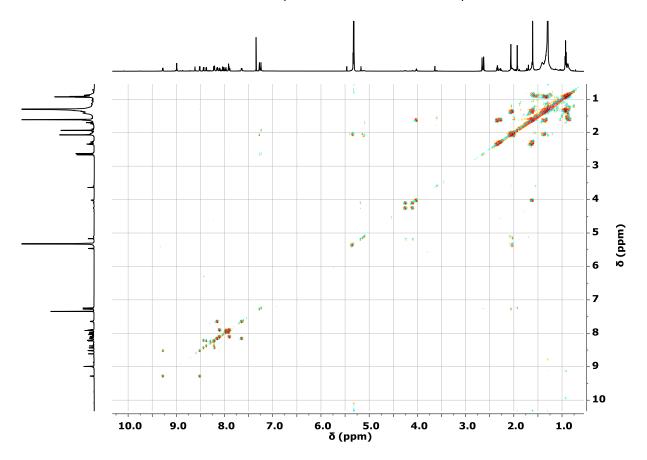


Figure S88. ¹H- ¹H COSY of Pyr-NDI-Pyr.

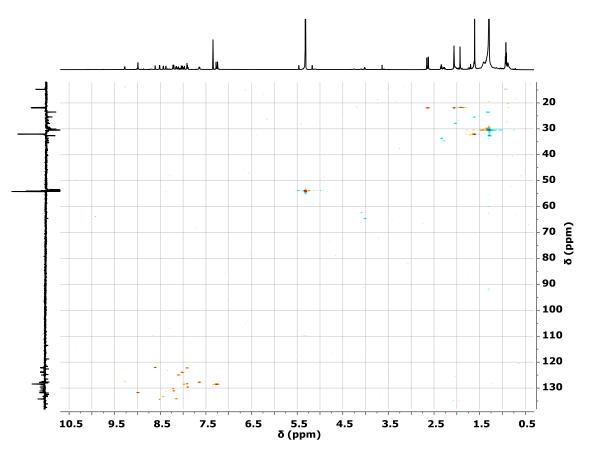


Figure S89. ¹H- ¹³C HSQC of Pyr-NDI-Pyr.

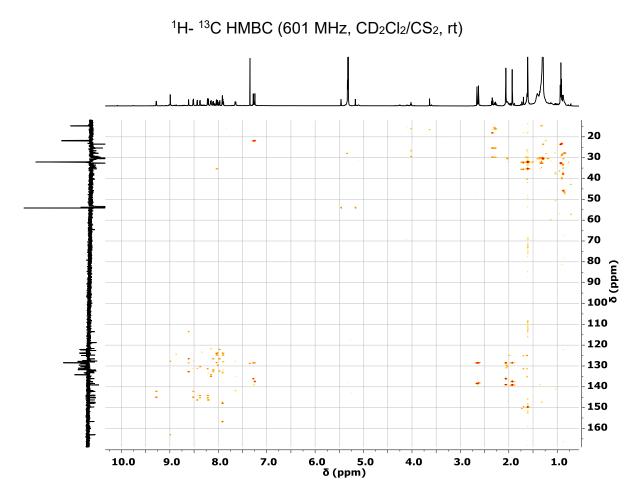


Figure S90. ¹H- ¹³C HMBC of Pyr-NDI-Pyr.

¹H- ¹H ROESY (601 MHz, CD₂Cl₂/CS₂, rt)

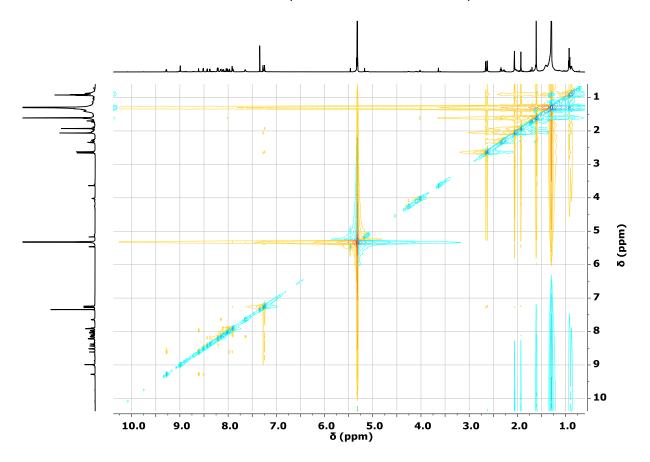
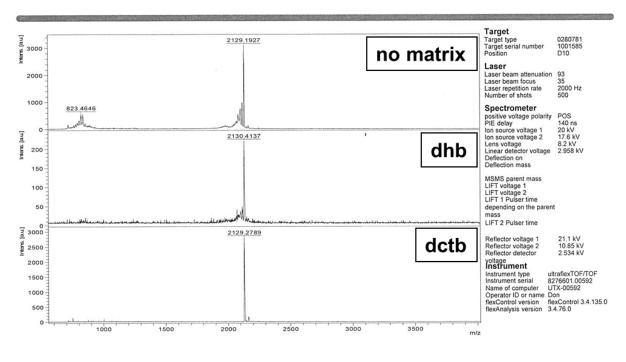



Figure S91. ¹H- ¹H ROESY of Pyr-NDI-Pyr.

MS (MALDI)

HRMS (MALDI)

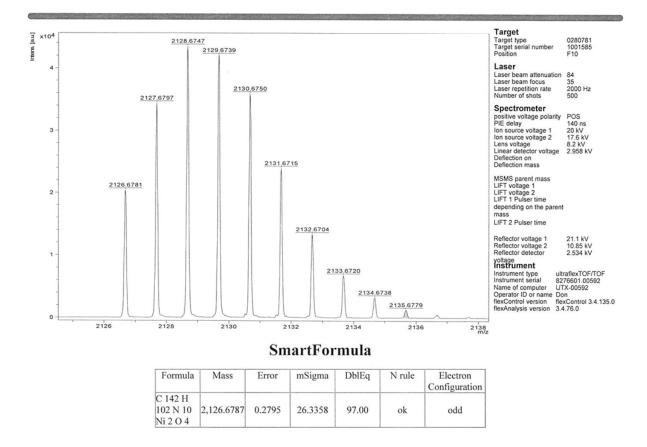


Figure S92. MS/HRMS (MALDI) of Pyr-NDI-Pyr.

¹H NMR (601 MHz, CD₂Cl₂/CS₂, rt)

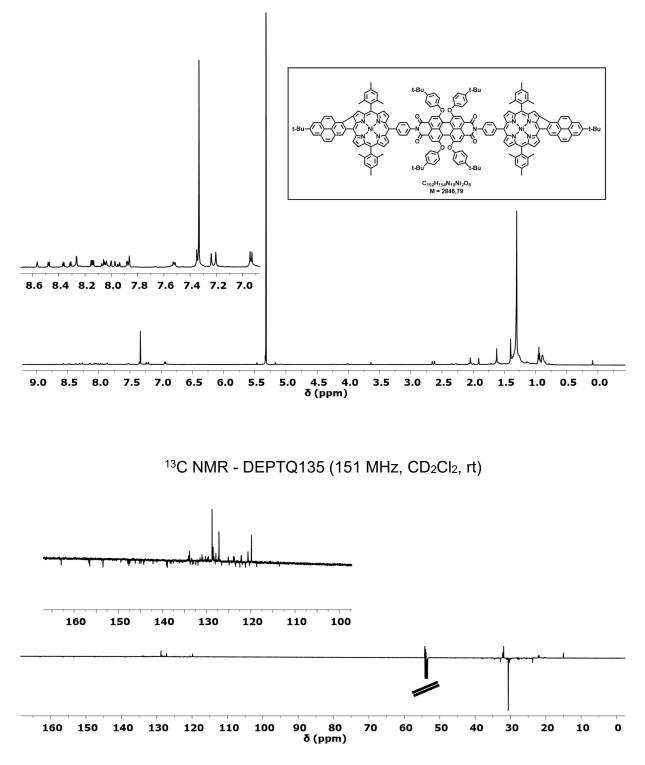


Figure S93. ¹H and ¹³C NMR (DEPTQ135) of Pyr-PDI-Pyr.

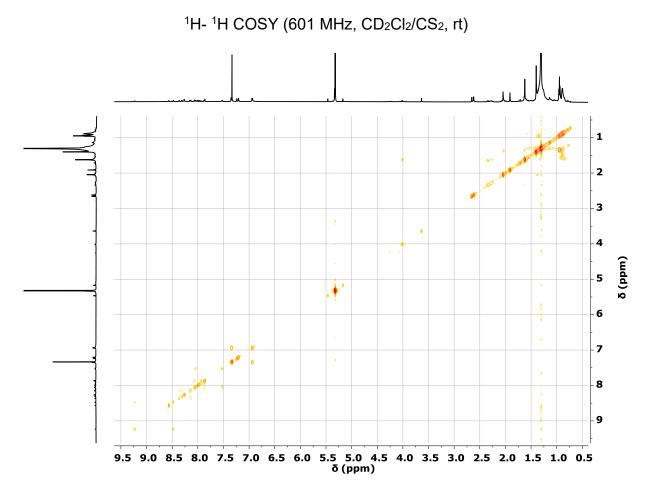


Figure S94. ¹H- ¹H COSY of Pyr-PDI-Pyr.

¹H- ¹³C HSQC (601 MHz, CD₂Cl₂/CS₂, rt)

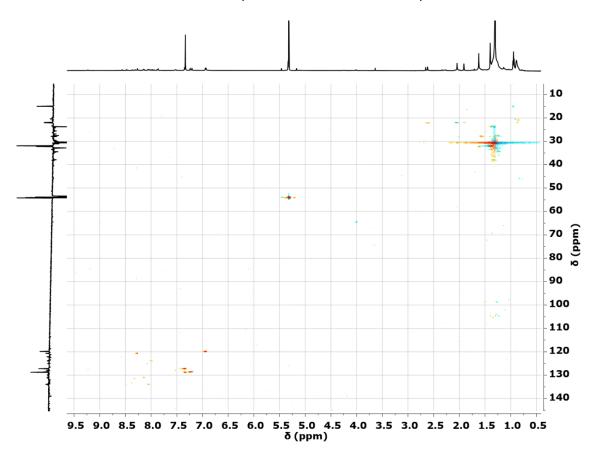


Figure S95. ¹H- ¹³C HSQC of Pyr-PDI-Pyr.

¹H- ¹³C HMBC (601 MHz, CD₂Cl₂/CS₂, rt)

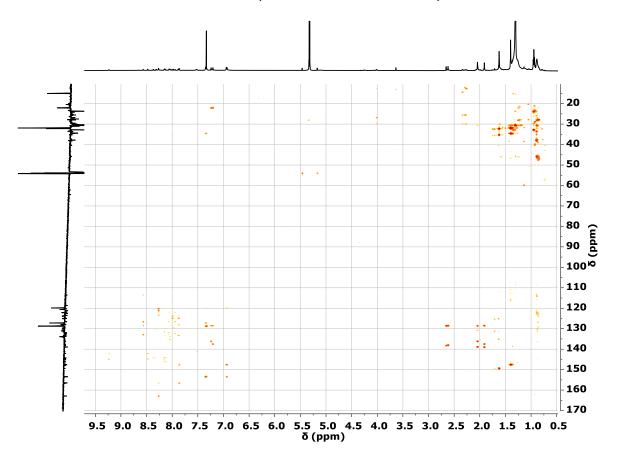


Figure S96. ¹H- ¹³C HMBC of Pyr-PDI-Pyr.

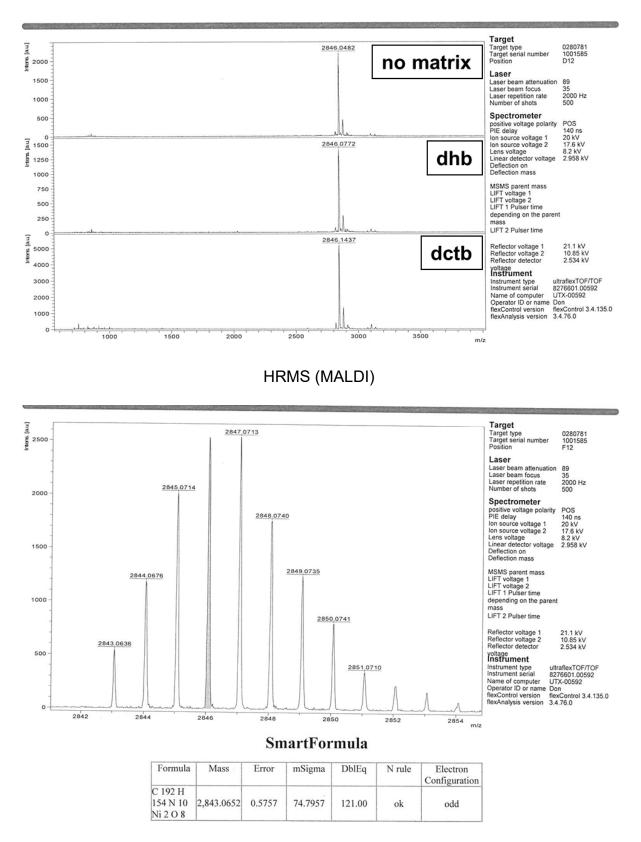


Figure S97. MS/HRMS (MALDI) of Pyr-PDI-Pyr.

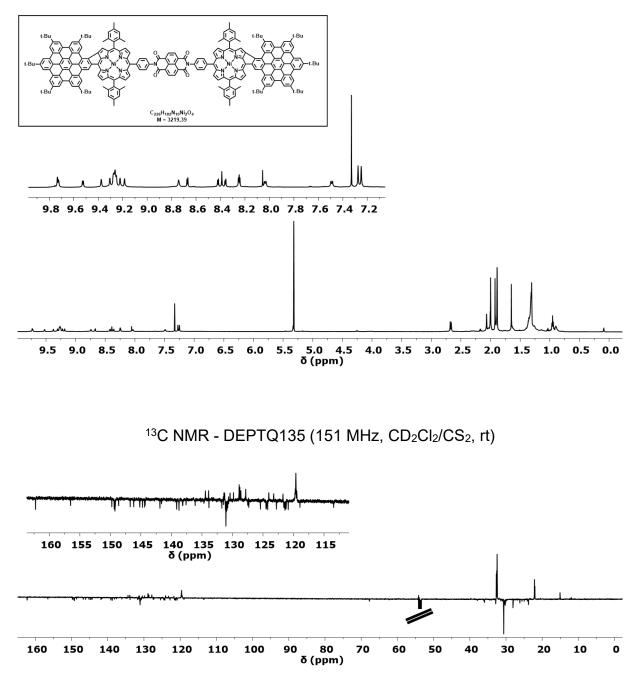


Figure S98. ¹H and ¹³C NMR (DEPTQ135) of HBC-NDI-HBC.

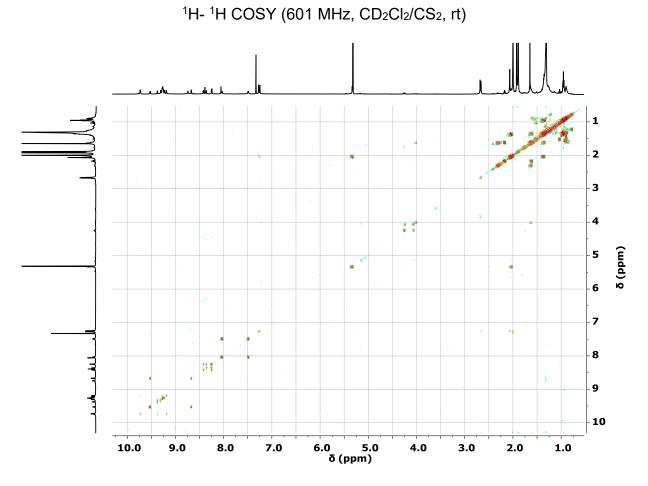


Figure S99. ¹H- ¹H COSY of HBC-NDI-HBC.

¹H- ¹³C HSQC (601 MHz, CD₂Cl₂/CS₂, rt)

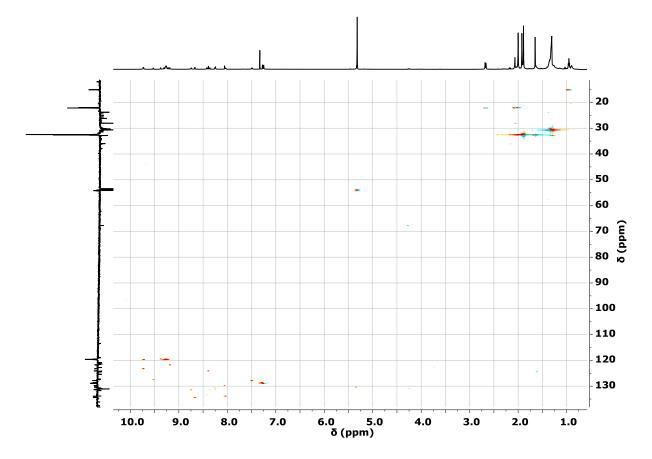


Figure S100. ¹H- ¹³C HSQC of HBC-NDI-HBC.

¹H- ¹³C HMBC (601 MHz, CD₂Cl₂/CS₂, rt)

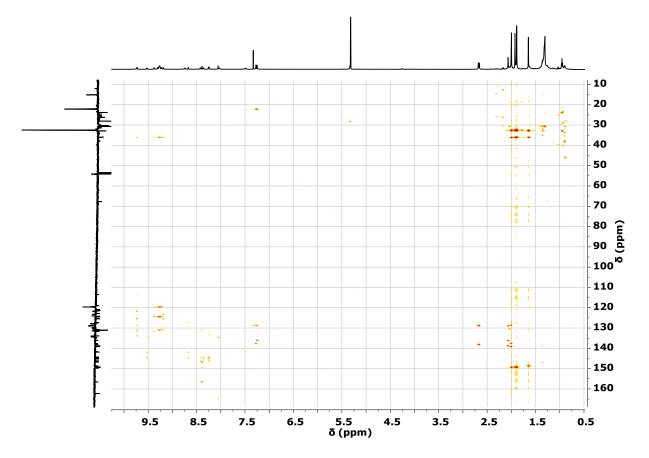


Figure S101. ¹H- ¹³C HMBC of HBC-NDI-HBC.

¹H- ¹H ROESY (601 MHz, CD₂Cl₂/CS₂, rt)

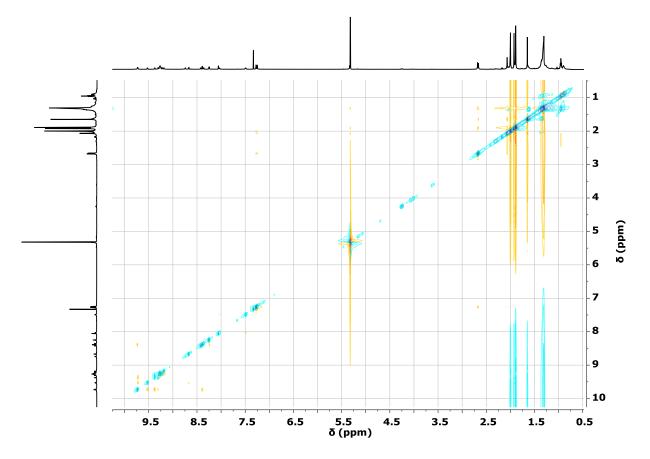


Figure S102. ¹H- ¹H ROESY of HBC-NDI-HBC.

HRMS (MALDI)

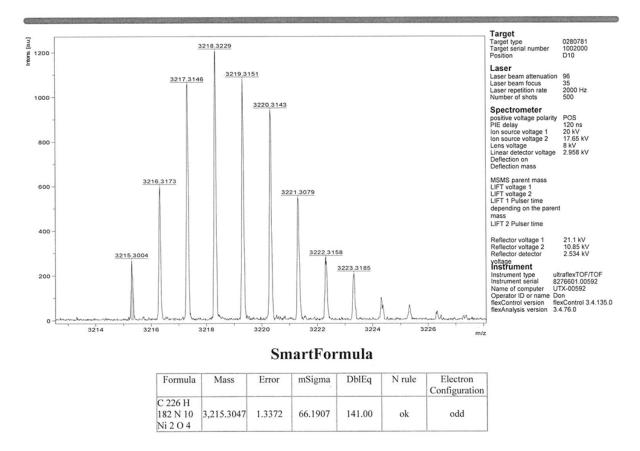


Figure S103. MS/HRMS (MALDI) of HBC-NDI-HBC.

¹H NMR (601 MHz, CD₂Cl₂/CS₂, rt)

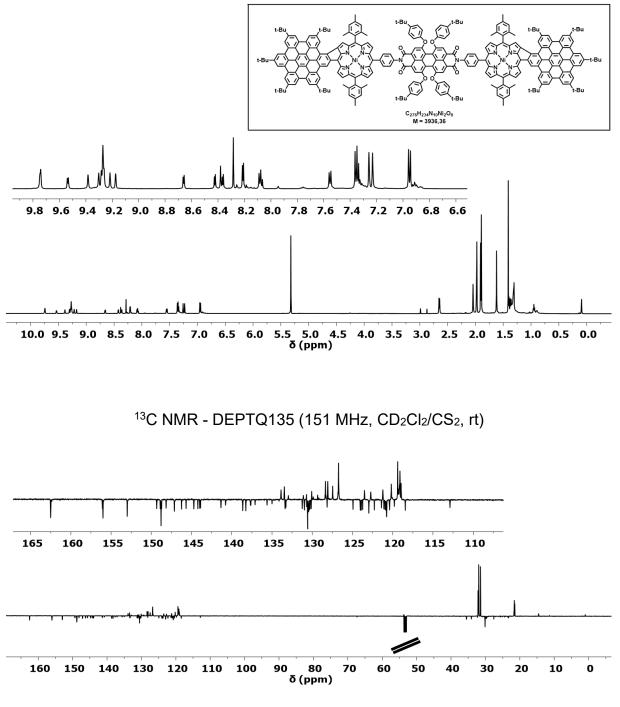
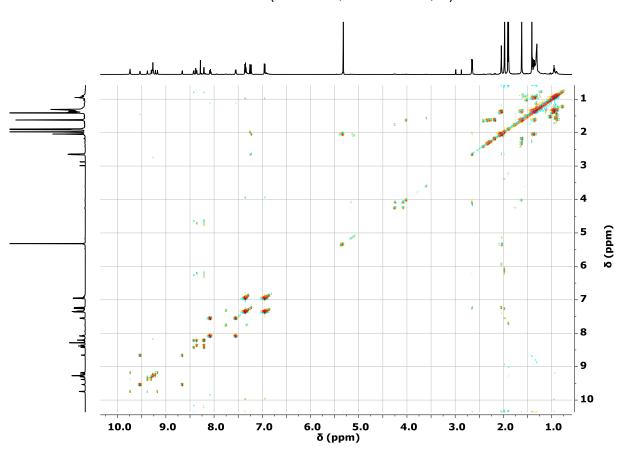



Figure S104. ¹H and ¹³C NMR (DEPTQ135) of HBC-PDI-HBC.

¹H- ¹H COSY (601 MHz, CD₂Cl₂/CS₂, rt)

Figure S105. ¹H- ¹H COSY of HBC-PDI-HBC.

¹H- ¹³C HSQC (601 MHz, CD₂Cl₂/CS₂, rt)

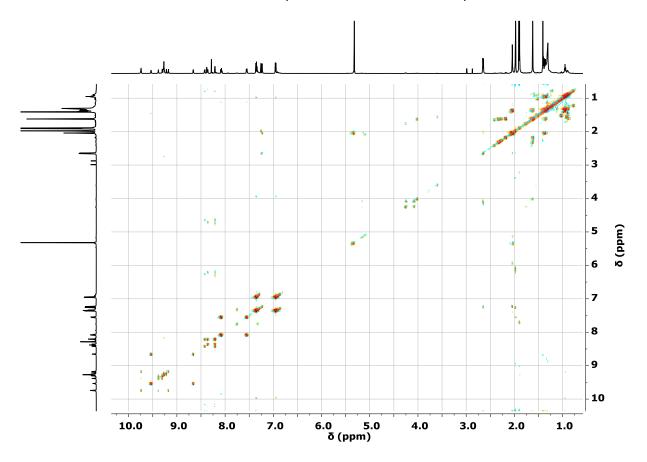


Figure S106. ¹H- ¹³C HSQC of HBC-PDI-HBC.

¹H- ¹³C HMBC (601 MHz, CD₂Cl₂/CS₂, rt) ...h. ...hu.....h 20 30 2 • • 40 50 60 70 80 90 (Had) 100 ko 110 120 ÷ ••• • τ. 130 11 وللمستعمية والمستعمل والمستعمل والمستعمل والمستعمل والمستعمل والمستعمل والمستعم والمستعم والمستعم والمستعم والم £ 2 140 -4 150 é • ••• 160 • 5.5 δ (ppm) 9.5 8.5 7.5 6.5 3.5 2.5 1.5 0.5 4.5

Figure S108. ¹H- ¹³C HMBC of HBC-PDI-HBC.

¹H- ¹H ROESY (601 MHz, CD₂Cl₂/CS₂, rt)

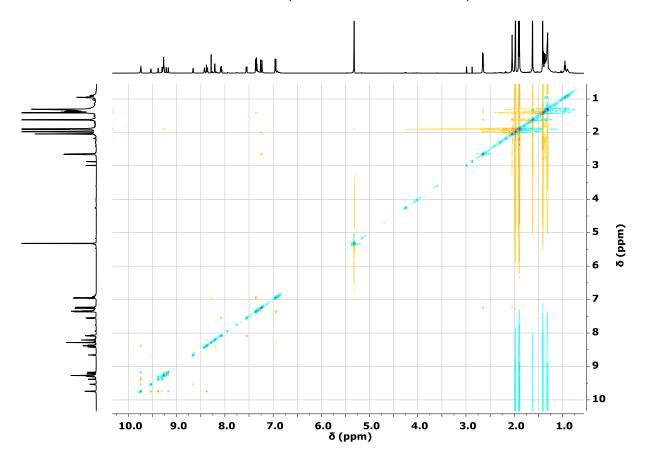


Figure S109. ¹H- ¹H ROESY of HBC-PDI-HBC.

MS (MALDI)



Figure S110. MS/HRMS (MALDI) of HBC-PDI-HBC.

UV/Vis Absorptions of the Key Precursors

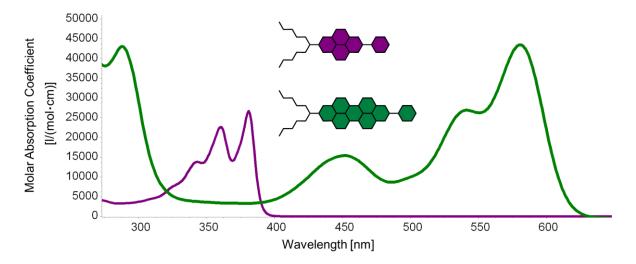


Figure S111. UV/Vis absorptions of I-NDI (purple) and I-PDI (green). Solvent: CH₂Cl₂

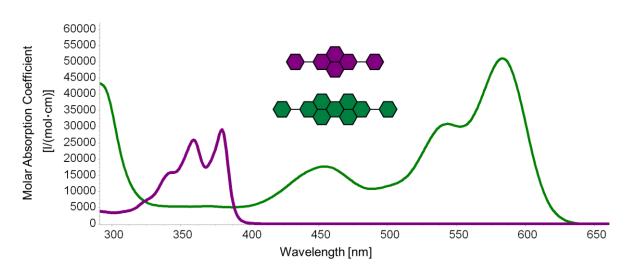


Figure S112. UV/Vis absorptions of I-NDI-I (purple) and I-PDI-I (green). Solvent: CH₂Cl₂

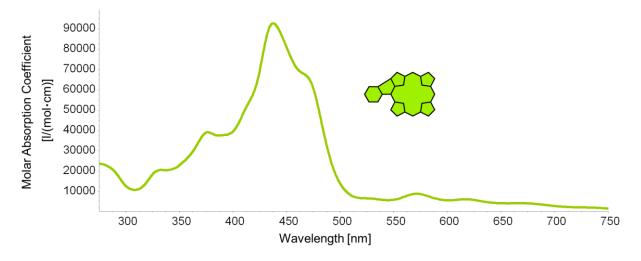


Figure S113. UV/Vis absorption of PhBpin. Solvent: CH₂Cl₂

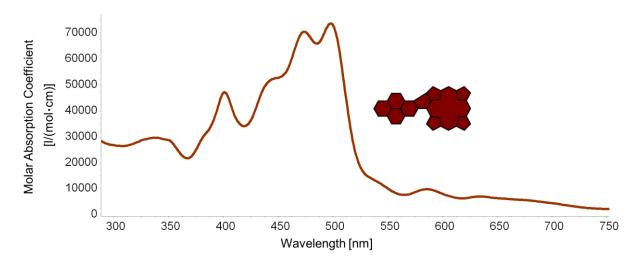


Figure S114. UV/Vis absorption of PyrBpin. Solvent: CH₂Cl₂

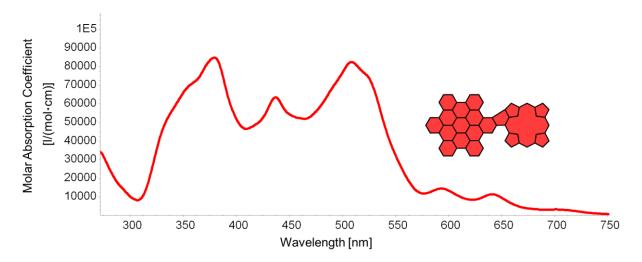


Figure S115. UV/Vis absorption of HBCBpin. Solvent: CH₂Cl₂

4 DFT Calculations

Geometries were relaxed using density-functional theory (DFT). The calculations were carried out with the plane-wave code PWScf of the Quantum Espresso software package,^[10] utilizing the gradient-corrected Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional,^[11] Grimme D3 dispersion correction with Becke-Johnson damping,^[12,13] Vanderbilt ultrasoft pseudopotentials,^[14] and a plane-wave basis set with a kinetic energy cutoff of 30 Ry. Structures were assumed to be relaxed when a force convergence threshold of 5 meV/Å was reached.

Electronic properties were determined with the ORCA code,^[15] using the B3LYP hybrid exchange-correlation functional,^[16,17] the triple-zeta def2-TZVPP basis set,^[18] and the RIJCOSX approximation with def2/J auxiliary basis functions.^[19] Solvation effects in DCM were taken into account by employing the implicit conductor-like continuum polarization model (C-PCM).^[15]

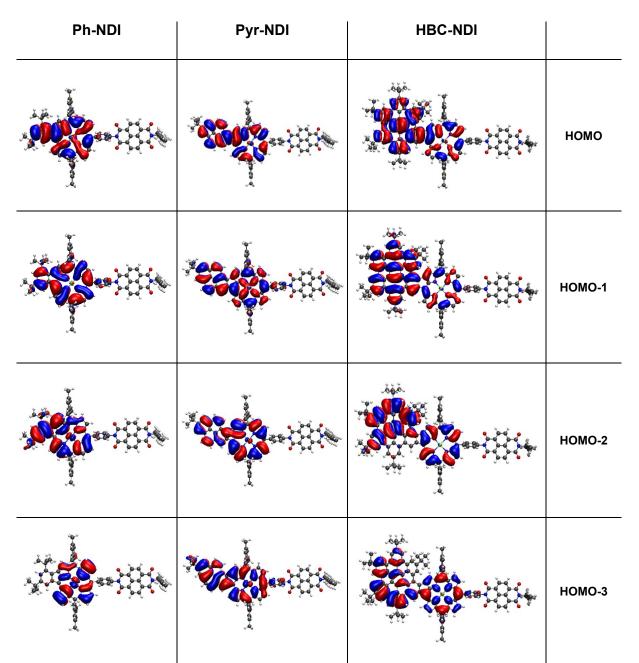


Figure S116. Geometry optimized structures and orbitals of Ph-NDI, Pyr-NDI, and HBC-NDI.

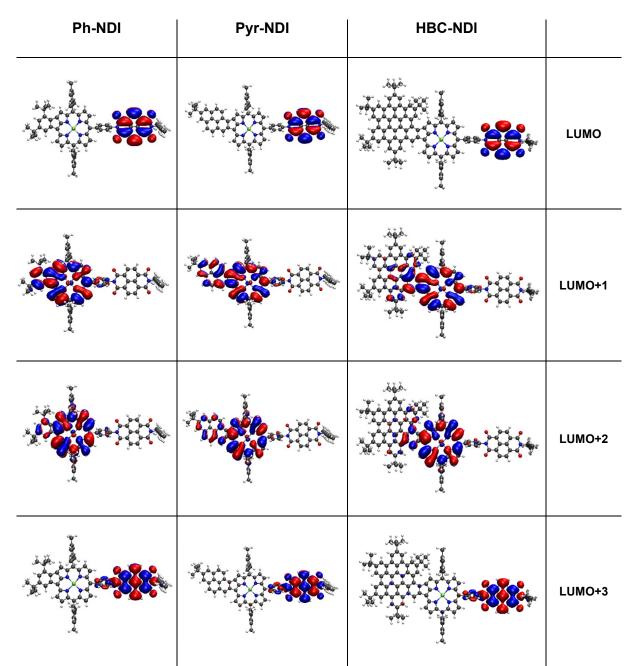


Figure S117. Geometry optimized structures and orbitals of Ph-NDI, Pyr-NDI, and HBC-NDI.

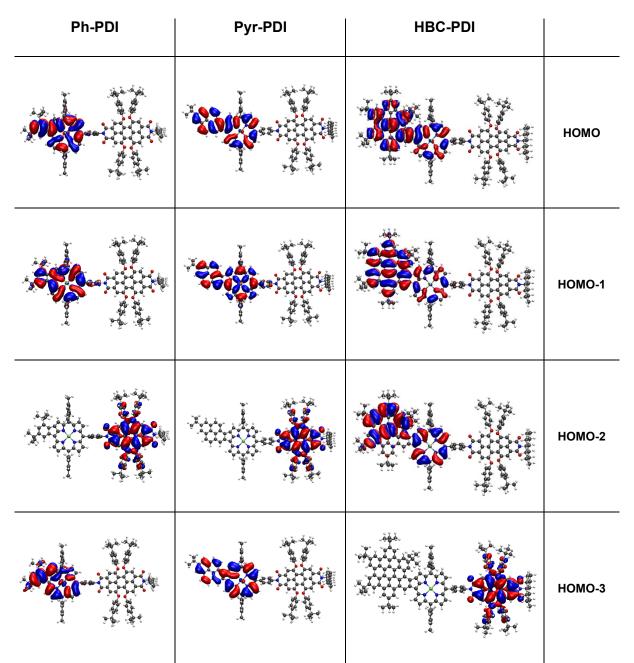


Figure S118. Geometry optimized structures and orbitals of Ph-PDI, Pyr-PDI, and HBC-PDI.

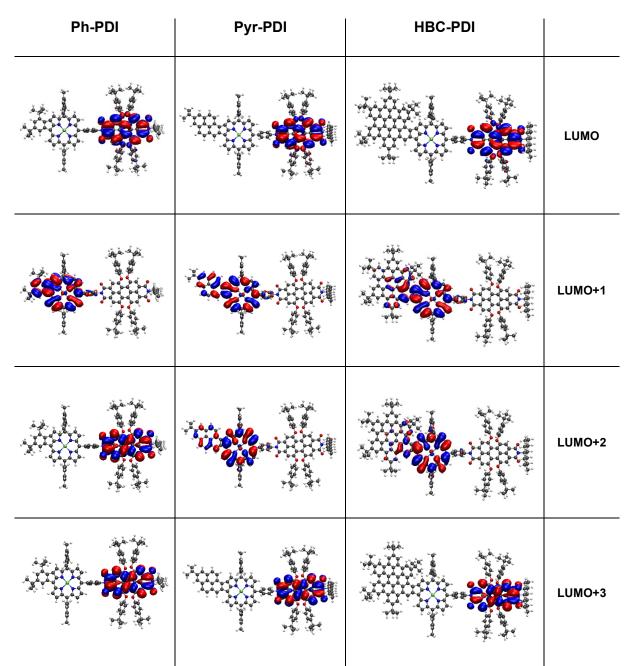


Figure S119. Geometry optimized structures and orbitals of Ph-PDI, Pyr-PDI, and HBC-PDI.

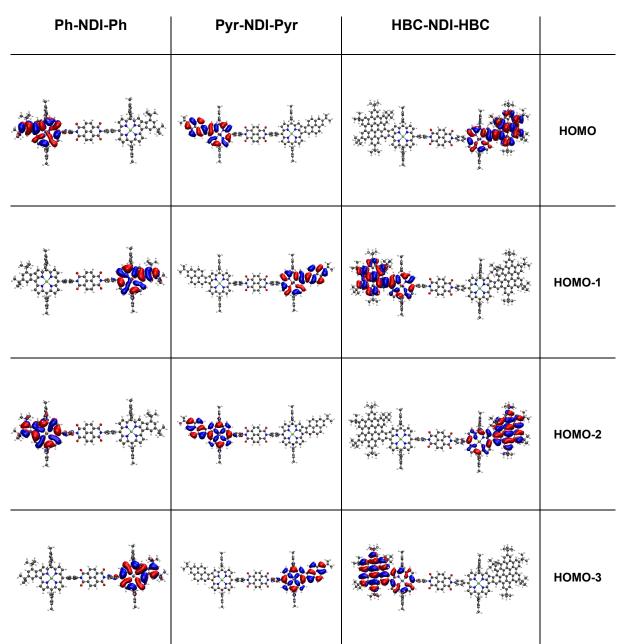


Figure S120. Geometry optimized structures and orbitals of Ph-NDI-Ph, Pyr-NDI-Pyr, and HBC-NDI-HBC.

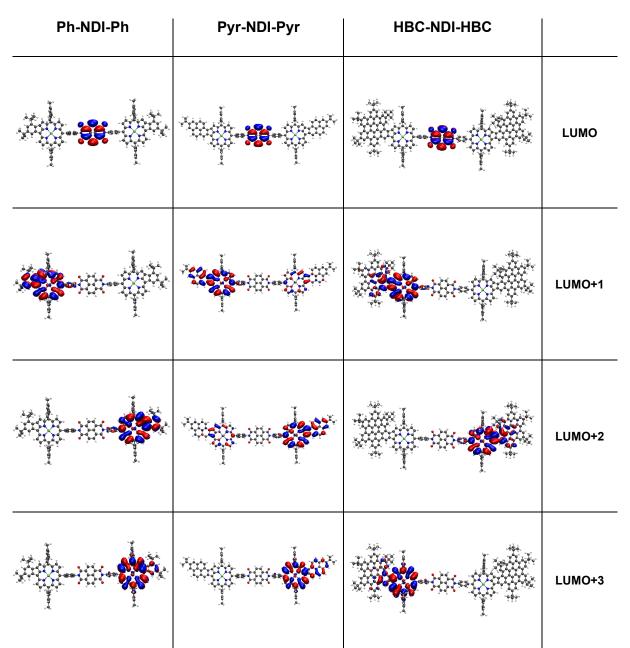


Figure S121. Geometry optimized structures and orbitals of Ph-NDI-Ph, Pyr-NDI-Pyr, and HBC-NDI-HBC.

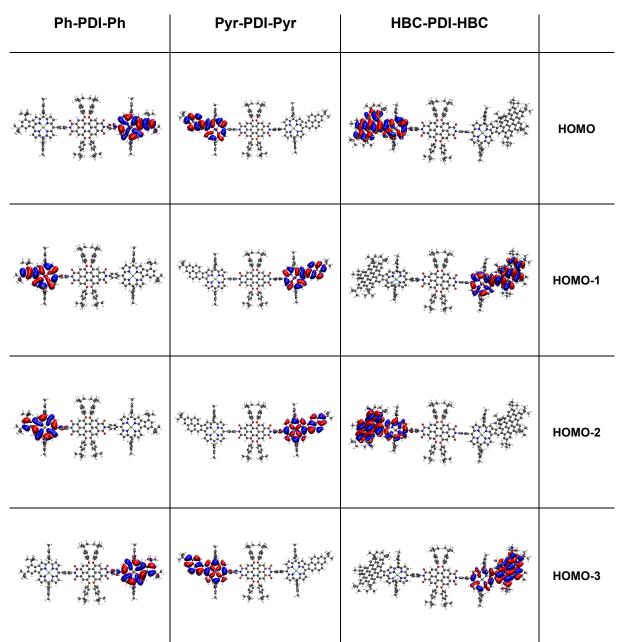


Figure S122. Geometry optimized structures and orbitals of Ph-PDI-Ph, Pyr-PDI-Pyr, and HBC-PDI-HBC.

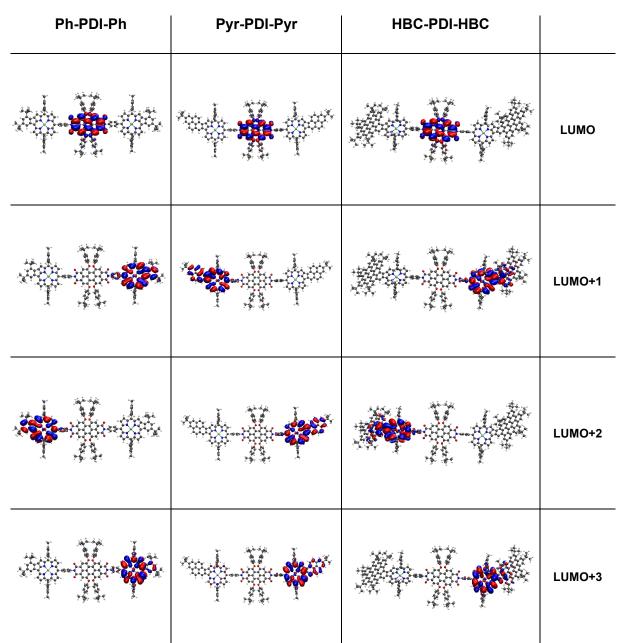


Figure S123. Geometry optimized structures and orbitals of Ph-PDI-Ph, Pyr-PDI-Pyr, and HBC-PDI-HBC.

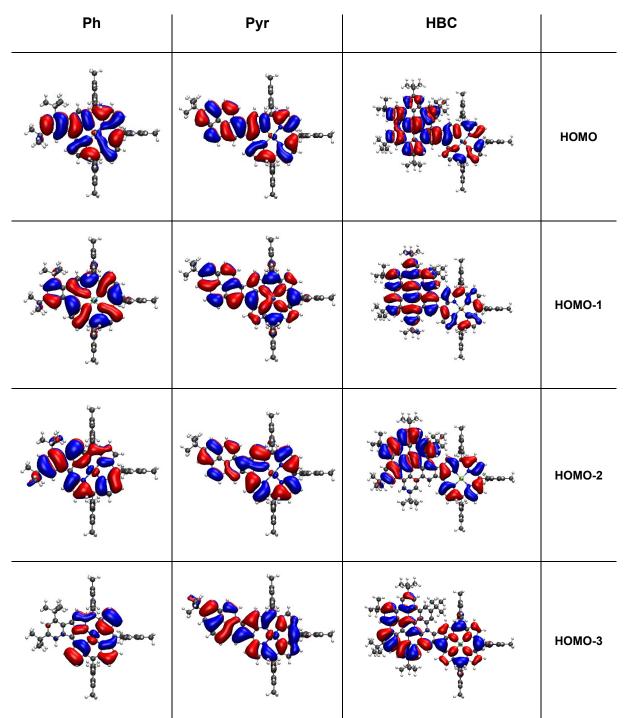


Figure S124. Geometry optimized structures and orbitals of Ph, Pyr, and HBC.

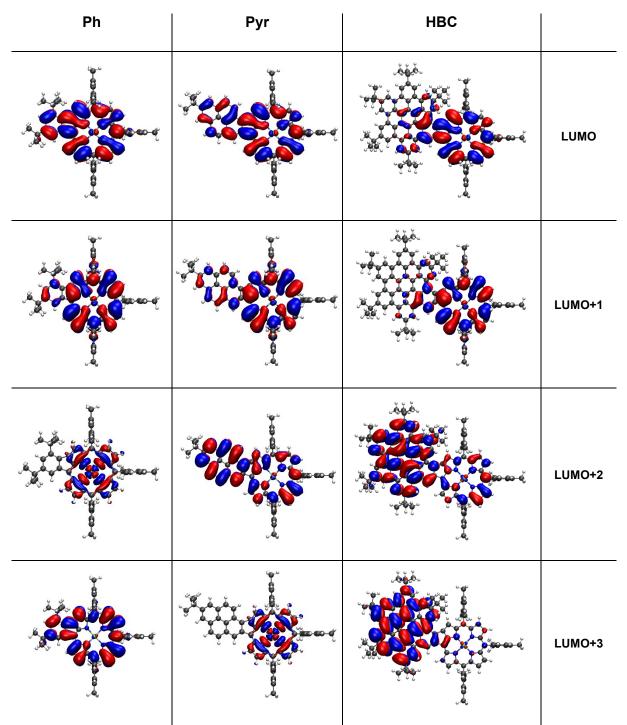


Figure S125. Geometry optimized structures and orbitals of Ph, Pyr, and HBC.

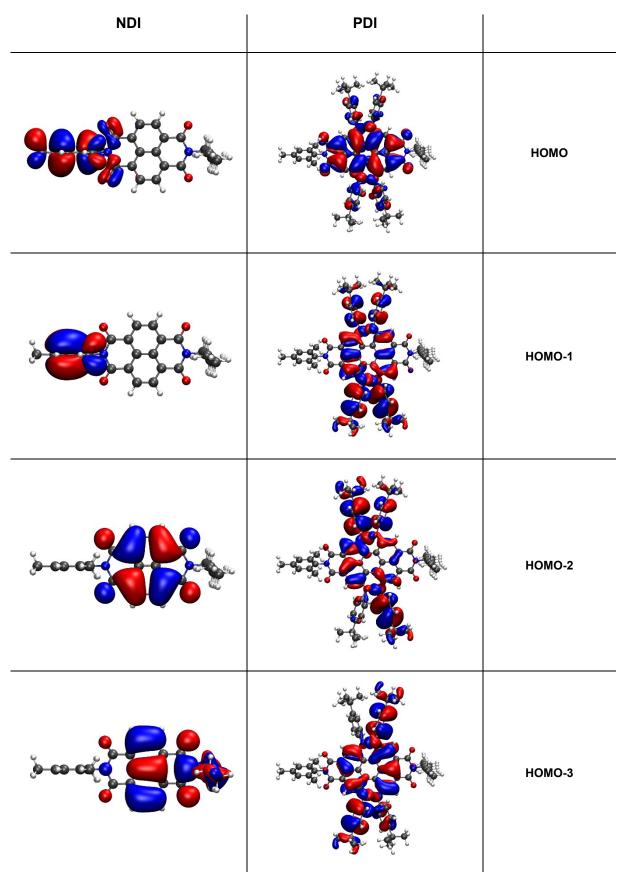


Figure S126. Geometry optimized structures and orbitals of NDI and PDI.

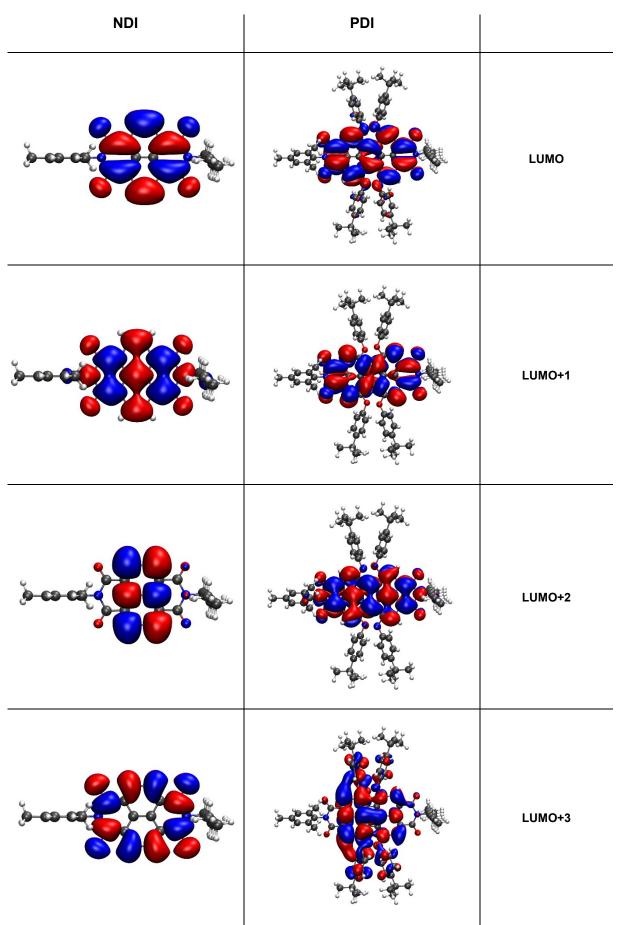


Figure S127. Geometry optimized structures and orbitals of NDI and PDI.

	Ph-NDI	Pyr-NDI	HBC-NDI	Ph-PDI	Pyr-PDI	HBC-PDI
Orbital	Energy (eV)					
HOMO-3	-6.354	-6.275	-5.608	-5.990	-5.773	-5.567
HOMO-2	-5.999	-5.777	-5.504	-5.565	-5.571	-5.499
HOMO-1	-5.517	-5.395	-5.255	-5.511	-5.394	-5.248
HOMO	-5.213	-5.131	-5.061	-5.203	-5.127	-5.057
LUMO	-3.548	-3.550	-3.557	-3.370	-3.372	-3.375
LUMO+1	-2.781	-2.870	-2.885	-2.768	-2.858	-2.873
LUMO+2	-2.496	-2.556	-2.560	-2.485	-2.545	-2.549
LUMO+3	-1.864	-1.868	-1.872	-2.189	-2.193	-2.194
GAP	1.665	1.581	1.504	1.833	1.754	1.682

Table S1. Energy eigenvalues of selected orbitals of Ph-NDI, Pyr-NDI, HBC-NDI, Ph-PDI, Pyr-PDI, and HBC-PDI.

Table S2. Energy eigenvalues of selected orbitals of Ph-NDI-Ph, Pyr-NDI-Pyr, HBC-NDI-HBC, Ph-PDI-Ph, Pyr-PDI-Pyr, and HBC-PDI-HBC.

	Ph-NDI-Ph	Pyr-NDI-Pyr	HBC-NDI-HBC	Ph-PDI-Ph	Pyr-PDI-Pyr	HBC-PDI-HBC
Orbital	Energy (eV)					
HOMO-3	-5.525	-5.406	-5.255	-5.511	-5.389	-5.250
HOMO-2	-5.524	-5.406	-5.254	-5.506	-5.389	-5.248
HOMO-1	-5.213	-5.134	-5.060	-5.205	-5.127	-5.054
НОМО	-5.212	-5.133	-5.059	-5.201	-5.126	-5.053
LUMO	-3.607	-3.615	-3.616	-3.405	-3.409	-3.405
LUMO+1	-2.783	-2.869	-2.886	-2.771	-2.857	-2.877
LUMO+2	-2.782	-2.869	-2.884	-2.766	-2.856	-2.873
LUMO+3	-2.496	-2.556	-2.561	-2.486	-2.545	-2.550
GAP	1.604	1.518	1.443	1.795	1.717	1.648

Table S3. Energy eigenvalues of selected orbitals of Ph, Pyr, HBC, NDI, and PDI.

67 6					
	Ph	Pyr	НВС	NDI	PDI
Orbital	Energy (eV)				
HOMO-3	-6.333	-6.264	-5.595	-7.545	-6.288
HOMO-2	-5.981	-5.757	-5.493	-7.015	-6.219
HOMO-1	-5.497	-5.383	-5.247	-6.683	-6.000
НОМО	-5.192	-5.116	-5.052	-6.644	-5.560
LUMO	-2.750	-2.841	-2.858	-3.525	-3.359
LUMO+1	-2.466	-2.527	-2.533	-1.817	-2.182
LUMO+2	-1.614	-1.761	-1.825	-1.283	-1.798
LUMO+3	-1.312	-1.657	-1.797	-1.262	-1.031
GAP	2.442	2.275	2.194	3.118	2.201

5 References

- Q. Chen, L. Brambilla, L. Daukiya, K. S. Mali, S. de Feyter, M. Tommasini, K. Müllen, A. Narita, *Angew. Chemie, Int. Ed. Engl.* 2018, *57*, 11233.
- [2] R. Mishra, R. Regar, R. Singhal, P. Panini, G. D. Sharma, J. Sankar, *J. Mater. Chem. A* 2017, *5*, 15529.
- [3] D. N. Coventry, A. S. Batsanov, A. E. Goeta, J. A. K. Howard, T. B. Marder, R. N. Perutz, *Chem. Commun.* 2005, 2172.
- [4] E. K. Perttu, M. Arnold, P. M. Iovine, *Tetrahedron* 2005, 46, 8753.
- [5] M. M. Martin, D. Lungerich, P. Haines, F. Hampel, N. Jux, Angew. Chemie, Int. Ed. Engl. 2019, 58, 8932.
- [6] M. M. Martin, C. Dusold, A. Hirsch, N. Jux, *J. Porphyrins Phthalocyanines* 2020, 24, 268.
- [7] E. L. Spitler, J. W. Colson, F. J. Uribe-Romo, A. R. Woll, M. R. Giovino, A. Saldivar, W. R. Dichtel, Angew. Chemie, Int. Ed. Engl. 2012, 51, 2623.
- [8] E. J. Schulze, C. L. Ritterhoff, E. Franz, O. Tavlui, O. Brummel, B. Meyer, A. Hirsch, *Chem. Eur. J.* 2024, *30*, e202303515.
- [9] F. Schlosser, M. Moos, C. Lambert, F. Würthner, Adv. Mater. 2013, 25, 410.
- [10] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo *et al.*, *J. Phys. Condens. Matter* **2009**, *21*, 395502.
- [11] J. P. Perdew, K. Burke, M. Ernzerhof, *Phys. Rev. Lett.* **1996**, *77*, 3865–3868.
- [12] S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456–1465.
- [13] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- [14] D. Vanderbilt, *Phys. Rev. B* **1990**, *41*, 7892–7895.
- [15] F. Neese, WIREs Comput. Mol. Sci. 2012, 2, 73–78.
- [16] A. D. Becke, J. Chem. Phys. 1993, 98, 1372–1377.
- [17] C. Lee, W. Yang, R. G. Parr, *Phys. Rev. B* 1988, 37, 785–789.
- [18] F. Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys.* 2005, 7, 3297.
- [19] F. Neese, F. Wennmohs, A. Hansen, U. Becker, *Chem. Phys.* 2009, 356, 98– 109.