Supporting Information

Impact of pre-crosslinks on the self-transformation performance of thermoplastic polyesters into vitrimers via intermolecular transesterification

Yuhka Shimizu, Mikihiro Hayashi*

Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku Nagoya 466-8555, Japan

- 1. Feed ratio
- 2. Summary of gel fraction
- 3. SEC data
- 4. ¹H-NMR of polyesters
- 5. Temperature-sweep rheology
- 6. Rheology data for P-30
- 7. ¹H-NMR of starting monomers
- 8. Isothermal time-resolved rheology data at other temperatures
- 9. Plot of $T_{\rm g}$
- 10. TGA thermograms

1. Feed ratio

The actual feed mole ratio and feed weight ratio are summarized in Table S1.

		2-SH	2-epoxy	4-epoxy
D O	mole ratio	100	100	0
F-0	weight ratio	10.0	14.3	0
D 5	mole ratio	100	90	5
P-5	weight ratio	10.0	12.9	0.9
D 10	mole ratio	100	80	10
P-10	weight ratio	10.0	11.4	1.8
D 20	mole ratio	100	60	20
P-20	weight ratio	10.0	8.6	3.5

Table S1. The feed mole ratio and feed weight ratio

2. Summary of gel fraction

Sample	Gel fraction	
P-0	0	
P-5	0	
P-10	0	
P-20	63	
P-30	76	

Table S2. Summary of gel fraction for polymers

Table S3. Summary of gel fraction for cross-linked polymer

Sample	Gel fraction	
CL-0	96	_
CL-5	97	
CL-10	98	
CL-20	100	
CL-30	100	
	1 0 1 1 1 1 - 0	~~ ~

*) The values are for the samples after heating at 170 $^{\circ}\mathrm{C}$ for 24h. .

3. SEC data

The number average molecular weight (M_n), weight average molecular weight (M_w), and polydispersity index (D) were determined using size exclusion chromatography (SEC). The setup was composed of an LC20AD pump system and a RID-20A RI detector (SHIMADZU), where Shodex-gel columns, K-803, K-804, and K-805 (Shodex) were attached. The column temperature was 40 °C, and DMF containing LiBr (0.05 wt%) was used as an eluent at an elution rate of 1.0 mL/min. The standard series of poly(methyl methacrylate) was used for the estimation. SEC data for P-0, P-5, and P-10 are summarized in Figure S1. The values of M_n , M_w and D are summarized in Table S4.

Figure S1. SEC spectra for P-0, P-5, and P-10.

Table S4. Characteristics of polyesters

Sample	M _n	$M_{ m w}$	Đ
P-0	6700	11000	1.7
P-5	7900	14000	1.8
P-10	8000	22000	2.7

4. ¹H-NMR of polyesters

¹H-NMR was measured for the polyesters. The measurement was performed in dimethyl sulfoxide- d_6 with a Bruker Analytik DPX400 spectrometer (400 MHz). Each signal with a different alphabet corresponds to the protons with the same alphabet in the chemical structures shown in the figure.

Figure S2. ¹H-NMR for polyesters, P-0, P-5, and P-10. The signals in the spectra correspond to the protons with the same alphabet in the chemical structures.

	e			Ũ		1	
	a+d+e+p+r	b+u	c+t	f+q	g+h+i+l+m+n	j+k	v
P-0	5.7	4.5	4.5	1.8	11.5	4.0	7.4
P-5	5.4	4.1	4.0	1.6	11.1	4.0	6.9
P-10	5.3	3.8	3.9	1.5	11.4	4.0	6.7

Table S5. Integral ratio of characteristic signals in the ¹H-NMR spectra

5. Temperature-sweep rheology

Individual data of temperature-sweep rheology for polyesters are provided in Figure S3.

Figure S3. Temperature-sweep rheology data for the polyesters with different fractions of 4-epoxy, i.e., (a) P-0, (b) P-5, (c) P-10, (d) P-20.

		•	1	
	P-0	P-5	P-10	P-20
$T_{\rm flow}(^{\circ}{ m C})$	68	82	97	119

Table S6. Summary of flow temperature

6. Rheology data for P-30

Figure S4 provides a temperature-ramp rheology data for P-30. Unlike other samples with lower fractions of 4-epoxy, P-30 did not exhibit distinct flow region with loss modulus G'' > storage modulus G'. Instead, G' and G'' were always close at high temperature region, which is a characteristic of the polymer near the percolation threshold. Figure S5 represents frequency sweep for P-30 obtained at 80 °C and 90 °C. It has been known that the sample should represent $G' \sim G'' \sim \omega^n$ at the percolation threshold.^{S1,S2} Thus, these data indicate that P-30 was very close to the percolated network.

Figure S4. Temperature-sweep rheology data for P-30.

Figure S5. Frequency-sweep rheology data for P-30 at (a) 80 °C and (b) 90 °C.

- S1) H. H. Winter, F. Chambon, J. Rheol., 1986, 30, 367-382.
- S2) H. H. Winter, M. Mours, Adv. Polym. Sci., 1997, 134, 167.

7. ¹H-NMR of starting monomers

¹H-NMR was measured for the starting monomers, 2-epoxy, 4-epoxy, and 2-SH, to investigate the presence of impurities. The measurement was performed in dimethyl sulfoxide- d_6 with a Bruker Analytik DPX400 spectrometer (400 MHz). Each signal with a different alphabet corresponds to the protons with the same alphabet in the chemical structures shown in the figure.

Figure S6. ¹H-NMR spectrum for 2-epoxy. The signals in the spectra correspond to the protons with the same alphabet in the chemical structures.

Table 37. Integral fatto of characteristic signals of 2-epoxy						
Signal	а	b	С	d	е	f
Integral ratio	3.9	1.9	3.9	4.3	4.3	6.4

Table S7. Integral ratio of characteristic signals of 2-epoxy

Figure S7. ¹H-NMR spectrum for 4-epoxy. The signals in the spectra correspond to the protons with the same alphabet in the chemical structures.

Table S8. Integral ratio of characteristic signals of 4-epoxy

Signal	g+h	i+1	j	k
Integral ratio	11.9	9.9	4.0	4.0

Figure S8. ¹H-NMR spectrum for 2-SH. The signals in the spectra correspond to the protons with the same alphabet in the chemical structures.

Table S9. Integral ratio of characteristic signals of 2-SH

Signal	m	n+p	q
Integral ratio	1.7	8.2	4.0

8. Isothermal time-resolved rheology data at other temperatures

Figure S9 represents the isothermal time-resolved rheology data at 150 °C and 130 °C. Figure S10 then summarizes the variation of t_{gel} as function of X in P-X (i.e., the fraction of 4epoxy) obtained from results at different temperatures.

Figure S9. Isothermal time-resolved rheology data measured at (a) 150 °C and (b) 130 °C for 24 h. In the right side, the expanded data are provided for clearer comparison of the cross-point of G' and G''. The translucent circle represents the cross-point of G' and G''.

Figure S10. Variation of t_{gel} as function of X in P-X (i.e., the fraction of 4-epoxy) obtained from results at different temperatures.

	P-0	P-5	P-10	P-20
$t_{\rm gel}(\min)$	876	725	526	167

Table S10. Summary of t_{gel} in heating at 130 °C

Table S11. Summary of t_{gel} in heating at 150 °C

	P-0	P-5	P-10	P-20
$t_{\rm gel}(\min)$	337	202	114	53

Table S12. Summary of t_{gel} in heating at 170 °C

	P-0	P-5	P-10	P-20
$t_{\rm gel}(\min)$	79	53	45	20

9. Plot of $T_{\rm g}$

Figure S11 summarized the change of T_g as a function of heating time (t_{heat}) at 170 °C. The DSC thermograms of 2nd heating are provided in Figure S12. The Tg values are summarized in Table S13.

Figure S11. Variation of glass transition temperature (T_g) as a function of heating time (t_{heat}) at 170 °C.

Figure S12. Summary of 2nd heating DSC thermograms for (a) P-0, (b) P-5, (c) P-10, and (d) P-20 series with various t_{heat} .

<i>t</i> _{heat} (h)	$T_{\rm g}(^{\rm o}{\rm C})$			
	P-0 series	P-5 series	P-10 series	P-20 series
0	3.5	5.3	6.9	11.7
2	5.3	8.1	10.1	10.7
8	11.2	11.6	18.4	19.1
16	19.9	21.9	22.9	23.3
24	20.0	20.6	21.7	24.4

Table S13. Summary of T_g for the sample after heating at 170 °C for various t_{heat}

10. TGA thermograms

Figure S13 represents TGA thermograms for the cross-linked samples, where the cross-linking was performed by heating at 170 $^{\circ}$ C for 24 h.

Figure S13. TGA thermograms measured for the sample cross-linked at 170 °C for 24h.