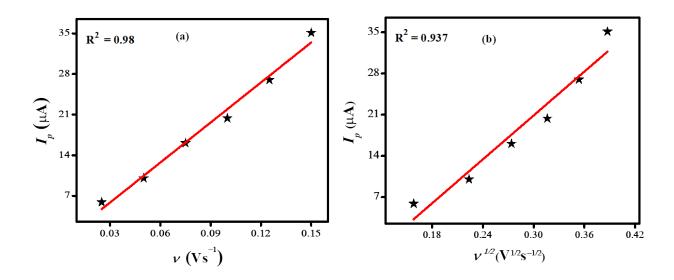
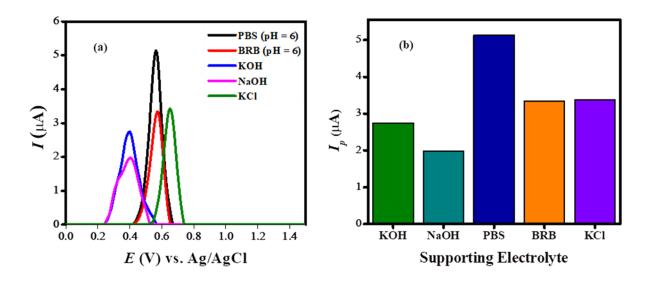
## Nanosensor for the Detection of Bromothymol Blue Dye and its Removal from Wastewater by Sustainable Methods

Nashra Sheraza, Afzal Shaha\*, Syed Sakhawat Shaha

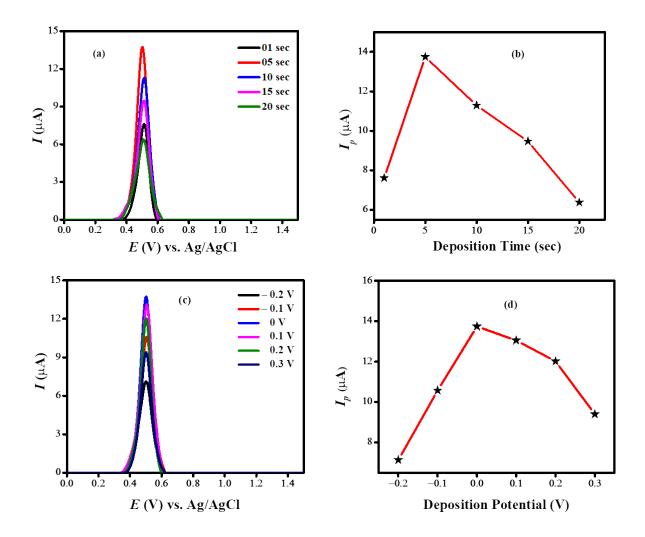
<sup>a</sup>Department of Chemistry Quaid-i-Azam University, Islamabad 45320, Pakistan


**Table S1:** Equivalent circuit model-fitted to experimental impedance data for the evaluation of EIS parameters through modified and unmodified GCEs.

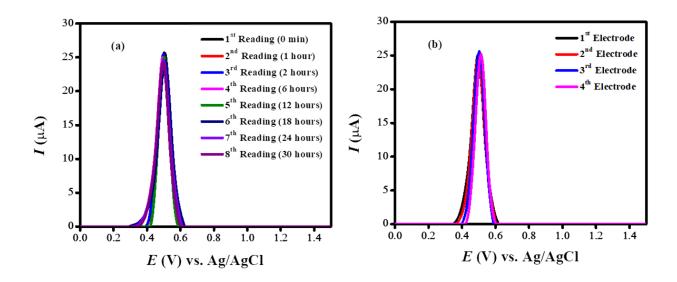
| Working electrode                              | $R_{S}(\Omega)$ | $R_{ct}(\Omega)$ |
|------------------------------------------------|-----------------|------------------|
| Bare GCE                                       | 99.06           | 4214             |
| TiO <sub>2</sub> /GCE                          | 102.1           | 3067             |
| NH <sub>2</sub> -fMWCNTs/GCE                   | 104.6           | 1562             |
| NH <sub>2</sub> -fMWCNTs/TiO <sub>2</sub> /GCE | 108.5           | 515.2            |


**Table S2:** Surface area of bare and modified electrodes calculated according to Randles-Sevcik equation.

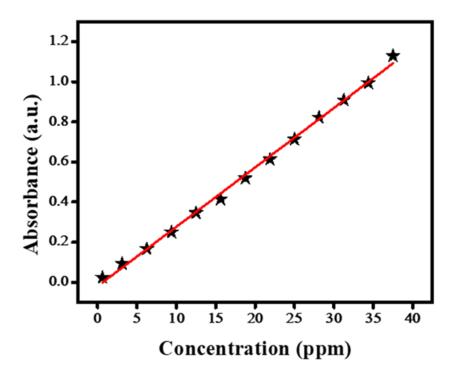
| Working electrode                              | Surface area (cm <sup>2</sup> ) | Peak separation<br>(mV) |
|------------------------------------------------|---------------------------------|-------------------------|
| Bare GCE                                       | 0.027                           | 87                      |
| TiO <sub>2</sub> /GCE                          | 0.048                           | 82                      |
| NH <sub>2</sub> -fMWCNTs/GCE                   | 0.068                           | 78                      |
| NH <sub>2</sub> -fMWCNTs/TiO <sub>2</sub> /GCE | 0.085                           | 72                      |


<sup>\*</sup>Correspondence: afzals qau@yahoo.com




**Figure S1:** (a) Plot of peak current vs. scan rate; (b) Plot of peak current vs. square root of scan rate.




**Figure S2:** (a) Impact of supporting electrolytes on the anodic peak current of 10  $\mu$ M bromothymol blue using NH<sub>2</sub>-fMWCNTs/TiO<sub>2</sub> modified GCE; (b) Bar graph showing maximum peak current of bromothymol blue in different supporting electrolytes.



**Figure S3:** (a) Impact of deposition time on the peak current of 10  $\mu$ M bromothymol blue obtained at NH<sub>2</sub>-fMWCNTs/TiO<sub>2</sub>/GCE in PBS of pH 7.0 at a deposition potential of 0 V;(b) Plot of  $I_p$  of bromothymol blue vs. deposition time; (c) Impact of deposition potential on the peak current intensity of 10  $\mu$ M bromothymol blue in PBS having pH 7.0; (d) Plot of  $I_p$  of bromothymol blue vs. deposition potential.



**Figure S4:** (a) SWVs of bromothymol blue using modified GCE at different time intervals showing repeatability of the designed sensor; (b) SWVs of bromothymol blue using different modified GCEs in phosphate buffer saline of pH 7.0.



**Figure S5:** Calibration curve between concentration of bromothymol blue dye and corresponding absorbance.