Cu/Cu₂O/NH₂-MIL-88B (Fe) heterojunction as the photocatalyst to

remove hexavalent chromium heavy metal ions in water

Chemicals

2-aminoterephthalic acid (NH₂-BDC), ferric chloride hexahydrate (FeCl₃·6H₂O), Copper nitrate (Cu(NO₃)₂), potassium dichromate (K₂Cr₂O₇), diphenylcarbazide (DPC), N,N-dimethylformamide (DMF), ethanol (CH₃CH₂OH), and methanol (CH₃OH), hydrochloric acid (HCl) were supplied by Sinopharm Chemical Reagents Limited Company and used as original form without further purification.

Characterization

The X-ray diffraction (XRD, Germany) was recorded with a LabX-6000 X-ray diffractometer. The infrared spectra were obtained by Nicolets50 Fourier transform infrared spectrometer (FT-IR, America). The morphology and microstructure of the samples were analyzed via a scanning electron microscope (SEM, S-4800, Japan) and energy dispersive X-ray (EDX) spectrometer. Also, it was characterized by a transmission electron microscope (TEM) and a high-resolution TEM (HR-TEM) using a JEM2100 transmission electron microscope (TEM, JEOL) operating at 200 kV. The N₂ adsorption-desorption isotherm and Brunauer-Emmett-Teller (BET, America) method were used to test the porous nature and surface area with Autosorb-IQ-XR. The X-ray photoelectron spectroscopy measurements were investigated, using an ESCALAB250 X-ray electron spectrometer with Al Ka (1486.6 eV) and Mg Ka (1253.6 eV) (XPS, America). The UV-vis absorption spectra of samples were recorded by the Lambda35 UV-visible spectrophotometer (DRS, America). The photocatalytic experiments were carried out under 300W Xe lamps (CeauLight CEL-S500) with a cutoff filter of 420nm.

Photocatalytic activity test

At room temperature, 10 mg of catalyst was added to 50 mL of Cr(VI) (20 mg·mL⁻¹) aqueous solution to study the photocatalytic activity, ethanol was added to the solution as hole trapping agent and the pH value was varied to 2 by adding HCl solution. The pH of the solution was adjusted to the desired value with diluted aqueous HCl and NaOH. Firstly, the mixed solution was stirred in the darkness. Take a certain amount of solution to centrifuge at regular intervals. The supernatant was filtered with a 0.22 µm syringe filter to remove suspended catalyst particles. After a certain period, it is proved that adsorption-desorption equilibrium was reached when the concentration of Cr (VI) solution did not change with time in the darkness. Then, the suspension was irradiated with a 300w Xe lamp with a UV-cutoff filter ($\lambda > 420$ nm), and a certain amount of solution was taken at intervals for centrifugation, filtration, and detection. The filtered solution was measured with a UV-vis spectrophotometer for the absorbance of the DPC-Cr (VI) complex at 540 nm. At the same wavelength, the concentration of Cr (VI) was calculated according to Beer-Lambert Law. And the corresponding adsorption-reduction efficiency of Cr (VI) was calculated following the formula:

Adsorption - reduction efficiency (%) = $C/C_0 \times 100\%$

Here, C: concentration of Cr (VI). C_0 : initial concentration of Cr (VI). And the concentration of total Cr was determined by inductively coupled plasma (ICP).

Fig. S1 TEM and Mapping images of Cu/Cu₂O/NH₂-MIL-88B (Fe) (15 wt.%)

Samples	Surface area (m ² ·g ⁻¹)
NH ₂ -MIL-88B (Fe)	556.49
Cu/Cu ₂ O/NH ₂ -MIL-88B (Fe) (15 wt.%)	461.84

Tab. S1 BET table of Cu/Cu₂O/NH₂-MIL-88B (Fe) (15 wt.%) and NH₂-MIL-88B (Fe)

Fig. S2 XPS spectra of N 1s (a) and O 1s (b) of Cu/Cu₂O/NH₂-MIL-88B (Fe) (15 wt.%) samples

Fig. S4 XPS Valence band spectra of Cu/Cu2O/NH2-MIL-88B (Fe) (15 wt.%) samples

Wt.%) samples					
Element	Core level	Position (eV)	Elem. comp.	Elem.distribution	
			(At %)	(wt.%)	
С	1s	281.31	46.91	24.09	
Ν	1s	395.97	4.66	2.79	
О	1s	528.39	25.89	17.72	
Fe	2p	708.30	18.49	44.31	
Cu	2p	930.88	4.05	11.09	

Tab. S2 Surface elemental and % distribution of Cu/Cu₂O/NH₂-MIL-88B (Fe) (15 wt.%) samples

Samples	k / min ⁻¹	R ²
No Light	0.00202	0.80261
No Catalyst	-0.00018	0.94466
NH ₂ -MIL-88B (Fe)	0.00675	0.99541
Cu/Cu ₂ O/NH ₂ -MIL-88B (Fe) (15 wt.%)	0.01863	0.98479

Tab. S3 k and R² of photocatalytic reduction of Cr (VI) under different conditions

Fig. S5 XRD spectra (a) and FT-IR spectra (b) of Cu/Cu2O/NH2-MIL-88B (Fe) samples after experiment

Fig. S6 Active species capture analysis

